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Some approximation properties of the Kantorovich

variant of the Bleimann, Butzer and Hahn operators

Grzegorz Nowak

Abstract. For some classes of functions f locally integrable in the sense of Lebesgue or
Denjoy-Perron on the interval [0;∞), the Kantorovich type modification of the Bleimann,
Butzer and Hahn operators is considered. The rate of pointwise convergence of these
operators at the Lebesgue or Lebesgue-Denjoy points of f is estimated.

Keywords: Bleimann, Butzer and Hahn operator, Lebesgue-Denjoy point, rate of con-
vergence

Classification: 41A25

1. Introduction

In 1980 Bleimann, Butzer and Hahn [5] introduced a sequence of positive linear
operators Bnf defined on the space R([0;∞)) of real functions on the infinite
interval I = [0;∞) by

Bnf(x) =

n∑

k=0

pn,k

(
x

1 + x

)
f

(
k

n+ 1− k

)
(x ∈ I, n ∈ N),

where

pn,k

(
x

1 + x

)
=

(
n

k

)
xk

(1 + x)n
.

The approximation properties of those operators have been extensively studied in
the literature [1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [14]. For function f locally
integrable in the Lebesgue or Denjoy-Perron sense, the n-th Kantorovich variant
of the Lnf operators is defined as follows

Mnf(x) = (n+2)
n∑

k=0

pn,k

(
x

1 + x

) ∫ (k+1)/(n+1−k)

k/(n+2−k)

f(t)

(1 + t)2
dt (x ∈ I, n ∈ N).

U. Abel and M. Ivan [3] found the rate of convergence by estimating |Mnf(x)−
f(x)| in terms of the modulus of the continuity of f , where f is assumed to be
bounded and continuous on [0;∞).
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The aim of this paper is to examine the rate of the convergence of operators
Mnf , mainly, at those points x ∈ I at which

lim
h→0

1

h

∫ h

0
(f(x+ t)− f(x)) dt = 0.

The general estimate is expressed in terms of the quantity

wx(δ; f) = sup
0<|h|≤δ

∣∣∣∣
1

h

∫ h

0
(f(x+ t)− f(x)) dt

∣∣∣∣ (δ > 0).

Clearly, if f is locally integrable in the Denjoy-Perron sense on I then

lim
δ→0+

wx(δ; f) = 0 for almost every x.

In view of this property, we deduce that for some classes of functions,

lim
n→∞

Mnf(x) = f(x) almost everywhere.

Moreover, using some other properties of wx(δ; f) we present a few estimates of the
rate of the norm and pointwise convergence ofMnf in terms of the weighted mod-
uli of continuity. Throughout the paper, the symbol K(·), Kj(·), (j = 1, 2, . . . )
will mean some positive constants, not necessarily the same at each occurrence,
depending only on the parameters indicated in parentheses.

2. Auxiliary estimates

As well-known, for every x ∈ I and all integers n ≥ 1,

n∑

k=0

pn,k

(
x

1 + x

)
= 1,(1)

xpn,k−1

(
x

1 + x

)
=

k

n − k + 1
pn,k

(
x

1 + x

)
(k ∈ {1, 2, . . . , n}).(2)

For q ∈ N, s ∈ N, x ∈ I and n ∈ N we define

Q
(n)
q,0 (x) =

n∑

k=0

1

(n − k + q) . . . (n − k + 1)
pn,k

(
x

1 + x

)
,

Q
(n)
q,s (x) =

n∑

k=0

k . . . (k − s+ 1)

(n − k + q) . . . (n − k + 1)
pn,k

(
x

1 + x

)
.
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Lemma 1. For q ∈ N, s ∈ N0, n ∈ N, x ∈ [0;∞) and q ≥ s we have

(3) Q
(n)
q,s (x) ≤

xs(1 + x)q−s

(n+ 1)q−s .

(In the case where x = 0 and s = 0, the symbol xs is equal to one).

