Milan Demko Products of partially ordered quasigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 2, 209--217

Persistent URL: http://dml.cz/dmlcz/119716

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://project.dml.cz

Products of partially ordered quasigroups

Milan Demko

Abstract. We describe necessary and sufficient conditions for a direct product and a lexicographic product of partially ordered quasigroups to be a positive quasigroup. Analogous questions for Riesz quasigroups are studied.

Keywords: partially ordered quasigroup, positive quasigroup, Riesz quasigroup, direct product, lexicographic product

Classification: 20N05, 06F99

1. Preliminaries

The concept of an ordered loop was introduced by D. Zelinsky [10] who was the first to consider valuations of nonassociative algebras. Their values are in ordered loops and D. Zelinsky [11] determined all such ordered loops. Ordered loops and quasigroups were later studied by several other authors (e.g. [1], [2], [3], [4]), also in the connection with the ordered planar ternary rings ([5]). The previous research seems to indicate that the area is interesting and rich enough to justify a systematic study. In this paper we shall consider products of special types of ordered quasigroups — positive quasigroups and Riesz quasigroups.

The concept of a positive quasigroup was introduced by V.M. Tararin [7]. Further, properties of left-positive quasigroups and left-positive Riesz quasigroups were studied by V.A. Testov [8], [9].

Let (Q, \cdot) be a quasigroup. Let $a \in Q$. By e_a (f_a) we denote the local left (right) unit element for a, i.e., e_a , f_a are such elements that $e_a a = a$ and $a f_a = a$. If (Q, \cdot) is a loop, we denote by 1 the unit element of (Q, \cdot) .

A nonempty set Q with a binary operation \cdot and a relation \leq is called a *partially* ordered quasigroup (po-quasigroup) if

- (i) (Q, \cdot) is a quasigroup;
- (ii) (Q, \leq) is a partially ordered set;
- (iii) for all $x, y, a \in Q$, $x \leq y \Leftrightarrow ax \leq ay \Leftrightarrow xa \leq ya$.

A po-quasigroup Q is called a *partially ordered loop* (*po-loop*) if (Q, \cdot) is a loop. We say that a po-quasigroup Q is *trivially ordered*, if any two different elements $a, b \in Q$ are non-comparable (for non-comparable elements we will use the notation $a \parallel b$).

M. Demko

Let Q be a po-quasigroup. An element $p \in Q$ is called a *positive element*, if $px \geq x$ and $xp \geq x$ for all $x \in Q$. The set of all positive elements of Q will be denoted by P_Q . Obviously, $P_Q = \{p \in Q : p \geq e_x \text{ and } p \geq f_x \text{ for all } x \in Q\}$. A po-quasigroup Q is said to be a *positive quasigroup*, if for all $x, y \in Q, x < y$, there exist positive elements $p, q \in P_Q$ such that y = px and y = xq.

Clearly, a partially ordered loop Q (and obviously a partially ordered group, too) is a positive quasigroup with the set of all positive elements $P_Q = \{p \in Q : p \ge 1\}$. If Q is a trivially ordered quasigroup, then Q is a positive quasigroup. The following example shows that there exists a non-trivially ordered positive quasigroup which is not a loop.

1.1 Example. Let $Q = \mathbb{R} \times \mathbb{R}$ (\mathbb{R} is the set of all real numbers). Take the operation

$$(x,y) \cdot (u,v) = (x+u,2y+v)$$

and the relation \leq , where = is defined componentwise and < is defined by

$$(x,y) < (u,v) \Leftrightarrow x < u.$$

Then Q is a positive quasigroup with the set of all positive elements $P_Q = \{(x, y) : x > 0\}$. The set of all local unit elements of Q is $E = \{(0, y) : y \in \mathbb{R}\}$.

It is easy to verify that a direct product and a lexicographic product of partially ordered quasigroups is a partially ordered quasigroup. The situation is different in the case of positive quasigroups. In this note we are interested in conditions under which a direct product and a lexicographic product of partially ordered quasigroups is a positive quasigroup. Analogous questions for Riesz quasigroups are studied as well.

