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Comment.Math.Univ.Carolin. 47,1 (2006)11{20 11
Countable hains of distributive latties as maximalsemilattie quotients of positive ones of dimension groupsPavel R�u�zi�kaAbstrat. We onstrut a ountable hain of Boolean semilatties, with all inlusionmaps preserving the join and the bounds, whose union annot be represented as themaximal semilattie quotient of the positive one of any dimension group. We alsoonstrut a similar example with a ountable hain of strongly distributive boundedsemilatties. This solves a problem of F. Wehrung.Keywords: semilattie, lattie, distributive, dimension group, diret limitClassi�ation: 06A12, 06B15, 06D05, 06F20, 20K25IntrodutionFor a ring R, we denote by FP(R) the lass of all �nitely generated projetiveright R modules. We denote by [A℄ the isomorphism lass of a module A ∈ FP(R)and by V (R) the monoid of all isomorphism lasses of modules from FP(R),with the operation of addition de�ned by [A℄ + [B℄ = [A ⊕ B℄. If the ring R isvon Neumann regular, then the monoid V (R) satis�es the re�nement property andthe semilattie Idc(R) of �nitely generated two-sided ideals of R is isomorphi tothe maximal semilattie quotient of V (R) ([10, Proposition 4.6℄). Modules A, B ∈FP(R) are stably equivalent , if there exists C ∈ FP(R) suh that A⊕C ≃ B ⊕C.We denote by [A℄s the stable equivalene lass of A ∈ FP(R), and by Vs(R)the quotient {[A℄s | A ∈ FP(R)} of V (R) modulo the stable equivalene. We set

K0(R) = {[A℄s−[B℄s | A, B ∈ FP(R)} and we de�ne ([A℄s−[B℄s)+([C℄s−[D℄s) =[A ⊕ C℄s − [B ⊕ D℄s. Then K0(R) is an abelian group equipped with a preorderdetermined by the positive one Vs(R).If the ring R is unit-regular, then the equivalene and the stable equivaleneof modules from FP(R) oinide, V (R) = Vs(R), K0(R) is a partially orderedabelian group, and Idc(R) is isomorphi to the maximal semilattie quotient ofits positive one V (R). The monoid V (R) satis�es the re�nement property andit generates K0(R). If R is a diret limit of von Neumann regular rings whoseprimitive fators are artinian, in partiular, if R is a loally matriial algebra (overThe work is a part of the researh projet MSM 0021620839 �naned by M�SMT and partlysupported by INTAS projet 03-51-4110, the grant GAUK 448/2004/B-MAT, and the post-dotoral grant GA�CR 201/03/P140.



12 P.R�u�zi�kaa �eld), then K0(R) is also unperforated ([3, Theorem 15.12℄), that is, K0(R) isa dimension group (see [4℄, [2℄).Our study of representations of distributive (∨, 0)-semilatties in maximal semi-lattie quotients of dimension groups is motivated by the study of representationsof distributive (∨, 0)-semilatties as semilatties of two-sided ideals of loally ma-triial algebras. G.M. Bergman [1℄ proved that every ountable distributive (∨, 0)-semilattie is isomorphi to the join-semilattie of �nitely generated ideals of someloally matriial algebra. By [5, Theorem 1.1℄, a dimension group of size at most
ℵ1 is isomorphi to K0(R) of some loally matriial algebra. It follows that a dis-tributive (∨, 0)-semilatties of size ℵ1 is isomorphi to the semilattie of �nitelygenerated ideals of a loally matriial algebra if and only if it is isomorphi to themaximal semilattie quotient of the positive one of some dimension group (suha group, if it exists, an be always taken of size at most ℵ1).It follows from a diret onstrution in [11℄ that a distributive (∨, 0)-semilattieis isomorphi to the semilattie of two sided ideals of a von Neumann regular ring.However the onstrution of F. Wehrung [12℄ gives an example of a distributive(∨, 0)-semilattie of size ℵ1 not isomorphi to the maximal semilattie quotientof the positive one of any dimension group, and therefore not isomorphi to thesemilattie of �nitely generated two-sided ideals of any loally matriial algebra.The key idea of his onstrution onsists of the formulation of a semilattie prop-erty, denoted by URPsr ([12, De�nition 4.2℄), that is satis�ed by the maximalsemilattie quotient of the positive one of any dimension group, and the on-strution of a distributive (∨, 0)-semilattie Sω1 of size ℵ1 that does not satisfythis property. Further, he proved [12, Setion 7℄ that a diret limit of a ount-able hain of distributive latties and join-homomorphisms satis�es URPsr andformulated the following problem ([12, Problem 1℄):Problem 1. Let S = lim−→n<ω Dn with all Dn-s being distributive latties withzero and all transition maps being (∨, 0)-homomorphisms. Does there exists adimension group G suh that S ≃ ∇(G+)?We solve this problem by onstruting a union of a ountable hain of Booleansemilatties, resp. strongly distributive (∨, 0, 1)-semilatties (suh that all inlu-sions are (∨, 0, 1)-homomorphisms), not isomorphi to the maximal semilattiequotient of any Riesz monoid in whih every nonzero element is anti-idempotent,and therefore not isomorphi to the maximal semilattie quotient of the positiveone of any dimension group.Basi oneptsAll monoids are written additively. A ommutative monoid M is equippedwith the algebrai preordering : for all a, b ∈ M , a ≤ b if b = a+ c for some c ∈ M .We say that an element e of a ommutative monoid is anti-idempotent providedthat 2ne 6≤ ne (equivalently, (n+ 1)e 6≤ ne), for every n ∈ N.