Proof: In view of (1) and (2) we have

Q
(n)
1,0 (x) =

x

n+ 1

n∑

k=1

pn,k−1

(
x

1 + x

)
+

1

n+ 1

n∑

k=0

pn,k

(
x

1 + x

)

=
x

n+ 1

1

n+ 1
− x

n+ 1
pn,n

(
x

1 + x

)

<
1 + x

n+ 1
.

Next, using (2), we have

xQ
(n)
q,0 (x) =

n∑

k=0

1

(n − k + q + 1) . . . (n − k + 2)

n+ 1

n − k + 1
pn,k

(
x

1 + x

)

−
n∑

k=0

1

(n − k + q + 1) . . . (n − k + 2)
pn,k

(
x

1 + x

)
+

x

q!

(
x

1 + x

)n

.

Therefore

(n+ 1)Q
(n)
q+1,0(x) ≤ (x + 1)Q

(n)
q,0 (x).

Consequently, (3) follows for all q ∈ N and s = 0 by induction.
For s > 1, (2) gives us

Q
(n)
q+1,s+1(x) = xQ

(n)
q,s (x) −

n . . . (n+ 1− s)

q!

(
x

1 + x

)n

x < xQ
(n)
q,s (x).

Consequently, (3) follows for all q ∈ N and s ∈ N0 by induction. �

Remark 1. It is easy to see that for q ∈ N, s1, . . . sq ∈ N, n ∈ N, x ∈ [0;∞)

(4)

n∑

k=0

1

(n − k + s1) . . . (n − k + sq)
pn,k

(
x

1 + x

)
≤ q!Q

(n)
q,0 (x).

For i ∈ N, q ∈ N, n ∈ N, x ∈ [0;∞) we will use the notation

a
(n)
k,j (x) =

k + 1− i

n − k + i
− x (0 ≤ k ≤ n),

S
(n)
q (x) =

n∑

k=0

a
(n)
k,1(x) . . . a

(n)
k,q (x)pn,k

(
x

1 + x

)
.
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Lemma 2. Let x ∈ I, n ∈ N, q ∈ N, q ≥ 2. Then

(5) S
(n)
q+1(x) =

q

n+ q + 1

(
(x2 − 1)S(n)q (x) + x(1 + x)2S

(n)
q−1(x)

)
− R

(n)
q (x),

where

R
(n)
q (x) =

x(n+ 1)2

q(n+ q + 1)
a
(n)
n,1(x) . . . a

(n)
n,q−1(x)pn,n

(
x

1 + x

)
.

Proof: Simple calculations, (2) and identity a
(n)
k−1,i(x) = a

(n)
k,i+1(x), give us

(6) xS
(n)
q (x) = S

(n)
q+1(x) +

n∑

k=0

a
(n)
k,2(x) . . . a

(n)
k,q+1(x)pn,k

(
x

1 + x

)
+ R̃

(n)
q (x),

where

R̃
(n)
q (x) = xa

(n)
n,1(x) . . . a

(n)
n,q(x)pn,n

(
x

1 + x

)
.

Using the obvious equality

k

n − k + 1
− k − q + 1

n − k + q
=

q

n+ 1

(
a
(n)
k,1(x) + 1 + x

) (
a
(n)
k,q+1(x) + 1 + x

)
,

we have

S
(n)
q+1(x) =

qx

n+ 1

(
S
(n)
q+1(x) + (1 + x)S

(n)
q (x)

+ (1 + x)

n∑

k=0

a
(n)
k,2(x) . . . a

(n)
k,q+1(x)pn,k

(
x

1 + x

)

+ (1 + x)2
n∑

k=0

a
(n)
k,2(x) . . . a

(n)
k,q (x)pn,k

(
x

1 + x

) )
− R̃

(n)
q (x).

Applying (6), we obtain

S
(n)
q+1(x) =

q

n+ 1

(
xS
(n)
q+1(x) + x(1 + x)S

(n)
q (x)

+ (1 + x)
(
xS
(n)
q (x)− S

(n)
q+1(x) − R̃

(n)
q (x)

)

+ (1 + x)2
(
xS
(n)
q−1(x)− S

(n)
q (x)− R̃

(n)
q−1(x)

) )
− R̃

(n)
q (x).