2. Direct products of positive quasigroups

Let I be a nonempty set and let $\{Q_i : i \in I\}$ be a family of partially ordered quasigroups. By the *direct product* of po-quasigroups Q_i , $i \in I$, we mean the Cartesian product of sets Q_i with the operation \cdot and the relation \leq defined componentwise, i.e.,

$$\begin{aligned} x \cdot y &= z \Leftrightarrow x(i) \cdot y(i) = z(i) \quad \text{for all} \quad i \in I, \\ x &\le y \Leftrightarrow x(i) \le y(i) \quad \text{for all} \quad i \in I, \end{aligned}$$

where x(i), y(i) and z(i) is the *i*th component of x, y and z, respectively. The direct product of po-quasigroups Q_i , $i \in I$ will be denoted by $\prod_{i \in I} Q_i$.

The direct product of positive quasigroups need not be a positive quasigroup. For instance, take Q as in 1.1. Then the direct product $\prod_{i \in I} Q_i$, where $I = \{1, 2\}$ and $Q_i = Q$ for i = 1, 2, is not a positive quasigroup. **2.1 Lemma.** Let I be a nonempty set and let $\{Q_i : i \in I\}$ be a family of partially ordered quasigroups. If $Q = \prod_{i \in I} Q_i$ is a positive quasigroup, then each Q_i is a positive quasigroup, too.

PROOF: Let $Q = \prod_{i \in I} Q_i$ and let $j \in I$. If Q_j is a trivially ordered quasigroup, then it is a positive quasigroup. Assume that Q_j is non-trivially ordered. Let $a, b \in Q_j, a > b$. There exist $p, q \in Q_j$ such that a = qb = bp. We are going to show that p, q are positive elements. Let us define $x, y \in Q$ in such a way that x(j) = a, y(j) = b and x(i) = y(i) for each $i \in I, i \neq j$. Clearly x > y. Since Qis a positive quasigroup, there exists $u, v \in P_Q$ such that x = uy = yv. Evidently u(j) = q, v(j) = p. Now, let c be any element of Q_j . Take $z \in Q$ with z(j) = c. Since $u \in P_Q, uz \ge z$ and $zu \ge z$. Thus we have $qc \ge c$ and $cq \ge c$. Analogously, $pc \ge c$ and $cp \ge c$. Thus $p, q \in P_{Q_j}$.

2.2 Lemma. Let I be a nonempty set and let $\{Q_i : i \in I\}$ be a family of partially ordered quasigroups such that there are at least two non-trivially ordered quasigroups. Then $Q = \prod_{i \in I} Q_i$ is a positive quasigroup if and only if Q_i is a po-loop for each $i \in I$.

PROOF: Let $Q = \prod_{i \in I} Q_i$ be a positive quasigroup. Let e_a, e_b be the local left unit elements for $a, b \in Q_j$, respectively. We are going to show that $e_a = e_b$. By assumption there exists $k \in I$, $k \neq j$, such that Q_k is a non-trivially ordered quasigroup. Let us take $x, y \in Q$ such that x(j) = y(j) = b, x(k) > y(k) and x(i) = y(i) for each $i \in I - \{j, k\}$. Since x > y, there is $p \in P_Q$ such that x = py. Obviously, $p(j) = e_b$. Now, let z be an element of Q with z(j) = a. Since $p \in P_Q$, $pz \ge z$. Hence $p(j)z(j) \ge z(j)$, i.e., $e_ba \ge a$. This yields $e_b \ge e_a$. Analogously we can prove that $e_a \ge e_b$. Therefore $e_a = e_b$. By the similar way we obtain that any two local right unit elements from Q_j are equal. Thus we can conclude that Q_j is a po-loop.

Conversely, if Q_i is a partially ordered loop for each $i \in I$, then $Q = \prod_{i \in I} Q_i$ is a partially ordered loop, too. Thus Q is a positive quasigroup.