Distributive semilatties and dimension groups 13The lass of all (∨, 0)-semilatties oinides with the lass of all ommutativemonoids in whih every element is idempotent. On the other hand, for everyommutative monoid M , there exists a least ongruene ≍ on M suh that M/≍is a (∨, 0)-semilattie (see [6℄). The quotient M/≍, denoted by∇(M), is alled themaximal semilattie quotient of M . The orrespondene M → ∇(M) naturallyextends to a diret limits preserving funtor from the ategory of all ommutativemonoids to the ategory of all (∨, 0)-semilatties ([6℄). Given an element a of M ,we denote by a the orresponding element in ∇(M).A ommutative monoid M satis�es the re�nement property provided that forevery a0, a1, b0, b1 ∈ M , the equality a0 + a1 = b0 + b1 implies that there exist
cij , i, j = 0, 1, in M satisfying ai = ci0 + ci1 for every i = 0, 1, and bj = c0j + c1jfor every j = 0, 1. We say that a ommutative monoid M is a Riesz monoidprovided that for every a, b, c ∈ M with a ≤ b + c, there exist b′ ≤ b and c′ ≤ cin M with a = b′ + c′. Every ommutative monoid satisfying the re�nementproperty is a Riesz monoid while the onverse is not true in general. However,for join-semilatties, i.e., monoids in whih every element is an idempotent, thesetwo properties oinide. A (∨, 0)-semilattie satisfying the re�nement property isalled distributive (see [7, Setion II.5℄).A nonzero element x of a join-semilattie S is join-irreduible if x = y ∨ zimplies that x = y or x = z for every y, z ∈ S. We denote by J(S) the partiallyordered set of all join-irreduible elements of a join-semilattie S. A distributivejoin-semilattie in whih every element is a �nite join of join-irreduible elementsis alled strongly distributive.A hereditary subset of a partially ordered set P is a subset H of P satisfying:
p ∈ H and q ≤ p implies that q ∈ H as well. We denote by H(P ) the distributivelattie of all hereditary subsets of P . Notie that a (∨, 0)-semilattie is stronglydistributive if and only if it is isomorphi to Hc(P ), the (∨, 0)-semilattie ofompat elements of H(P ), for some partially ordered set P . A subset P of a(∨, 0)-semilattie S is dense, if 0 /∈ P and for every nonzero a ∈ S, there is p ∈ Pwith p ≤ a.We denote by G+ the positive one of a partially ordered abelian group G, thatis, G+ = {a ∈ G | 0 ≤ a}. A partially ordered abelian group G is unperforatedif na ≥ 0 implies a ≥ 0 for all a ∈ G and every positive integer n. It is direted ,if eah of its element is the di�erene of two elements from G+. It is easy to seethat a partially ordered abelian group is direted if and only if it is direted asa partially ordered set. A partially ordered abelian group G is an interpolationgroup if for every a0, a1, b0, and b1 ∈ G with ai ≤ bj , i, j = 0, 1, there exists
c ∈ G suh that ai ≤ c ≤ bj , for every i, j = 0, 1. A partially ordered abeliangroup G is an interpolation group if and only if its positive one is a re�nementmonoid ([4, Proposition 2.1℄). A dimension group is an unperforated, direted,interpolation group.An ordered vetor spae is a partially ordered vetor spae over the �eld of ra-