So (5) is now evident. �
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Lemma 3. Let q ∈ N, x ∈ I, n ∈ N. Then

(7)
∣∣∣S(n)q (x)

∣∣∣ ≤ K(q)x(x+ 1)2q−2
(

1

n[(q+1)/2]
+ nq−1pn,n

(
x

1 + x

))
.

Proof: In view of (1) and (2),

∣∣∣S(n)1 (x)
∣∣∣ =

∣∣∣∣−xpn,n

(
x

1 + x

)∣∣∣∣ .

The obvious identity

xS
(n)
1 (x) = S

(n)
2 (x) + x

n∑

k=0

a
(n)
k,2(x)pn,k(

x

1 + x
) + x(n − x)pn,n(

x

1 + x
)

and (3) lead to

∣∣∣S(n)2 (x)
∣∣∣ =

∣∣∣∣x(n+ 1)
n∑

k=0

1

(n − k + 1)(n − k + 2)
pn,k

(
x

1 + x

)

− x(n − x)pn,n

(
x

1 + x

) ∣∣∣∣

≤ x(1 + x)2

n+ 1
+ x(x + 1)npn,n

(
x

1 + x

)
.

Inequality (7) follows now immediately from the estimate

∣∣∣R(n)q (x)
∣∣∣ = 2q−1

(
(n+ 1)q + (x + 1)q−1

)
pn,n

(
x

1 + x

)

and (5) by induction. �

Let the symbol
∏−1

i=0 be defined as one.

Lemma 4. Let n ∈ N, x ∈ I, k ∈ N0, k ≤ n. Given any numbers r, q ∈ N,

s ∈ N0, we have

(8)

a
(n)
k,r (x) =

s∑

j=0

(
Kj(q, r, n, x) +Kj(q, r, n, x)a

(n)
k,q+j(x)

) j−1∏

i=0

a
(n)
k,q+i(x)

+ a
(n)
k,r (x)Ks(q, r, n, x)

s∏

i=0

a
(n)
k,q+i(x),
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where

Kj(q, r, n, x) =

j∏

i=0

q + i − r

n+ 1− (q + i − r)(x + 1
, (j ∈ N0),

K0(q, r, n, x) =
(q − r)(x + 1)2

(n+ 1)− (q − r)(x + 1)
,

Kj(q, r, n, x) = K0(q, r, n, x)Kj−1(q, r, n, x), (j ∈ N),

K0(q, r, n, x) =
n+ 1 + (q − r)(x + 1)

(n+ 1)− (q − r)(x + 1)
,

Kj(q, r, n, x) = K0(q, r, n, x)Kj−1(q, r, n, x), (j ∈ N).

Proof: It is easy to see that

a
(n)
k,r (x) = a

(n)
k,q (x) +

q − r

n+ 1

(
a
(n)
k,r (x) + x+ 1

)(
a
(n)
k,q (x) + x+ 1

)
.

Hence,

(9)
a
(n)
k,r (x) =

(q − r)(x + 1)2

n+ 1− (q − r)(x + 1)
+

n+ 1− (q − r)(x + 1)

(n+ 1)− (q − r)(x + 1)
a
(n)
k,q (x)

+
q − r

n+ 1− (q − r)(x + 1)
a
(n)
k,q (x) a

(n)
k,r (x).

Using (9) and the method of induction one can easily verify that for all s ∈ N0

(8) is true. �

Lemma 5. Let r ∈ N, s1, . . . sr ∈ N, n ∈ N, x ∈ I. Then

(10)

∣∣∣∣∣

n∑

k=0

a
(n)
k,s1
(x) . . . a

(n)
k,sr

(x)pn,k

(
x

1 + x

)∣∣∣∣∣

≤ Kx(x + 1)2r−2
(

1

n[(r+1)/2]
+ nr−1pn,n

(
x

1 + x

))
,

with a constant K depending only on s1, . . . sr, r.

