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Topologies generated by ideals

Carlos Uzcátegui

Abstract. A topological space X is said to be generated by an ideal I if for all A ⊆ X

and all x ∈ A there is E ⊆ A in I such that x ∈ E, and is said to be weakly generated
by I if whenever a subset A of X contains E for every E ⊆ A with E ∈ I, then A itself
is closed. An important class of examples are the so called weakly discretely generated
spaces (which include sequential, scattered and compact Hausdorff spaces). Another
paradigmatic example is the class of Alexandroff spaces which corresponds to spaces
generated by finite sets. By considering an appropriate topology on the power set of
X we show that τ is weakly generated by I iff τ is a I-closed subset of P(X). The
class of spaces weakly generated by an ideal behaves as the class of sequential spaces, in
the sense that their closure operator can be characterized as the sequential closure and
moreover there is a natural notion of a convergence associated to them. We also show
that the collection of topologies weakly generated by I is lattice isomorphic to a lattice
of pre-orders over I.

Keywords: lattices of topologies, hyperspaces, tightness, Alexandroff spaces, Fréchet and
sequential spaces, discretely generated spaces, sequential convergence

Classification: Primary 54A10, 54D55, 06B30; Secondary 54B20, 54A20

1. Introduction

Let (X, τ) be a topological space and I be an ideal over X containing all finite
subsets of X . We say that τ is generated by I if for every A ⊆ X and every x ∈ A
there is E ∈ I such that E ⊆ A and x ∈ E. We will say τ is weakly generated by
I if whenever a subset A of X contains E for every E ⊆ A with E ∈ I, then A
itself is closed. There are several notions that have been studied in the literature
which motivate the above definitions. For instance: (1) A space is generated by
finite sets iff it is an Alexandroff space (that is to say, the intersection of arbitrary
open sets is open). (2) If I is the ideal generated by the τ -discrete sets, then we
obtain the notions of a (weakly) discretely generated space, which has recently
received considerable attention [1], [2], [7]. (3) If I is the collection of countable
subsets of X , then τ is generated by I iff τ is countable tight. (4) Let τ be a T1
topology and I be the ideal generated by the range of all τ -convergent sequences.
Then τ is Fréchet (sequential) iff τ is (weakly) generated by I.
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In order to state our results we need to recall some facts and introduce some
terminology. It is well known ([15]) that Alexandroff topologies are given by pre-
orders over X , namely for every pre-order ≤ over X let Γ(≤) be the topology
generated by the sets {y ∈ X : x ≤ y} for x ∈ X . Equivalently, A is Γ(≤)-
closed iff A contains every y such that y ≤ x for some x ∈ A. Then τ is an
Alexandroff topology iff there is a (unique) pre-order ≤ such that τ = Γ(≤). For
a given topology τ such pre-order is called the specialization pre-order of τ and
is usually denoted by ≤τ . Moreover, the collection of Alexandroff topologies over
X is a lattice and the map τ 7→≤τ is a lattice isomorphism. We generalize these
results. We will work with pre-orders ⊑ (called specialization relations) over I
and associate to them a topology τ(⊑) in a natural way: A is τ(⊑)-closed iff
A ⊇ F for all F ⊑ E with E ⊆ A and E, F ∈ I. Alexandroff topologies then
correspond to topologies of the form τ(⊑) where ⊑ is a pre-order over the ideal
of finite subsets of X .
We introduce a notion of an I-convergence analogous to that of a sequential

convergence where sequences are substituted by sets in I. So an I-convergence
will be a collection A ⊆ I × X satisfying some natural axioms. To each I-
convergence A, a topology τ(A) is associated as follows: a set A ⊆ X is τ(A)-
closed iff x ∈ A for all (E, x) ∈ A with E ⊆ A. We present a version of the
Urysohn axiom for sequential convergence in this more general context.
It was shown in [17] that a topology τ over X is Alexandroff iff it is a closed

subset of the power set P(X) endowed with the product topology (i.e. identifying a
subset ofX with its characteristic function). We define a topology on P(X) called
the I-topology. When I is the ideal of finite sets, the I-topology is the product
topology. We will show that the I-closure of a topology is again a topology.
Our main results are the following:

Theorem 1.1. Let I and τ be, respectively, an ideal (containing all finite sets)
and a topology over X . The following are equivalent:

1. τ is weakly generated by I;
2. τ is closed in P(X) with respect to the I-topology;
3. there is a specialization pre-order ⊑ over I such that τ = τ(⊑);
4. there is an I-convergence A such that τ = τ(A).

Theorem 1.2. Let I be an ideal overX (containing all finite sets). The collection
of all topologies weakly generated by I is lattice isomorphic to a lattice of pre-
orders over I.

The paper is organized as follows. In Section 3 we study the I-topology and
show that the I-closure of a topology is a topology. In Section 4 we show that a
topology is weakly generated by I iff it is closed with respect to the I-topology.
In Section 5 we present a characterization of weakly generated topologies in terms
of specialization pre-orders over I and show that the collection of weakly gene-
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rated topologies is a lattice. Finally, in Section 6 we study the notion of an
I-convergence.
We would like to thank S. Todorčević for several helpful comments and for

giving us copies of the articles [5], [12], [14], [10]. We got interested in the lat-
tice structure of Alexandroff topologies after reading of an unpublished work of
S. Watson [20]. Part of the results included here were presented at the III joint
Meeting Japan-Mexico in Topology and Its Applications held in Oaxaca (Mexico)
in December 2004. We would like to thank the organizers for their hospitality and
the financial assistance they provided. Finally, we would like to thank the anony-
mous referee who pointed out some mistakes in the first version of 4.5 and 4.6
and made valuable suggestions which improved the quality of the paper.