14 P.R�u�zi�kational numbers suh that the multipliation by positive salars is order-preserving.A dimension vetor spae is an ordered vetor spae whih is, as a partially or-dered abelian group, a dimension group.We denote the �rst in�nite ordinal by ω, its suessor ardinal by ω1. Given aset X , we denote by P(X) the set of all subsets of X and by [X ℄<ω the set of all�nite subsets of X . Given a Boolean algebra B and an element x ∈ B, we denoteby B↾x the Boolean algebra {y ∈ B | y ≤ x}. If x, y are elements of a partiallyordered set P suh that there is no element of P smaller both than x and y, wewrite x ⊥ y.The onstrutionLet B be a Boolean algebra, let F be a �lter of B, and let I be the dual idealof the �lter F . Given a distributive (∨, 0)-semilattie S, we denote by S ×F Bthe subsemilattie
S ×F B = ((S r {0})× F ) ∪ ({0} × I)of S ×B (see [8℄ and [12℄). It ould be proved similarly as [8, Lemma 3.3℄ that if

S is a distributive (∨, 0)-semilattie, then S ×F B is distributive. Here, we provethis fat alternatively, by presenting the (∨, 0)-semilattie S ×F B as a union ofa diret system of its distributive (∨, 0)-subsemilatties.Lemma 1. Let B be a Boolean algebra, let F be a �lter of B, and let I be thedual ideal of the �lter F . Let S be a distributive (∨, 0)-semilattie. Then the(∨, 0)-semilattie S ×F B is distributive.Proof: Let X be a basis of the ideal I. For all x ∈ X , set
Sx = {(0, u) | u ∈ B↾x} ∪ {(a, u ∨ (−x)) | a ∈ S r {0} and u ∈ B↾x}.It is easy to see that Sx is a (∨, 0)-subsemilattie of S ×F B isomorphi to

S × (B↾x).We will prove that S ×F B is a direted union of the distributive (∨, 0)-semi-latties Sx. Trivially we have that {0}×I ⊆
⋃

x∈X Sx. Let a be a nonzero elementof S and let u ∈ F . Then for some x ∈ X , −x ≤ u, whene (u ∧ x) ∨ (−x) = u,and so (a, u) ∈ Sx. Therefore (S r{0})×F ⊆
⋃

x∈X Sx, and we have proved that
S×F B = ⋃

x∈X Sx. It is obvious from the de�nition that x ≤ y implies Sx ⊆ Sy,whih implies that the union is direted. This ompletes the proof. �Remark 2. Let F denote the Fr�ehet �lter on P(ω). Then
S ×F P(ω) = lim−→

n∈ω

(

S × P(n+ 1)),



Distributive semilatties and dimension groups 15with the transition maps being the one-to-one (∨, 0)-embeddings de�ned by
fn,m(a, F ) = { (a, F ∪ {n+ 1, . . . , m}) : a > 0,(a, F ) : a = 0,where n < m are natural numbers, a ∈ S, and F ⊆ {0, . . . , n}. In partiular, if

S is a Boolean join-semilattie or a strongly distributive (∨, 0)-semilattie, then
S ×FP(ω) is a direted union of a ountable hain of Boolean join-semilatties orstrongly distributive (∨, 0)-semilatties, respetively. Moreover, if S has a greatestelement, then the transition maps are (∨, 0, 1)-homomorphisms.We modify some notation from [8℄. Let a, b be elements of a monoid M . ThenQ(a/b) = {n/m | n, m ∈ N and ∃ k ∈ N : knb ≤ kma}is a lower interval in Q+. Indeed, if n′/m′ ≤ n/m and n/m ∈ Q(a/b), then
knb ≤ kma for some natural number k, whene (kn)n′b ≤ kmn′a ≤ (kn)m′a. Wede�ne (a/b) = supQ(a/b).Lemma 3. Let a, b and c be elements of a monoid M . Then the following hold.(i) (na/b) = n(a/b) for every positive integer n.(ii) (a + b/c) ≥ (a/c) + (b/c).(iii) Suppose that M is a Riesz monoid and that b ∧ c = 0. Then c ≤ a + bimplies c ≤ a. In partiular, we have that (a + b/c) = (a/c) (ompare to[8, Corollary 2.5℄).Proof: (i) Observe that n′/nm ∈ Q(a/b) i� n′/m ∈ Q(na/b), for all n′, m ∈ N.(ii) It is obvious that if k/n ∈ Q(a/c) and l/n ∈ Q(b/c), then k/n + l/n ∈Q(a+ b, c).(iii) Let c ≤ a + b. Sine M is a Riesz monoid, there are a′ ≤ a, b′ ≤ b with
c = a′ + b′. From b ∧ c = 0 it follows that b′ = 0, whene c ≤ a. For theequality (a + b/c) = (a/c), it suÆes to hek that (a + b/c) ≤ (a/c). But if
kmc ≤ kn(a + b) = kna + knb for some k, m, n ∈ N, then we have just provedthat kmc ≤ kna. �We denote by (R+)ω , resp. (R+)(ω) the monoid of all maps from ω to R+,resp. the monoid of all maps from ω to R+ with �nite support. We denote by
R the quotient (R+)ω/(R+)(ω), and for all f ∈ (R+)ω, we denote by f theorresponding element of ∇(R).Let S be a (∨, 0)-semilattie, M a monoid, and let ι : S×FP(ω) → ∇(M) be anisomorphism. Fix a set E = {ei | i ∈ ω} of elements of M suh that ei = ι(0, {i}),for every i ∈ ω. For all a ∈ M and all i ∈ ω, de�ne fa(i) = (a/ei).