Proof: First, we prove the estimate:

(11)

∣∣∣∣∣

n∑

k=0

a
(n)
k,1(x) . . . a

(n)
k,q−1(x)a

(n)
k,s1
(x) . . . a

(n)
k,sr

(x)pn,k

(
x

1 + x

)∣∣∣∣∣

≤ Kx(x+ 1)2r+2q−4
(

1

n[(r+q)/2]
+ nr+q−2pn,n

(
x

1 + x

))
(r ∈ N, q ∈ N).
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For r = 1, by (8) we have

∣∣∣∣∣

n∑

k=0

a
(n)
k,1(x) . . . a

(n)
k,q−1(x)a

(n)
k,s1
(x)pn,k

(
x

1 + x

)∣∣∣∣∣

≤
s∑

j=0

(
|Kj ||S(n)q+j−1(x)|+ |Kj ||S(n)q+j(x)

)

+Ks

n∑

k=0

a
(n)
k,r (x)

q+s∏

i=1

a
(n)
k,i (x)pn,k

(
x

1 + x

)
.

Using (3) and (4) it is easy to see that

n∑

k=0

a
(n)
k,r (x)

q+s∏

i=1

a
(n)
k,i (x)pn,k(

x

1 + x
)

is bounded from above by K(q, s, r)(x + 1)q+s+1. Moreover

∣∣Kj

∣∣ ≤ K(q, r, j)(x+ 1)j+2
1

(n+ 1)j+1
,

∣∣Kj

∣∣ ≤ K(q, r, j)(x+ 1)j+1
1

(n+ 1)j
,

∣∣Kj

∣∣ ≤ K(q, r, j)(x+ 1)j+1
1

(n+ 1)j+1
.

These estimates and (7) for s = [(q + 1)/2] give us (11) for r = 1. Next (11)
follows for all r ∈ N by induction. Choosing q = 1 in (11) we obtain (10). �

Identity (1), estimate (10) and the Schwarz inequality lead to

Lemma 6. Let r ∈ N, s1, . . . sr ∈ N, n ∈ N, x ∈ I. Then

(12)

n∑

k=0

∣∣∣a(n)k,s1
(x) . . . a

(n)
k,sr

(x)
∣∣∣ pn,k

(
x

1 + x

)

≤ K(r, s1, . . . sr)x(x + 1)
2r

(
n−r/2 + nr−1pn,n

(
x

1 + x

))
.

3. Main result

In this section we consider only the points x ∈ [0;∞) at which wx(δ; f) < ∞
for all δ > 0.
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Theorem. Let f : I → R be integrable in the Lebesgue or Denjoy-Perron sense
on every compact interval contained in I and let n ∈ N, x ∈ I. Given any number
q ∈ N, we have

(13) |Mnf(x)− f(x)| ≤ K(q)(x+ 1)2q+4
(
1 + n3q/2+2

(
x

1 + x

)n)

×
µ∑

k=0

1

(k + 1)q
wx

(
k + 1√

n
; f

)
,

where µ = [
√

n|n/2− x|].
Proof: For the sake of brevity we will write f(x + r) − f(x) = ϕx(t) and
wx(δ; f) = wx(δ). In view of (1) we have

Mnf(x)− f(x) = (n+ 2)

n∑

k=0

pn,k

(
x

1 + x

) ∫ (k+1)/(n+1−k)

k/(n+2−k)

f(t)− f(x)

(1 + t)2
dt

= (n+ 2)

n∑

k=0

pn,k

(
x

1 + x

) ( ∫ (k+1)/(n+1−k)−x

0

ϕx(t)

(1 + x+ t)2
dt

−
∫ k/(n+2−k)−x

0

ϕx(t)

(1 + x+ t)2
dt

)

= (n+ 2)pn,n

(
x

1 + x

) ∫ n+1−x

0

ϕx(t)

(1 + x+ t)2
dt

− (n+ 2)pn,0

(
x

1 + x

) ∫ −x

0

ϕx(t)

(1 + x+ t)2
dt

+ (n+ 2)

n∑

k=1

(
pn,k−1

(
x

1 + x

)
− pn,k

(
x

1 + x

))∫ k/(n+2−k)−x

0

ϕx(t)

(1 + x+ t)2
dt.