2. Notation and terminology

An ideal over a set X is a collection of subsets of X closed under taking subsets
and finite unions. We will always assume that an ideal contains every finite subset
of X . The ideal of finite sets is denoted by Fin. For a given family A of subsets
of X , we denote by A∗ the collection of complements of sets in A. Recall that I
is an ideal iff I∗ is a filter. A Čech closure operator ([13]) on a set X is a map
C : P(X)→ P(X) (where P(X) denotes the power set of X) such that C(∅) = ∅,
A ⊆ C(A) and C(A ∪ B) = C(A) ∪ C(B) for any A, B ⊆ X . Notice that under
this conditions C is also monotone, i.e. C(A) ⊆ C(B) whenever A ⊆ B ⊆ X . If
C is also idempotent, it is called a Kuratowski closure operator . A Čech operator
C can be iterated transfinitely and its limit C∞ is a Kuratowski closure operator.
Thus each Čech operator has a topology associated with it. For the undefined
notions used in this paper we refer to [9].

3. Ochan closures of families of subsets

Given A ⊆ B ⊆ X we denote by [A, B] the interval determined by A and B
with respect to the order ⊆, that is to say,

[A, B] = {C ∈ P(X) : A ⊆ C ⊆ B}.

We will write [x, B] instead of [{x}, B]. Let A and B be two collections of subsets
of X such that A contains ∅ and is closed under finite unions and B contains X
and is closed under finite intersections. Since [A, B]∩ [A′, B′] = [A∪A′, B∩B′] it
is clear that the collection of intervals [A, B] with A ∈ A and B ∈ B forms a base
for a topology on P(X) which will be called the (A,B)-topology. Thus we talk
about a subset T ⊆ P(X) being (A,B)-open, (A,B)-closed, etc. We will focus
mainly on the case where A is an ideal and B is a filter. In particular, every basic
interval [A, B] is clopen and thus the (A,B)-topology is zero-dimensional.
This topologies of family are generically called Ochan topologies ([12], [14])

or Pixley-Roy topologies ([4], [5]). The product topology on P(X) clearly corre-
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sponds to the (Fin,Fin∗)-topology. The (Fin,P(N))-topology has played a promi-
nent role in Ramsey Theory, since the subspace [N]ω of P(N) of all infinite subsets
of N is Ellentuck’s space ([8]). The approach of regarding a topology as a subspace
of P(X) with the product topology has been used in [17], [18] [19].
Let A and B be respectively an ideal and a filter over X . In this section we

present some general results about the (A,B)-closure (called Ochan closure) of
families of sets. For instance, we show that the (A,B)-closure τ of a topology τ
is a topology. We will be most interested in the case where A is Fin and B is the
dual filter I∗ of some ideal I. The (Fin, I∗)-topology will be simply called the
I-topology and consequently we will talk about I-closed sets, I-closure, etc.
The propositions that follow contain some basic facts about Ochan closures.

The first one says that union, intersection and complementation are continuous
and open when they are viewed as maps on Ochan spaces.

Proposition 3.1. Let I,F be respectively an ideal and a filter of subsets of X .
Consider the functions f, g : P(X) × P(X) → P(X) and h = P(X) → P(X)
given by f(A, B) = A ∪ B, g(A, B) = A ∩ B and h(A) = X \ A.

(i) Then f and g are continuous and open maps when P(X) is given the
(I,F)-topology.

(ii) h is a homeomorphism regarded as a map from P(X) with the (I,F)-
topology onto P(X) with the (F∗, I∗)-topology.

Proof: (ii) To see that h is a homeomorphism just notice that X − A ∈ [K, L]
iff A ∈ [X \ L, X \ K].
(i) Let K ∈ I and E ∈ F and A, B ⊆ X such that A ∪ B ∈ [K, E]. Then

it is easy to check that f([K ∩ A, E] × [K ∩ B, E]) ⊆ [K, E]. Analogously, if
A∩B ∈ [K, E], then g([K, E∪(A\E)]× [K, E∪(B \E)]) ⊆ [K, E]. Thus f and g
are continuous. To see that they are open just notice that f sends [K, E]×[K ′, E′]
onto [K ∪ K ′, E ∪ E′] and for g use (ii) and DeMorgan laws. �

Proposition 3.2. Let I,F be respectively an ideal and a filter of subsets of X .
Let B ⊆ P(X) and B denote the (I,F)-closure of B.

(i) If B is closed under finite (arbitrary) unions, then B is closed under finite
(arbitrary) unions. Analogously, if B is closed under finite (arbitrary)
intersection, then B is closed under finite (arbitrary) intersections.

(ii) If I = Fin and B is closed under finite unions, then B is closed under
arbitrary unions.

(iii) If F is Fin∗ and B is closed under finite intersections, then B is closed
under arbitrary intersections.

(iv) If B is closed under subsets (resp. supersets), then so is B.

Proof: First we claim that it suffices to show (i) for unions. In fact, suppose that
(i) holds for unions and let B be a family closed under intersections. Consider



Topologies generated by ideals 321

the collection A of complements of sets in B. Then A is closed under unions.
Then the (F∗, I∗)-closure of A is closed under unions. The result now follows
from Proposition 3.1(ii), since the (I,F)-closure of B is mapped by h to the
(F∗, I∗)-closure of A.
Now we show (i) for finite unions. Let f be the function given in Proposi-

tion 3.1. For any family A of subsets of X we have A ⊆ f(A × A). And A is
closed under finite unions iff f(A×A) = A. Let B be a family of sets closed under

finite unions. Since f is continuous, we have that B ⊆ f(B ×B) ⊆ f(B × B) = B.
The case of arbitrary unions follows from the argument given below for (ii).
To see (ii), suppose B is closed under finite unions and Vi ∈ B for all i ∈ I.

Let K ∈ I and E ∈ F such that K ⊆
⋃

i Vi ⊆ E. Then K ∩ Vi ⊆ Vi ⊆ E for
all i. Thus there is V ′

i ∈ B such that K ∩ Vi ⊆ V ′
i ⊆ E for all i ∈ I. Then

K ⊆
⋃

i V ′
i ⊆ E. Now suppose that K is finite, then for some finite J ⊆ I we

have that K ⊆
⋃

i∈J V ′
i ⊆ E and

⋃
i∈J V ′

i ∈ B. Therefore [K, E]∩B 6= ∅ and thus⋃
i Vi ∈ B.
(iii) follows from (ii) and Proposition 3.1(ii). Finally, to see (iv), suppose B

is closed under subsets and let B ⊆ A ∈ B. Fix K ∈ I and F ∈ F such that
K ⊆ B ⊆ F . Then K ⊆ A ⊆ F ∪ A, therefore there is V ∈ B such that
K ⊆ V ⊆ F ∪A. Hence V ∩F ∈ B and K ⊆ V ∩F ⊆ F . An analogous argument
shows that when B is closed under supersets, so is B. �

It is clear from the previous result that the I-closure of a filter (ideal) is again
a filter (ideal). The I-closure of an ideal J (containing every finite set) is P(X),
since J is clearly I-dense. However, for the closure of a filter we have the following
characterization.