16 P.R�u�zi�kaLemma 4. Let M be a Riesz monoid and ei, i ∈ ω, anti-idempotent elementsof M . Then (a/ei) < ∞, for all i ∈ ω and a ∈ M , that is, fa is a map from ω to
R+, for every a ∈ M .Proof: Fix i ∈ ω, a ∈ M . Let (x, A) ∈ S×FP(ω) be suh that a = ι(x, A). Pik
b ∈ M satisfying b = ι(x, Ar {i}). Then a ≤ b∨ei, hene a ≤ nb+nei, for somepositive integer n. Suppose that 2n < (a/ei). Then 2nkei ≤ ka, for some k ∈ N.It follows that 2nkei ≤ knb + knei. Sine b ∧ ei = 0, we have, by Lemma 3(iii),that 2nkei ≤ knei, whih ontradits the assumption that ei is anti-idempotent.Therefore (a/ei) ≤ 2n. �Lemma 5. If a = ι(x, A) and b = ι(x, B), then fa = fb, for every a, b ∈ M .Proof: There exists a �nite subset F of ω suh that A∪F = B∪F . Pik c ∈ Msatisfying c = ι(0, F ). Then a ≤ b ∨ c, whih means that a ≤ n(b + c) for some
n ∈ N. For every i ∈ ω r F , c∧ei = 0, and so, by Lemma 3, fa(i) ≤ fn(b+c)(i) =(nb+ nc/ei) = n(b/ei) = nfb(i). It follows that fa ≤ fb. Similarly we prove that
fb ≤ fa. �Lemma 4 and Lemma 5 entitle us to de�ne a monotone map µι,E :S → ∇(R)as follows: Given x ∈ S, we pik A ∈ P(ω) suh that (x, A) ∈ S ×F P(ω), we put
a = ι(x, A), and we de�ne µι,E(x) = fa.Lemma 6. Let M be a Riesz monoid, let S be a distributive (∨, 0)-semilattie,and let ι : S ×F P(ω) → ∇(M) be an isomorphism. Let E = {ei | i ∈ ω} bea set of anti-idempotent elements of M satisfying ei = ι(0, {i}) for all i ∈ ω.Finally, let x ∈ S r {0}, and let {yα | α ∈ 
} be an unountable set of elementsof S r {0} suh that x ≥ yα for every α ∈ 
 and yα ∧ yβ = 0 for every α 6= β in 
(we will all suh a set a deomposition under x). Then there exists α ∈ 
 with
µι,E(x) > µι,E(yα).Proof: Let a, and bα, α ∈ 
 be elements of M satisfying a = ι(x, ω) and
bα = ι(yα, ω). Sine a ≥ bα, for every α ∈ 
, there are positive integers mαsuh that mαa ≥ bα, α ∈ 
. Sine the set 
 is unountable, there are a positiveinteger m and an unountable subset U of 
 suh that mα = m, for every α ∈ U .We an replae a with ma, and so we an without loss of generality suppose that
m = 1.The map µι,E is monotone, and so µι,E(x) ≥ µι,E(yα), for every α ∈ U .Toward a ontradition, suppose that µι,E(x) = µι,E(yα), for every α ∈ U . Thenthere are positive integers nα and �nite subsets Fα of ω suh that nαfbα