Consequently by (2)

x (Mnf(x)− f(x)) = x(n+ 2)pn,n

(
x

1 + x

)∫ n+1−x

0

ϕx(t)

(1 + x+ t)2
dt

+ (n+ 2)

n∑

k=0

pn,k

(
x

1 + x

) (
k

n − k + 1
− x

) ∫ k/(n+2−k)−x

0

ϕx(t)

(1 + x+ t)2
dt.

In view of the second mean value theorem
∣∣∣∣∣

∫ k/(n+2−k)−x

0

ϕx(t)

(1 + x+ t)2
dt

∣∣∣∣∣ ≤
(

1

(1 + x)2

) ∣∣∣∣∣

∫ ξ1

0
ϕx(t) dt

∣∣∣∣∣

+

(
n+ 2− k

n+ 2

)2 ∣∣∣∣∣

∫ ξ2

−|k/(n+2−k)−x|
ϕx(t) dt

∣∣∣∣∣ ,
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where 0 < ξ1 < |k/(n+ 2− k)− x|,−|k/(n+ 2− k)− x| < ξ2 < 0.

Applying the obvious inequality |
∫ h
0 ϕx(t) dt| ≤ |h|wx(|h|), we obtain

∣∣∣∣∣

∫ k/(n+2−k)−x

0

ϕx(t)

(1 + x+ t)2
dt

∣∣∣∣∣ ≤ 3
∣∣∣∣

k

n+ 2− k
− x

∣∣∣∣ wx

(∣∣∣∣
k

n+ 2− k
− x

∣∣∣∣
)

.

Therefore

x |Mnf(x)− f(x)|

≤ Rn(x) + 3(n+ 2)

n∑

k=0

pn,k

(
x

1 + x

)

×
(∣∣∣a(n)k,1(x)a

(n)
k,2(x)

∣∣∣+
1

n+ 1

∣∣∣a(n)k,1(x)a
(n)
k,2(x)

∣∣∣+
x+ 1

n+ 1

∣∣∣a(n)k,1(x)
∣∣∣
)

× wx

(∣∣∣∣
k

n+ 2− k
− x

∣∣∣∣
)

≤ Rn(x) + 3

µ∑

ν=0

T n
ν (λ;x)wx((ν + 1)λ),

where λ ∈ (0; 1), µ = [ 1λ |
n
2 − x|],

T
(n)
ν (λ;x)

=
∑

νλ<|k/(n−k+2)−x|≤(ν+1)λ
(n+ 2)

(
2

∣∣∣a(n)k,1(x)a
(n)
k,2(x)

∣∣∣+
x+ 1

n+ 1

∣∣∣a(n)k,1(x)
∣∣∣
)

× pn,k

(
x

1 + x

)

and

Rn(x) = x(n+ 2)pn,n

(
x

1 + x

)∣∣∣∣
∫ n+1−x

0

ϕx(t)

(1 + x+ t)2
dt

∣∣∣∣ .

(If k < 0 or k > n, then pn,k(
x
1+x ) is equal to zero.)

Applying (12) we obtain

T
(n)
0 (λ;x) ≤ (n+ 2)

n∑

k=0

(
2

∣∣∣a(n)k,1(x)a
(n)
k,2(x)

∣∣∣+
x+ 1

n+ 1

∣∣∣a(n)k,1(x)
∣∣∣
)

pn,k

(
x

1 + x

)

≤ K(q)x(1 + x)4
(
1 + npn,n

(
x

1 + x

))
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and, if 1 ≤ ν ≤ µ

T
(n)
ν ≤ 2n

νqλq

n∑

k=0

(
2

∣∣∣a(n)k,1(x)‖a
(n)
k,2(x)

∣∣∣+
x+ 1

n+ 1

∣∣∣a(n)k,1(x)
∣∣∣
)