Proposition 3.3. Let I and F be respectively an ideal and a filter over X . Let
F be the I-closure of F . Then

A ∈ F iff A ∪ B ∈ F for all B ∈ I∗.

Proof: Let F be a filter over X . Suppose A ∈ F and let B ∈ I∗. Then
A ∈ [∅, A ∪ B] and A ∪ B ∈ I∗. Therefore there is C ∈ F contained in A ∪ B
and thus A ∪ B ∈ F . Conversely, suppose A ∪ B ∈ F for all B ∈ I∗. Let K be
a finite set and B ∈ I∗ such that A ∈ [K, B]. Then B = A ∪ B ∈ F and hence
[K, B] ∩ F 6= ∅. Therefore A ∈ F . �

3.1 The I-closure of a topology

In this section we will analyze the Ochan closure of a topology.

Theorem 3.4. Let I,F be respectively an ideal and a filter on X .

(i) Every topology τ over X is (Fin,P(X))-closed.
(ii) If τ is a topology over X , then the (I,F)-closure of τ is a topology.
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(iii) If B is a collection of subsets of X closed under finite unions and inter-
sections, then B the (Fin,F)-closure of B is a topology. Moreover, when
F = P(X), then B is the topology generated by B.

Proof: (i) Let A be a set which is not τ -open. Let x ∈ A such that x /∈ intτ (A).
Then A ∈ [x, A] and [x, A] ∩ τ = ∅. (ii) and (iii) follow from Proposition 3.2. �

The (A,B)-closure of a topology with respect to two arbitrary families A and
B is not in general a topology as we will show in the following example. Thus the
assumption that I is an ideal and F is a filter is important when dealing with
Ochan closures.

Example 3.5. Let τ be a topology over X , B be the collection of τ -closed sets
and τ be the (Fin,B)-closure of τ . Then

A ∈ τ iff A ⊆ intτ (clτ (A)).

In fact, suppose A ⊆ intτ (clτ (A)) and let K ⊆ A ⊆ F be such that K is finite and
F is τ -closed. Then K ⊆ intτ (clτ (A)) ⊆ F . Thus A ∈ τ . Conversely, suppose
A ∈ τ and let x ∈ A. Since A ∈ [x, clτ (A)], there is a τ -open set O such that
x ∈ O ⊆ clτ (A) and we are done. To see that τ is not in general closed under
intersections consider in R two dense sets with finite and non empty intersection.

Proposition 3.6. Let I and τ be respectively an ideal and a topology over X .
Let τ denote the I-closure of τ . Then

(i) intτ (F ) = intτ (F ) for all F ∈ I∗ or equivalently clτ (E) = clτ (E) for all
E ∈ I.

(ii) For every V ⊆ X the following are equivalent:
(a) V ∈ τ ,
(b) V =

⋂
{intτ (F ) : V ⊆ F ∈ I∗},

(c) ∀x ∈ V ∀E ∈ I [x ∈ clτ (E)⇒ x /∈ clτ (E \ V )].

Proof: (i) Let F ∈ I∗. It is clear that intτ (F ) ⊆ intτ (F ). On the other hand,
fix x ∈ intτ (F ). Since intτ (F ) ∈ [x, F ] ∩ τ , then there is W ∈ [x, F ] ∩ τ . Thus
x ∈ intτ (F ) and we are done.
(ii) We show first that (a) and (b) are equivalent. Let V ∈ τ . By (i) it is clear

that V ⊆ intτ (F ) for all F ∈ I∗ with V ⊆ F . On the other hand, if x /∈ V , then
x /∈ intτ (X \ {x}) and X \ {x} ∈ I∗. Thus (b) holds. Conversely, suppose that
(b) holds. Then the collection {intτ (F ) : V ⊆ F ∈ I∗} is a net (with respect
to reverse inclusion) in τ which converges to V in the (Fin, I∗)-topology. Thus
V ∈ τ .
It follows immediately from (i) that (a) implies (c). We will show that (c)

implies (b). Let V ⊆ F ∈ I∗. It suffices to show that V ⊆ intτ (F ). Let
x ∈ V and suppose that x /∈ intτ (F ). Then x ∈ clτ (X \ F ). Since X \ F ∈ I
and (X \ F ) \ V = X \ F , then by (c) we have that x /∈ clτ (X \ F ) which is
a contradiction. �
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Example 3.7. Consider the ideal I of subsets of R generated by the range of all
strictly decreasing sequences. Let τl be the topology of the Sorgenfrey line, i.e.
the topology generated by the intervals of the form [a, b). Then the I-closure of
the usual topology of R is τl.

Proposition 3.8. The I-closure of a topology τ is the discrete topology iff every
set in I is τ -closed discrete. In particular, for I = Fin, the Fin-closure of τ is the
discrete topology iff τ is T1.

Proof: Let τ be the I-closure of τ . Suppose τ is the discrete topology. By 3.6,
clτ (E) = clτ (E) = E for all E ∈ I. Therefore each E ∈ I is τ -closed discrete.
The other claims are easily verified. �

4. Topologies generated by an ideal

Then notion of a topology (weakly) generated by an ideal was given in the
introduction. Given a Y ⊆ X , we denote by IY the ideal I ∩ P(Y ) over Y . We
will say that the topology of X is hereditarily weakly generated by I if, for every
Y ⊆ X , the subspace topology of Y is weakly generated by IY . The following
result, whose proof is straightforward, shows the analogy with sequential and
Fréchet-Urysohn spaces.

Proposition 4.1. Let τ and I be respectively a topology and an ideal over X .