2.3 Theorem. Let I be a nonempty set and $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. Then $Q = \prod_{i \in I} Q_i$ is a positive quasigroup if and only if one of the following conditions is fulfilled:

- (i) Q_i is a trivially ordered quasigroup for each $i \in I$;
- (ii) there exists an index $k \in I$ such that Q_k is a non-trivially ordered positive quasigroup and for all $i \in I$, $i \neq k$, Q_i is a trivially ordered loop;
- (iii) there exist at least two indices $j, k \in I$ such that Q_j, Q_k are non-trivially ordered quasigroups and Q_i is a partially ordered loop for each $i \in I$.

PROOF: Let $Q = \prod_{i \in I} Q_i$ be a positive quasigroup. By 2.1 Q_i is a positive quasigroup for each $i \in I$. Suppose that there exists exactly one index $k \in Q$ such that Q_k is a non-trivially ordered positive quasigroup. By the same way as

in the proof of 2.2 we obtain that Q_j is a loop for each $j \neq k$. Obviously Q_j is a trivially ordered loop. If there exist two indices $k, j \in I$ such that Q_k and Q_j are non-trivially ordered positive quasigroups, then, according to 2.2, Q_i is a partially ordered loop for each $i \in I$.

Conversely, from (i) it follows that $Q = \prod_{i \in I} Q_i$ is a trivially ordered quasigroup and thus it is a positive quasigroup. Let (ii) hold and let $x, y \in Q, x > y$. There exist $p, q \in Q$ such that x = py = qy. We are going to show that $p, q \in P_Q$. Obviously x(k) > y(k) and x(i) = y(i) for each $i \neq k$. By assumption Q_k is a positive quasigroup, therefore $p(k), q(k) \in P_{Q_k}$. Further, for each $i \in I, i \neq k$, p(i) = q(i) = 1. Thus $pz \ge z$ and $zq \ge z$ for each $z \in Q$. Hence $p, q \in P_Q$ and Qis a positive quasigroup. Finally, in view of 2.2, (iii) implies that Q is a positive quasigroup.

2.4 Corollary. Let Q be a partially ordered quasigroup which can be expressed as a direct product of non-trivially ordered quasigroups. Then Q is positive if and only if Q is a po-loop.

3. Lexicographic products of positive quasigroups

Let I be a well-ordered set and let $\{Q_i : i \in I\}$ be a family of partially ordered quasigroups. By the *lexicographic product* of Q_i , $i \in I$, we mean the direct product of quasigroups Q_i with the relation \leq defined by

 $x \leq y \Leftrightarrow x = y \text{ or } x(i) < y(i) \text{ for the least } i \in I \text{ with } x(i) \neq y(i),$

where x(i) and y(i) is the *i*th component of x and y, respectively. The lexicographic product of po-quasigroups Q_i , $i \in I$, will be denoted by $\Gamma_{i \in I} Q_i$.

The lexicographic product of positive quasigroups need not be a positive quasigroup. For instance, the lexicographic product $\Gamma_{i \in I}Q_i$, where $I = \{1, 2\}$ and Q_i is a positive quasigroup from 1.1 for each $i \in I$, is not a positive quasigroup.

Using the similar methods to those in the proof of 2.1 the following lemma can be proved.

3.1 Lemma. Let I be a well-ordered set and $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. If $Q = \Gamma_{i \in I} Q_i$ is a positive quasigroup, then each Q_i is a positive quasigroup, too.

3.2 Lemma. Let I be a well-ordered set and $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. Let $Q = \Gamma_{i \in I} Q_i$ be a positive quasigroup. If Q_k , $k \in I$, is a non-trivially ordered quasigroup, then Q_i is a po-loop for each $i \in I$, i < k.

PROOF: Let $j \in I$, j < k. Let e_a, e_b be local left unit elements for $a, b \in Q_j$, respectively. We take $x, y \in Q$ with x(j) = y(j) = b, x(k) > y(k) and x(i) = y(i)for each $i \neq j, k$. Clearly x > y. Thus there is $p \in P_Q$ such that x = py. Evidently, p(i) is the local left unit for x(i) for each $i \neq k$. Especially, for j we have $p(j) = e_b$. Now, let z be an element of Q with z(j) = a and z(i) = x(i) for each $i \neq j$. Since $p \in P_Q$, $z \leq pz$. Therefore $z(j) \leq p(j)z(j)$, i.e., $a \leq e_ba$. Hence $e_a \leq e_b$. Using analogous methods, it can be shown that $e_b \leq e_a$. Therefore $e_a = e_b$. Similarly we obtain that any two local right unit elements from Q_j are equal.