×
∣∣∣∣

k

n − k + 2
− x

∣∣∣∣ pn,k

(
x

1 + x

)

≤ 4
q+1n

νqλq

n∑

k=0

( ∣∣∣a(n)k,1(x)‖a
(n)
k,2(x)

∣∣∣
q+1
+
(x+ 1)q

(n+ 1)q

∣∣∣a(n)k,1(x)a
(n)
k,2(x)

∣∣∣

+
(x+ 1)q+1

(n+ 1)q+1

∣∣∣a(n)k,1(x)
∣∣∣+

x+ 1

n+ 1

∣∣∣a(n)k,2(x)
∣∣∣
q
)

pn,k

(
x

1 + x

)
.

Therefore using (12)

T
(n)
ν (λ;x) ≤ K(q)x

(x+ 1)2q+4

νqλq

(
n−q/2 + nq+2

(
x

1 + x

)n)
.

Collecting the results, choosing λ = n−1/2 and estimating

|Rn(x)| ≤ 3x(x + 1)n2wx(|n+ 1− x|)pn,n

(
x

1 + x

)
,

we get (13) immediately. �

4. Special cases

LetD∗
loc(I) be the class of all functions integrable in the Denjoy-Perron sense on

every compact interval contained in I. Clearly, if f ∈ D∗
loc(I), then the function

F (x) =

∫ x

0
f(t) dt

is ACG∗ on every [a; b] ⊂ I and F ′(x) = f(x) almost everywhere [13]. Conse-
quently,

lim
δ→0+

wx(δ; f) = 0 a.e. on I.

Suppose that f ∈ D∗
loc(I) and that

‖f‖ ≡ sup
0≤ν<∞

(∣∣∣∣
∫ ν+µ

ν
f(t) dt

∣∣∣∣
)

< ∞.

The operators Mnf are well-defined for all n ∈ N.
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As is known [12], for any ε > 0 there is a δ0 > 0 such that

wx(δ; f) ≤ ε+ |f(x) + 1
δ0
(1 + 2δ)‖f‖ for all δ > 0.

This inequality and the fact that limδ→0+ wx(δ; f) = 0 ensure that the right-hand
side of the estimate (13) (with arbitrary q ≥ 3) converges almost everywhere to
zero as n → ∞.
Let m ∈ N0. Denote by Lm(I) the class of all measurable functions f on I

such that

‖f‖m ≡ sup
x∈I

|f(x)|
1 + x2m

< ∞.

It is easy to see that the operators Mnf are well-defined for every function f ∈
Lm(I). Moreover, for any δ > 0, the inequality

wx(δ; f) ≤
{
2 + (1 + 2m)x2m + 2mδ2m

}
‖f‖m,

(see [12]) assures the convergence of the sum

[
√

n|n

2
−x|]∑

k=0

1

(k + 1)q
wx

(
k + 1√

n
; f

)

with an arbitrary q ≥ 2m + 2. Consequently, if x is a Lebesgue point of f , i.e.
if wx(δ; f) → 0 as δ → 0+, then the right-hand side of the inequality (13) (with
q ≥ 2m+ 2) converges to zero as n → ∞.
Further, for continuous f ∈ Lm(I), let us introduce the weighted modulus of

continuity
ω(δ; f)m = sup

|h|≤δ
‖f(·+ h)− f(·)‖m (δ > 0).

Then Theorem (with q = 2m+ 3) and inequality

wx(rδ; f) ≤
{
1 + (2x)2m + (2(r − 1)δ)2m

}
rω(δ; f)m, (x ∈ I, δ > 0, r ∈ N)

(see [12]) give us

Corollary 1. If f ∈ Lm(I) is continuous on I then, for all n ∈ N,

‖Mnf − f‖m ≤ K(m)ω

(
1√
n
; f

)

m
.

Clearly, if f is such that f(x)(1+x2m)−1 = o(1) as x → ∞, then ω(δ; f)m → 0
as δ → 0+. Hence in this case ‖Mnf − f‖m as n → ∞.
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