(i) If τ is generated by I and Y ⊆ X , then the subspace topology of Y is
generated by IY .

(ii) If τ is weakly generated by I and Y ⊆ X is τ -closed, then the subspace
topology of Y is weakly generated by IY .

(iii) τ is hereditarily weakly generated by I iff τ is generated by I.

Consider the following operator:

(1) CI,τ (A) =
⋃

{E : E ⊆ A with E ∈ I}.

It is easily seen that CI,τ is a Čech operator. Let C∞
I,τ be the corresponding

Kuratowski closure operator. Unless there is a danger of confusion about which
ideal I is being used, we will denote Cα

I,τ and C∞
I,τ just by Cα and C∞. Notice

that C∞(A) ⊆ A for all A ⊆ X and C∞(E) = C(E) = E for all E ∈ I. Thus
we have that τ is generated by I if C(A) = A for all A ⊆ X , and τ is weakly
generated by I if whenever C(A) ⊆ A, then A is τ -closed.

Proposition 4.2. Let I and τ be respectively an ideal and a topology over X .
Then

(i) τ is generated by I iff C = clτ ;
(ii) τ is weakly generated by I iff C∞ = clτ ;

(iii) suppose τ is weakly generated by I and t(X) ≤ κ; then clτ = Cκ+ .
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Proof: (i) follows immediately from the definitions. (ii) Suppose τ is weakly
generated by I. By the definition of C∞, we have A ⊆ C∞(A) ⊆ A. It is also
clear that C(C∞(A)) = C∞(A). Since τ is weakly generated, C∞(A) is τ -closed,
thus C∞(A) = A. Conversely, suppose C∞ = clτ and let A ⊆ X be such that
C(A) ⊆ A. Then C∞(A) ⊆ A and thus A ⊆ A. (iii) It suffices to show that

C(Cκ+(A)) = Cκ+(A) for every A ⊆ X . In fact, let x ∈ C(Cκ+(A)). Then there

is E ⊆ Cκ+(A) such that x ∈ E. Since t(X) ≤ κ, there is F ⊆ E of size at most
κ such that x ∈ F . Therefore, there is α < κ+ such that F ⊆ Cα(A). Thus
x ∈ Cα+1(A). �

Theorem 4.3. Let I be an ideal overX , τ a topology overX and τ the I-closure
of τ . Then

(i) τ is weakly generated by I iff τ is I-closed,
(ii) C∞ is the closure operator of τ .

Proof: (i) From 3.6(ii) we have that for every A ⊆ X

(2) A is τ -closed iff clτ (E) ⊆ A for all E ⊆ A in I

which simply says that (i) holds. To see (ii), notice first that from 3.6(i) it follows
that CI,τ = CI,τ . From this, (i) and 4.2 the results follows. �

Example 4.4. Let τ be a Hausdorff topology overX and I be the ideal generated
by the collection of τ -discrete subsets ofX . In this case we talk about spaces which
are (weakly) discretely generated. They have been studied in [1], [2], [7]. For
instance, if X belongs to the collection of spaces {Sequential, scattered, compact
with countable tightness, monotonically normal, regular with a nested local base
at every point, radial space}, then X is discretely generated. Moreover, if X is
compact or pseudoradial then τ is weakly discretely generated.

There are spaces which are not determined by any reasonable ideal as we show
below. We have already said that every topology is obviously generated by P(X).
A similar situation occurs when I contains the complement of a closed-discrete
set. To see this we introduce the following notion. We will say that an ideal I
is trivial with respect to τ if for all x ∈ X there is a τ -open set Ox such that
x ∈ int(Ox), Ox ∈ I and Ox \ Ox is discrete.

Proposition 4.5. Let τ be a topology over X and I an ideal. If I is trivial with
respect to τ , then τ is generated by I.

Proof: Let A ⊆ X and x ∈ A\A. Let Ox be an open set as in the definition of a
trivial ideal. Let Vx = int(Ox). Since x ∈ A ∩ Vx, A∩Vx = (A∩Ox)∪A∩(Vx\Ox)
and A ∩ (Vx \ Ox) is closed discrete, then x ∈ A ∩ Ox and we are done. �
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Example 4.6. A space is maximal (in the sense of [6]) ifX has no isolated points
and every topology extending that of X has an isolated point (i.e. the topology
of X is maximal in the family of dense-in-itself topologies). It was shown in [6]
that a maximal space is extremally disconnected and satisfies that every nowhere
dense set is closed discrete and every set with empty interior is nowhere dense.
Since in a maximal space every discrete set is closed, such spaces are not weakly
discretely generated ([7]). Now we will show that the same happens with respect
to any non trivial ideal. Suppose that τ , the topology of a maximal space X , is
weakly generated by an ideal I. Let x ∈ X , as X has no isolated points, then
x ∈ X \ {x}. Therefore there is E ∈ I with x ∈ E \ E. Hence E is not closed-
discrete and thus it has non empty interior. Let Ox = int(E) and Vx = Ox. Since
X is extremally disconnected, Vx is open. As E \ int(E) is closed-discrete, x ∈ Vx.
Therefore I is trivial with respect to τ .

Moreover, in [6] a countable regular maximal space M was constructed. Since
M can be embedded in 2c, then 2c is an example of a compact space which is not
discretely generated ([7]). In view of these results (see Example 4.4), a natural
question is whether every compact Hausdorff space is generated by some non
trivial ideal.

Remark 4.7. Another way of approximating the closure of a set is by almost
closed sets. A set F is almost closed if F \ F is a singleton. A space is Whyburn
if for every x ∈ A \ A there is an almost closed set F ⊆ A such that x ∈ F ([3],
[16]). In general, the topology of a Whyburn space is not necessarily (weakly)
generated by a non trivial ideal. For instance, any maximal space is Whyburn
([3]).

4.1 An equivalence relation associated to an ideal

To each ideal I over X we will associate the following equivalence relation ∼I

on the lattice of all topologies over X :

τ ∼I ρ iff CI,τ = CI,ρ.

Proposition 4.8. Let I be an ideal over X , τ and ρ topologies over X . The
following are equivalent:

(i) τ ∼I ρ,
(ii) clτ (E) = clρ(E) for all E ∈ I,.
(iii) τ and ρ have equal I-closure.