(j) ≥
fa(j), for every j ∈ ω r Fα. Sine U is unountable, there are n ∈ N and anin�nite subset V of U suh that nα = n, for all α ∈ V . Pik distint elements
α0, . . . , αn from V . By [12, Lemma 2.3℄, there exist a �nite subset F of ω and an



Distributive semilatties and dimension groups 17element eF ∈ M with eF = ι(0, F ) satisfying
n

∑

i=0 bαi
≤ a+ eF .Aording to Lemma 3(ii), ∑n

i=0(bαi
/ej) ≤ (

∑n
i=0 bαi

/ej

), hene
n

∑

i=0 fbαi
(j) ≤ fa+eF

(j),for every j ∈ ω. If j ∈ ω r F , the equality (a + eF /ej) = (a/ej) holds byLemma 3(iii), whene
n

∑

i=0 fbαi
(j) ≤ fa(j).Pik a natural number j /∈ (⋃n

i=0 Fαi
) ∪ F . Then

nfa(j) ≥ n
n

∑

i=0 fbαi
(j) = n

∑

i=0 nfbαi
(j) ≥ (n + 1)fa(j),hene fa(j) = 0, whene (a/ej) = 0, a ontradition as (0, {j}) ≤ (x, ω). �De�nition 1. Let κ be an in�nite ardinal. We de�ne the following propertiesof a partially ordered set P .(Aκ) Every dereasing sequene of elements of P of length at most κ has anonzero lower bound.(B) Under every x ∈ P , there exists an unountable set {yα | α ∈ 
} ofelements of P suh that yα ⊥ yβ , for every α 6= β in 
.Lemma 7. For every in�nite ardinal κ, there exists a Boolean algebra Bκ ofsize 2κ suh that Bκ r {0} satis�es both (Aκ) and (B).Proof: For an ordinal number α, denote by ωα the set of all maps from α to ω,and set

Pκ = ⋃

κ≤α<κ
+ ωα.Order the set Pκ by reverse inlusion, that is, f ≤ g, if f is an extension of g,for every f , g ∈ Pκ. Observe that Pκ is a tree of ardinality 2κ satisfying both(Aκ) and (B). Denote by Lκ the sublattie of H(Pκ) generated by Pκ. Denoteby Bκ the Boolean algebra R-generated by Lκ [7, II.4. De�nition 2℄. Observethat for every a 6≥ b in Lκ, there is p ∈ Pκ suh that p ≤ b and p ∧ a = 0. By[7, II.4. Lemma 3℄, there are a < b in Lκ suh that b − a ≤ c, for every nonzeroelement c ∈ Lκ. Pik p ∈ Pκ with p ≤ b and p∧ a = 0. Then p ≤ c, and so Pκ isa dense subset of Bκ. It follows that Bκ r {0} satis�es both (Aκ) and (B). It isstraightforward that the ardinality of Bκ is 2κ. �



18 P.R�u�zi�kaProposition 8. Let κ be an in�nite ardinal. Let S be a distributive (∨, 0)-se-milattie suh that the partially ordered set S r {0} satis�es both (Aκ) and (B).Suppose that S ×F P(ω) is isomorphi, via an isomorphism ι, to ∇(M) for someRiesz monoid M and that there are anti-idempotent elements ei, i ∈ ω with
ei = ι(0, {i}). Then ∇(R) ontains a stritly dereasing sequene of length κ+.Proof: By trans�nite indution up to κ+, we de�ne a sequene {xα | α < κ+} ofelements of S r {0} induing a stritly dereasing sequene {µι,E(xα) | α < κ+}of elements of ∇(R). Let x0 be any nonzero element of S. Suppose that thesequene {xα | α ≤ β} is de�ned for some β ≤ κ+. Sine S r {0} satis�esproperty (B), there is a deomposition {yγ | γ < 
} under xβ . By Lemma 6,
µι,E(xβ) > µι,E(yγ), for some γ ∈ 
, and so we an de�ne xβ+1 = yγ . Let
β < κ+ be a limit ordinal and suppose that we have already de�ned the sequene
{xα | α < β} suh that the sequene {µι,E(xα) | α < β} in ∇(R) is stritlydereasing. By (Aκ), there is a lower bound xβ of {xα | α < β} in S r {0}. Sinethe map µι,E is monotone, we obtain that µι,E(xα) > µι,E(xα+1) ≥ µι,E(xβ),for every α < β. �Denote by e the supremum of the lengths of all stritly dereasing sequenesin ∇(R).Theorem 9. There is a direted union D of a ountable hain of Boolean join-semilatties (with (∨, 0, 1)-preserving inlusion maps) whih is not isomorphi to
∇(M) for any Riesz monoid M in whih every nonzero element is anti-idempotent.The ardinality of D is 2e.Proof: The (∨, 0, 1)-semilattie D = Be ×F P(ω) is a diret limit of a ountablehain of Boolean latties and one-to-one (∨, 0, 1)-preserving transition maps (Re-mark 2). Sine, by Lemma 7, Be r {0} satis�es both (Ae) and (B), and M is aRiesz monoid in whih every nonzero element is anti-idempotent, the assertionfollows from Proposition 8. The ardinality of Be ×F P(ω) is learly 2e. �Remark 10. This result ontrasts with the answer to the analogue of Problem 1 forsemilatties of ompat ongruenes of latties: Every diret limit of a ountablesequene of distributive latties with zero and (∨, 0)-homomorphisms is isomor-phi to the semilattie Con L of ompat ongruenes of some relatively omple-mented lattie L with zero ([13, Corollary 21.3℄).Theorem 11. There is a union H of a ountable hain of strongly distributive(∨, 0, 1)-semilatties (with (∨, 0, 1)-preserving inlusion maps) whih is not iso-morphi to the maximal semilattie quotient of any Riesz monoid in whih everynonzero element is anti-idempotent.Proof: As in the proof of Theorem 9, H = Hc(Pe) ×F P(ω) is a diret limitof a ountable hain of strongly distributive (∨, 0, 1)-semilatties and one-to-one