3.3 Theorem. Let I be a well-ordered set and $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. Let each Q_i , $i \in I$, contain more than one element. Then $Q = \Gamma_{i \in I} Q_i$ is a positive quasigroup if and only if Q_i is a positive quasigroup for each $i \in I$ and

- (i) if $Q_k, k \in I$, is a non-trivially ordered quasigroup, then Q_j is a po-loop for each $j \in I$, j < k;
- (ii) if Q_k , $k \in I$, is a non-trivially ordered quasigroup and Q_i is a trivially ordered quasigroup for each i > k, then every two different local unit elements from Q_k are non-comparable.

PROOF: Let $Q = \Gamma_{i \in I} Q_i$ be a positive quasigroup. From 3.1 it follows that Q_i is a positive quasigroup for each $i \in I$. The assertion (i) follows from 3.2. To prove (ii) suppose that Q_k is a non-trivially ordered quasigroup and Q_i is a trivially ordered quasigroup for each i > k. First, assume that there are different local left unit elements e_a, e_b for $a, b \in Q_k$, respectively. We are going to show that $e_a \parallel e_b$. Assume that $e_a > e_b$. There exists $c \in Q_k$ such that $b = e_a c$. Since $e_a b > b$, we have b > c. Let x, y be elements of Q with x(k) = b, y(k) = c, $x(i) \parallel y(i)$ for i > kand x(i) = y(i) for i < k. Obviously, x > y, and thus x = py, where $p \in P_Q$. Clearly $p(k) = e_a$ and, by (i), p(i) = 1 for each i < k. Now, take $z \in Q$ with z(k) = a, z(i) = y(i) for i > k and z(i) = x(i) for i < k. Then p(i)z(i) = z(i) for $i \leq k$. Further, since p(i)z(i) = p(i)y(i) = x(i) for i > k, we can conclude that $p(i)z(i) \parallel z(i)$ for each $i \in I, i > k$. Thus $pz \parallel z$. But, on the other hand, since $p \in P_Q$, we have $pz \ge z$, which contradicts the relation above. Assuming $e_b < e_a$ we again obtain a contradiction. Therefore $e_a \parallel e_b$. Analogously we can show that any two different local right units from Q_k are non-comparable. Finally, to end this direction of the proof, suppose that e_a is the local left unit for $a \in Q_k$, f_b is the local right unit for $b \in Q_k$ and $e_a \neq f_b$. Let $e_a > f_b$. Then $be_a > b$ and since Q_k is a positive quasigroup, we have $be_a = bp$, where $p \in P_{Q_k}$. Therefore $e_a \in P_{Q_k}$, i.e., $e_a \ge e_x$ for each $x \in Q_k$. Now, using the fact that any two different local left unit elements from Q_k are non-comparable, we obtain $e_a = e_x$ for each $x \in Q_k$. This yields $e_a e_a = e_a$ and therefore $e_a = f_{e_a}$, where f_{e_a} is the local right unit for e_a . And since $e_a > f_b$, we have $f_{e_a} > f_b$, which contradicts the fact that any two different local right unit elements from Q_k are non-comparable. Analogously the case $f_b > e_a$ cannot occur. Thus $e_a \parallel f_b$.

To prove the converse, let Q_i be a positive quasigroup for each $i \in I$ and let (i), (ii) be valid. A quasigroup $Q = \Gamma_{i \in I} Q_i$ is trivially ordered if and only if Q_i is a trivially ordered quasigroup for each $i \in I$. In this particular case, Q is a positive quasigroup. In the next we assume that Q is a non-trivially ordered quasigroup.