Proof: We will denote by τ the I-closure of τ . Suppose (i), then it is obvious
from 4.3(ii) that (iii) holds. Suppose (iii), notice that clτ (E) = CI,τ (E) = clτ (E)
for all E ∈ I, now (ii) follows. Finally, it is obvious that (ii) implies (i). �



326 C.Uzcátegui

Theorem 4.9. Let I be an ideal over X , τ and ρ topologies over X . Let τ0 be
the topology generated by the sets X \ clτ (E) for E ∈ I. Then

(i) the I-closure of a topology is the largest element in its equivalence class,
(ii) τ0 ∼I τ ,
(iii) if ρ ∼I τ , then τ0 ⊆ ρ. So τ0 is the smallest element in the equivalence

class of τ .

Proof: (i) follows from 4.8. (ii) Notice that the collection of all sets clτ (E) for
E ∈ I is closed under finite unions and therefore is a basis of closed sets for τ0.
It is clear that τ0 ⊆ τ ⊆ τ and therefore clτ (A) ⊆ clτ0(A) for every A ⊆ X . On
the other hand, for E ∈ I, clτ (E) is τ0-closed, hence clτ0(E) ⊆ clτ (E). Therefore
τ0 ∼I τ . (iii) Suppose ρ ∼I τ . By 4.8, clρ(E) = clτ (E) for every E ∈ I.
Therefore every τ0-closed set is ρ-closed. �

Example 4.10. Let τR denote the usual topology on R. We will analyze some
examples of ideals on R and the corresponding equivalence class of τR. (i) If I is
Fin, then the equivalence class of τR consists of all T1 topologies (by 3.8). (ii) If
I is the ideal of countable subsets of R, then clearly τR is the only member of its
class. (iii) If I is the ideal generated by all decreasing sequences in R, we have
already shown that τl, the topology of the Sorgenfrey line, is the I-closure of τR

and therefore τl is the largest element of the class.

Example 4.11. Let (X, τ) be a scattered space and I be the ideal generated by
the τ -discrete subsets of X . Then τ is generated by I ([7]) and the I-equivalence
class of τ only contains τ . In fact, in a scattered space every closed set is equal
to the closure of a discrete set, therefore τ0 (as in Theorem 4.9) is equal to τ .

5. The lattice of I-closed topologies

Let T (I) denote the collection of all topologies weakly generated by I or equiv-
alently, by Theorem 4.3, the collection of I-closed topologies. T (I) ordered by
⊆ is a lattice. In fact, let τ , ρ be I-closed topologies, since τ ∩ ρ is I-closed,
then it is the meet of τ and ρ in T (I). The join of τ and ρ in T (I) is defined as
the I-closure of the usual join of τ and ρ. In this section we will show that this
lattice is isomorphic to a lattice of pre-orders over I. These pre-orders will be
denoted by ⊑ and their main properties are listed below. We write x ⊑ E instead
of {x} ⊑ E.

(P1) ⊑ is a pre-order (i.e. transitive and reflexive) relation over I extending the
subset relation.

(P2) If E ⊑ ∅, then E = ∅.

(P3) If E ⊑ F ∪G, then there are sets E1 and E2 such that E = E1∪E2, E1 ⊑ F
and E2 ⊑ G.
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(P4) If E, F ∈ I and x ⊑ F for all x ∈ E, then E ⊑ F .

For A ⊆ X , define

(3) D⊑(A) = {x : x ⊑ E ⊆ A for some E ∈ I}.

(P5) For all A ⊆ X and all E, H ∈ I, if E ⊆ D(A) and H ⊑ E, then H ⊆ D(A).

We will write D in place of D⊑ whenever there is no possible confusion about
which pre-order ⊑ is being used. It is clear that P1, P2 and P3 implies that D is
a Čech closure operator. We will refer to D as the associate operator of ⊑ and
denote by τ(⊑) the topology associated with the closure operator D∞. Notice
that (P1) together with (P4) imply that D2(E) = D(E) for all E ∈ I. Thus
D(E) is the τ(⊑)-closure of E.
A binary relation ⊑ is called a specialization relation over I if it satisfies the

conditions P1, P2 and P3. Now we show that the topologies weakly generated
by an ideal are exactly the topologies of the form τ(⊑) with ⊑ a specialization
relation.
Given a topology τ we define a pre-order over P(X) as follows

(4) A ⊑τ B iff A ⊆ clτ (B).

For a given ideal I we will denote by ⊑I
τ the restriction of ⊑τ to I. It is routine

to check that ⊑I
τ is a specialization relation over I that also satisfies P4.

Theorem 5.1. Let I and τ be respectively an ideal and a topology over X . The
following are equivalent.

(i) τ is weakly generated by I.
(ii) There is a specialization relation ⊑ over I such that τ = τ(⊑).
(iii) There is a unique specialization relation ⊑ over I satisfying P4 such that

τ = τ(⊑).

Proof: We show that (i) implies (iii). Suppose that τ is weakly generated

by I. To simplify the notation, let ⊑ be ⊑I
τ and D be the associated operator

of ⊑I
τ . We denote by C the operator CI,τ defined by (1). We have already

noticed that ⊑ is a specialization relation over I that satisfies P4. Now we show
that τ = τ(⊑). It is clear that D(E) = D2(E) = clτ (E) for all E ∈ I. Thus
D(A) =

⋃
{D(E) : E ⊆ A with E ∈ I}. Hence D = C and we are done (by 4.2).