Distributive semilatties and dimension groups 19(∨, 0, 1)-preserving transition maps (Remark 2). Now argue as in the proof ofTheorem 9. �A ommutative monoid M is onial if a ≤ 0 implies that a = 0 for all a ∈ M .Sine 2ne + x = ne implies 2(ne + x) = ne + x, the onial monoids withoutnonzero idempotent elements are exatly onial monoids with all elements anti-idempotent. The positive one of any dimension group forms a onial monoidwithout nonzero idempotent elements whih satisfy the re�nement property.Corollary 12. There is a union of a ountable hain of Boolean algebras,resp. strongly distributive (∨, 0, 1)-semilatties (with (∨, 0, 1)-preserving inlusionmaps) whih is not isomorphi to ∇(M) for any onial Riesz monoid M withoutnonzero-idempotent elements. In partiular, it is not isomorphi to ∇(G+) forany dimension group G.Reall [12℄ that a ommutative monoid M is strongly separative if a + b = 2bimplies a = b for every a, b ∈ M . An element e of a ommutative monoid M has�nite stable rank if there is k ∈ N suh that ke + a ≤ e + b implies a ≤ b, for all
a, b ∈ M . It is straightforward that every element of a strongly separative monoidhas �nite stable rank. In a onial monoid, every nonzero idempotent element hasin�nite stable rank. Therefore, we an replae the assumption that the monoid Mhas no nonzero idempotent elements by any of the following requirements: everyelement of M has �nite stable rank, M is strongly separative (ompare to [12,Corollary 5.3℄). We ould derive from Corollary 12 similar onsequenes to theones obtained from [12, Corollary 5.3℄ in [12, Setion 6℄. In partiular, neitherthe (∨, 0, 1)-semilattie D nor the (∨, 0, 1)-semilattie H are isomorphi to thejoin-semilattie of �nitely generated ideals of any strongly separative von Neu-mann regular ring, resp. the join-semilattie Con L of all ompat ongruenesof any modular lattie L of loally �nite length.Remark 13. Observe that every element f ∈ ∇(R) is represented by a map withrational values. It follows that the ardinality of ∇(R) is 2ℵ0 , and so we have theestimate ℵ1 ≤ e ≤ 2ℵ0 . Of ourse, if 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2, then 2e = ℵ2. Onthe other hand, ℵ2 < 2ℵ1 implies that ℵ2 < 2e.Aknowledgment. I thank Friedrih Wehrung for his useful omments. I alsothank the anonymous referee for his prompt and thoughtful report, whih helpedto improve the paper. Referenes[1℄ Bergman G.M., Von Neumann regular rings with tailor-made ideal latties, unpublishednotes, Otober 1986.[2℄ E�ros E.G., Handelman D.E., Shen C.-L., Dimension groups and their aÆne representa-tions, Amer. J. Math. 120 (1980), 385{407.[3℄ Goodearl K.R., Von Neumann Regular Rings, Pitman, London, 1979, xvii + 369 pp.
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