The property that makes ⊑I
τ unique is P4. In fact, suppose ⊑

∗ is a special-
ization relation over I that also represents τ , i.e. such that τ = τ(⊑∗). Let D∗

be the operator associated to ⊑∗. Let F ⊑∗ E in I, then F ⊆ D∗(E) ⊆ clτ (E),

thus F ⊑I
τ E. It remains to see that ⊑I

τ is contained in ⊑∗. In fact, P4 (applied
to ⊑∗) implies that D∞

∗ (F ) = D∗(F ) for every F ∈ I. Since ⊑∗ represents τ ,
then by definition D∞

∗ (F ) = clτ (F ). Thus if E ⊆ clτ (F ), hence E ⊑∗ F .
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Now we show that (ii) implies (i). Let ⊑ be a relation over I satisfying P1, P2
and P3. As before, we will write τ , D and C instead of τ(⊑), D⊑ and CI,τ . We
need to show that C∞ = D∞. Let A ⊆ X . Then by the definition of C and D,
we have that C∞(A) ⊆ clτ (A) = D∞(A). For the other direction it suffices to
show by induction that Dα(A) ⊆ Cα(A) for each ordinal α. First observe that if
x ⊑ E and E ∈ I, then x ∈ D(E). Thus we have

D(A) ⊆
⋃

{D(E) : E ⊆ A with E ∈ I}

⊆
⋃

{clτ (E) : E ⊆ A with E ∈ I} = C(A).

For the inductive step, first observe that Dα+1(A) ⊆ D(Cα(A)). Let x ∈
D(Cα(A)), thus there is E ⊆ Cα(A) in I with x ⊑ E. Then x ∈ D(E) ⊆ clτ (E)
and thus x ∈ C(Cα(A)). Hence Dα+1(A) ⊆ Cα+1(A). The case of a limit ordinal
is obvious. �

It is straightforward to verify that if τ is generated by I, then ⊑I
τ satisfies P5.

Thus we have the following.

Corollary 5.2. Let I be an ideal over X . A topology τ is generated by I iff
there is a specialization relation ⊑ over I satisfying P5 and such that τ = τ(⊑).

Let S(I) denote the collection of specialization pre-orders over I that satis-
fies P4. We order S(I) by reverse inclusion.

Theorem 5.3. The map τ 7→⊑I
τ is a lattice isomorphism from T (I) onto S(I).

Proof: We claim that given ⊑1,⊑2 in S(I), then

(5) ⊑1 ⊆ ⊑2 iff τ(⊑2) ⊆ τ(⊑1).

To simplify notation we will write τi instead of τ(⊑i) and cli for the corresponding

closure operators. From Theorem 5.1 we know that ⊑i=⊑
I
τi
. Let Di be the

operator associated to ⊑i. Suppose first that ⊑1 ⊆ ⊑2. Then D1(A) ⊆ D2(A) for
all A ⊆ X . From this it follows easily that cl1(A) = D∞

1 (A) ⊆ D∞
2 (A) = cl2(A)

for all A ⊆ X and thus τ2 ⊆ τ1. Now suppose that τ2 ⊆ τ1. Then it is obvious
that ⊑I

τ1 ⊆ ⊑I
τ2 and we are done.

The result now follows from Theorem 5.1 and (5). �

Example 5.4. The results of this section are well known for the particular case
of I = Fin but are usually presented in the following form ([11, II 1.8]). To each
topology τ over X , the following binary relation is associated:

(6) x ≤τ y if x ∈ clτ ({y}).
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Then ≤τ is transitive and reflexive, so it is a pre-order on X . Moreover, the
map τ 7→≤τ is a lattice isomorphism. Alexandroff topologies are completely
characterized by ≤τ , namely, τ is Alexandroff iff

(7) clτ (A) =
⋃

x∈A

clτ ({x}) =
⋃

x∈A

{y ∈ X : y ≤τ x}

for every A ⊆ X . Moreover, given a pre-order ≤ over X , the topology generated
by the sets Nx = {y ∈ X : x ≤ y} for x ∈ X is an Alexandroff topology and
its induced pre-order is precisely ≤. Notice that from (7), it is clear that any
Alexandroff topology is generated by Fin. It is easy to verify that τ ∼Fin ρ iff
≤τ=≤ρ. The pre-order over Fin is the following: K ⊑ L if for all x ∈ K there is
y ∈ L such that x ≤τ y.

Remark 5.5. We do not have internal definitions for the lattice operations
on S(I). However, given two relations ⊑i, i = 1, 2, in S(I), let ⊑ be the transi-
tive closure of their union. Then ⊑ is a relation that satisfies P1, P2 and P3 and
moreover it is routine to verify that its associated topology τ(⊑) is the meet of
τ(⊑1) and τ(⊑2). Therefore, if ⊑ satisfies P4 (and thus belongs to S(I)), then it
is the meet of ⊑1 and ⊑2.
On the other hand, the natural operation for the join is to take the intersection

of the preorders. It follows from (5) that the join of ⊑1 and ⊑2 is contained in
⊑1 ∩ ⊑2 and it is routine to check that ⊑1 ∩ ⊑2 satisfies P1 and P2. But it is
not clear whether ⊑1 ∩ ⊑2 satisfies P3.

The following example shows that the meet of two topologies generated by I
is not necessarily generated by I.

Example 5.6. Consider the ideal J on N×N generated by the sets Bn = {n}×N

for n ∈ N, the vertical sections of N×N. Let X be N×N∪{∞} and consider the
topology τ on X where ∞ is the only non isolated point and its nbhd filter is the
dual filter of J . Let I be the ideal on X generated by those subsets A ⊆ N × N

such that A ∩ Bn is finite for all n ∈ N together with the set {∞}. It is easy to
verify that τ is generated by I. In particular, every horizontal line N × {n} is a
sequence τ -convergent to ∞.
Let ≺ be the strict partial order over X given by

(n, 0) ≺ (0, n)

for all 0 < n ∈ N. Let ρ be the Alexandroff topology over X associated to �.
Then ρ is generated by I (in fact, by 5.4 it is generated by Fin).
We will show that η = τ ∧ ρ is not generated by I. Notice first that clτ (B) ∪

clρ(B) ⊆ clη(B) for all B ⊆ X . Let A0 be N×{0}. Since clρ(B0) = B0 ∪A0 and
clτ (A0) = A0 ∪ {∞}, then ∞ ∈ clη(B0). However, if E ∈ I, then B0 ∩E is finite
and therefore η is not generated by I.
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Remark 5.7. We do not know if the join of two topologies generated by I is
also generated by I. However, this is true if one of them is Alexandroff. Let ρ be
a topology generated by I and τ be an Alexandroff topology. Let η be the usual
join of ρ and τ . We claim that η is generated by I and thus it is the join of τ
and ρ in T (I). Let A ⊆ X and x ∈ clη(A). Let Nx be the τ -minimal nbhd of x
(see 5.4). Then x ∈ clη(A ∩Nx) and hence x ∈ clρ(A ∩Nx). Since ρ is generated
by I, there is E ⊆ Nx ∩ A with E ∈ I, such that x ∈ clρ(E). Since any η-open
set containing x must contain a set of the form Nx ∩W with x ∈ W ∈ ρ, we have
x ∈ clη(E).

On the other hand, the usual join of two I-closed topologies is not necessarily
I-closed. Suppose τ is weakly generated by I but not generated by I. By 4.3(i)
τ is I-closed. Let A ⊆ X and x0 ∈ X be such that x0 ∈ clτ (A) but there is no
E ⊆ A in I with x0 ∈ clτ (E). Consider an order over X given by x0 ≺ y for all
y ∈ A. Let ρ be the Alexandroff topology associated to ≺. Since Fin ⊆ I, then
ρ is generated by I and therefore I-closed. Let η be the usual join of τ and ρ.
Then x0 is in clη(A) but x0 /∈ C∞

η,I(A).

6. Convergence associated to ideals

In this section we introduce a notion of a convergence that is analogous to
the sequential convergence. Recall that a sequential convergence on a set X is a
collection L ⊆ XN × X . The standard axioms are the following ([10]):

(L0) If (S, x), (S, y) ∈ L, then x = y.

(L1) (S, x) ∈ L for every constant sequence S such that S(n) = x for all n.

(L2) If (S, x) ∈ L, then (T, x) ∈ L for every subsequence T of S.

(L3) Let S ∈ XN and x ∈ X . If for every subsequence T of S, there is a
subsequence T ′ of T such that (T ′, x) ∈ L, then (S, x) ∈ L.

A sequential convergence is usually defined as a collection L satisfying Li for
i ∈ {0, 1, 2}. It is known that a convergence L satisfies Li for i ∈ {1, 2, 3}
iff L is the collection L(τ) of all τ -convergent sequences for some topology τ .
To a given convergence L, a Čech closure operator CL is associated, defined by
CL(A) = {x : ∃ (S, x) ∈ L with the range of S in A}. The topology associated to
CL is denoted by τ(L) and it is the largest topology respect to which S converges
to x for every (S, x) ∈ L. A given sequential convergence L can be enlarged to
another convergence L∗ (called the Urysohn modification of L) as follows: Put
(S, x) ∈ L∗ if for every subsequence T of S there is a subsequence T ′ of T such that
(T ′, x) ∈ L. It is known that (S, x) ∈ L∗ iff S converges to x with respect to τ(L).
Two sequential convergences L and K are said to be equivalent if CL = CK. Then
L∗ is the largest sequential convergence in the equivalence class of L. Moreover,
L∗ is the unique sequential convergence equivalent to L that satisfies L3.
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Consider the following sequential convergence associated to a T2 topology τ (it
suffices that a convergent sequence has a unique limit) and an ideal I:

(S, x) ∈ L(τ, I) if S τ -converges to x and the range of S is in I.

Proposition 6.1. Suppose τ is T2 and let τ̄ be the I-closure of τ . Then the

Urysohn modification of L(τ, I) is L(τ̄ ). That is to say S
τ
→x iff every subsequence

of S has a subsequence τ -convergent to x with range in I.

Proof: Suppose S
τ
→x. Let A be the range of S, we can assume that x /∈ A.

Since τ is T2, A ∪ {x} is τ -closed. Therefore x ∈ clτ (A) = CI,τ (A) and thus
there is E ⊆ A in I such that x ∈ clτ (E). Hence there is a subsequence T of
S such that range of T is a subset of E and clearly T converges to x. For the
other direction, notice that every sequence τ -convergent to x and with range in
I is necessarily τ -convergent. �

6.1 I-convergences

We introduce the notion of an I-convergence. To each subset A of I × X we
associated an operator CA as follows:

x ∈ CA(B) iff (E, x) ∈ A for some E ⊆ B.

Consider the following axioms:

(A1) (∅, x) /∈ A for all x ∈ X .

(A2) (E, x) ∈ A for all x ∈ E ∈ I.

(A3) If (E ∪ F, x) ∈ A, then (E, x) ∈ A or (F, x) ∈ A.

(A4) C2
A
(E) = CA(E) for all E ∈ I.

(A5) If E ⊆ F ∈ I and (E, x) ∈ A, then (F, x) ∈ A.

It is obvious that CA is monotone. If A satisfies A1, A2 and A3, then CA is
a Čech closure operator. Axiom A5 is equivalent to the following: CA(E) = {x :
(E, x) ∈ A} for all E ∈ I.
We say that A is an I-convergence if it satisfies Ai for i ∈ {1, 2, 3, 4, 5} and A

is a convergence when A is an I-convergence for some ideal I. If necessary, we
will denote by I(A) the ideal I where the convergence A is defined.

Example 6.2. (a) Given a Čech closure operator C, define AC by letting

(A, x) ∈ AC if A ∈ I and x ∈ C(A). It is clear that AC satisfies A1, A2,
A3 and A5.

(b) Let I be an ideal and τ a topology. Define (E, x) ∈ A if E ∈ I and
x ∈ clτ (E). Then A satisfies Ai for i ∈ {1, 2, 3, 4, 5}. It is called the
convergence associated to τ and I. Notice that CA = CI,τ .
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(c) Let A be a convergence and J an ideal. Define B by letting (B, x) ∈ B if
x ∈ CA(B) and B ∈ J . Then B satisfies A1, A2, A3 and A5. Notice that
if I(A) ⊆ J , then A ⊆ B.

(d) Let ⊑ be a specialization relation over I. Define (E, x) ∈ A iff x ⊑ E.
Then A satisfies Ai for i ∈ {1, 2, 3, 5}. If ⊑ satisfies P4, then A satisfies
A4. Conversely, given an I-convergence A, define E ⊑ F if (F, x) ∈ A for
all x ∈ E. Then ⊑ is a specialization relation which also satisfies P4.

Let τ(A) denote the topology given by C∞
A
. It is clear that

A is τ(A)-closed iff x ∈ A for all (E, x) ∈ A with E ⊆ A.

From Example 6.2(d) above and Theorem 5.1 we easily get the following

Theorem 6.3. A topology τ is weakly generated by I iff there is an I-conver-
gence A such that τ = τ(A).

Let A and B be convergences (we are not assuming I(A) = I(B)). We will say
that A is equivalent to B, denoted A ∼ B, if CA = CB. It is straightforward to
show the following

Lemma 6.4. Let A and B be two convergences. Then A ∼ B iff CA(E) = CB(E)
for all E ∈ I(A) ∪ I(B).

To each convergence A we associate the following collection of subsets of X :

(8) I(A∗) = {A ⊆ X : ∀B ⊆ A [ CA(B) = C2A(B)]}.

It is easy to verify that I(A∗) is an ideal. Now define A∗ by

(A, x) ∈ A
∗ iff A ∈ I(A∗) and x ∈ CA(A).

The property that characterizes A
∗ is the following:

(A6) Let A ⊆ X be such that ∀B ⊆ A [CA(B) = C2
A
(B)]. Then

∀x [x ∈ CA(A) =⇒ (A, x) ∈ A].

Theorem 6.5. Let A be a convergence. Then

(i) A∗ is a convergence,
(ii) A ∼ A∗,
(iii) if B ∼ A, then B ⊆ A∗,
(iv) A∗ is the unique convergence in the equivalent class of A which satis-

fies A6.
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Proof: (i) Since A satisfies A4, I(A) ⊆ I(A∗). From Example 6.2(c) we know
that A∗ satisfies A1, A2, A3 and A5 and also A ⊆ A∗. Let A ∈ I(A∗). Then
from the definition of A∗ we get that x ∈ CA∗(A) iff (A, x) ∈ A∗ iff x ∈ CA(A).
From this it follows that A∗ satisfies A4.
(ii) From Lemma 6.4 we conclude that A ∼ A∗.
(iii) Suppose B ∼ A. Since B satisfies A4, I(B) ⊆ I(A∗) and thus B ⊆ A∗.
(iv) It is straightforward. �

Example 6.6. Given a sequential convergence L we associate to it the ideal
I(L) generated by the range of all sequences in L. We denote a sequence and
its range by the same symbol. Put (E, x) ∈ A(L) if E ∈ I(L) and x ∈ CL(E).
To simplify notation we write A instead of A(L). It is straightforward to verify
that A is an I(L)-convergence. It is clear that CL is equal to CA and hence
τ(L) = τ(A). Thus I(A∗) is an extension of the Urysohn modification L∗ in the
sense that I(L∗) ⊆ I(A∗). But there might be more sets in I(A∗); for example,
every τ(L)-closed discrete set belongs to it.

The proof of the following proposition is left to the reader.

Proposition 6.7. Let I be an ideal over a set X . The following are equivalent.

1. There is an I-convergence that satisfies A6.
2. There is an I-convergence A such that I(A∗) = I.
3. There is a topology τ such that

I = {A ⊆ X : ∀B ⊆ A CI,τ (B) = clτ (B)}.
�

We will finish this section with a few examples concerning axiom A6.

Example 6.8. To simplify the presentation we will say that an ideal I is Urysohn
if there is an I-convergence that satisfies A6.

1. Fin is not Urysohn when X is infinite. Let A be any Fin-convergence. We will
show that I(A∗) = P(X). In fact, let A ⊆ X and x ∈ C2

A
(A). Then there is a

finite set E ⊆ CA(A) such that (E, x) ∈ A. For each y ∈ E, there is Ey ⊆ A
finite, such that (Ey , y) ∈ A. Let F be the union of the Ey ’s. Then by A5,
(F, y) ∈ A for all y ∈ E. Thus E ⊆ CA(F ) and hence x ∈ C2

A
(F ). Then apply

A4 and conclude that C2
A
(A) = CA(A). Since this holds for every A ⊆ X , we

are done.

2. Let κ be a cardinal and X be a set with cardinality larger than κ. It can be
shown, as in the previous example, that the ideal of all A ⊆ X with |A| ≤ κ is
not Urysohn.

3. Let X = ℵω and I be the ideal of all A ⊆ X such that |A| < ℵω. We will
show that I is Urysohn. Let A be defined as follows: (i) (E, x) ∈ A for all
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x ∈ E ∈ I, (ii) (E,ℵn) ∈ A if ℵn ≤ |E| and E ∈ I and (iii) (E, 0) ∈ A if
ℵn ∈ E for infinitely many n’s. We leave to the reader to verify that this is
indeed an I-convergence that satisfies A6.

4. For a given an ideal I and a topology τ let Î = {A ⊆ X : ∀B ⊆ A CI,τ (B) =

clτ (B)}. It is routine to verify that Î is an ideal and
ˆ̂I = Î. From 6.7, Î is

Urysohn. If τ is weakly generated but not generated by I, then Î is not equal
to P(X).

References

[1] Alas O.T., Tkachuk V.V., Wilson R.G., Closures of discrete sets often reflect global prop-
erties, Topology Proc. 25 (2000), 27–44.

[2] Bella A., Simon P., Spaces which are generated by discrete sets, Topology Appl. 135 (2004),
no. 1-3, 87–99.

[3] Bella A., Yaschenko I.V., On AP and WAP spaces, Comment. Math. Univ. Carolinae 40.3
(1999), 521–536.

[4] Daniels P., Pixley-Roy spaces over subsets of the reals, Topology Appl. 29 (1988), 93–106.

[5] van Douwen E.K., The Pixley-Roy topology on spaces of subsets, in: Set Theoretic Topology,
G.M. Reed, editor, pp. 111–134, Academic Press, New York, 1977.

[6] van Douwen E.K., Applications of maximal topologies, Topology Appl. 51.2 (1993), 125–
139.

[7] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G., Topologies generated by discrete
subspaces, Glas. Math. Ser. III 37 (57) (2002), 187–210.

[8] Ellentuck E., A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974),
163–165.

[9] Engelking R., General Topology, PWN, Warszawa, 1977.
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