Let $x, y \in Q$, x > y. There are $p, q \in Q$ such that x = py = yq. We are going to show that $p, q \in P_Q$. Since x > y, there exists $k \in I$ such that x(k) > y(k)and x(i) = y(i) for each $i \in I$, i < k. Obviously $p(k) \in P_{Q_k}$ and, by (i), Q_i is a loop for each i < k. Moreover, for each i < k, p(i) is the unit of Q_i . Let z be any element of Q. Clearly, $p(k)z(k) \ge z(k)$ and p(i)z(i) = z(i) for i < k. Suppose that there exists $r \in I$, r > k, such that Q_r is a non-trivially ordered quasigroup. Then, by (i), Q_k is a loop. Since x(k) = p(k)y(k) and x(k) > y(k), we have $p(k) \neq 1$. Thus p(k)z(k) > z(k), and therefore pz > z. Assume that Q_i is a trivially ordered quasigroup for each i > k. If Q_k is a loop, then again pz > z. Suppose that Q_k is not a loop. Since $p(k) \in P_{Q_k}$, p(k) is greater than or equal to any local unit from Q_k . But, according to (ii), any two different local unit elements from Q_k are non-comparable. This yields that p(k) is the local unit for none element of Q_k . Therefore p(k)z(k) > z(k) and hence pz > z. We have shown that $p \in P_Q$. Analogously we can prove that $q \in P_Q$. Thus Q is a positive quasigroup.

3.4 Corollary. Let I be a well-ordered set, $\{Q_i : i \in I\}$ a family of non-trivially ordered quasigroups. Then $Q = \Gamma_{i \in I}Q_i$ is a positive quasigroup if and only if Q_i is a positive quasigroup for each $i \in I$ and for each couple (j, k) of elements of I, if k covers j, then Q_j is a po-loop.

4. Riesz quasigroups

Riesz groups were studied by L. Fuchs, G. Birkhoff and some other authors. The necessary and sufficient conditions for a lexicographic product of a family of partially ordered group to be a Riesz group were given by J. Lihová in [6]. In this section we deal with the lexicographic product of Riesz quasigroups. As for direct products of Riesz quasigroups, it is routine to verify that the direct product of po-quasigroups is a Riesz quasigroup if and only if each factor is a Riesz quasigroup.

A partially ordered quasigroup Q is said to be a *directed quasigroup* if Q is a directed set (i.e. for each $a, b \in Q$ there exist $c, d \in Q$ such that $c \leq a, b$ and $a, b \leq d$).

Let $a, b \in Q$. By U(a, b) (L(a, b)) we denote the set of all upper (lower, respectively) bounds of the set $\{a, b\}$.

4.1 Lemma. Let Q be not a directed po-quasigroup. Then there exist $u, v, z \in Q$ such that $U(z, u) = \emptyset$ and $L(z, v) = \emptyset$.

PROOF: Suppose that Q is not a directed quasigroup. Then there are elements $a, b \in Q$ such that $U(a, b) = \emptyset$. In fact, if we assume that $U(x, y) \neq \emptyset$ for all $x, y \in Q$, then for each $x, y \in Q$ there exists $g \in Q$ such that $R_x^{-1}x, R_y^{-1}x \leq g$. Hence $L_g^{-1}x \leq x, y$ and thus $L(x, y) \neq \emptyset$ for all $x, y \in Q$. This yields that Q is a directed quasigroup, which contradicts the assumption. Analogously, provided $L(x, y) \neq \emptyset$ for all $x, y \in Q$ we also arrive at contradiction. Therefore there exist $a, b, c, d \in Q$ such that $U(a, b) = \emptyset$ and $L(c, d) = \emptyset$. Then $U(ac, bc) = \emptyset$ and $L(ac, ad) = \emptyset$. Now, setting z = ac, u = bc and v = ad we obtain the required elements.

4.2 Definition. A partially ordered quasigroup Q is called a Riesz quasigroup if it is directed and satisfies the following interpolation property

(IP) for all $a_i, b_j \in Q$ with $a_i \leq b_j, i, j \in \{1, 2\}$, there exists $c \in Q$ such that $a_i \leq c \leq b_j$.

Evidently every Riesz group is a Riesz quasigroup (Riesz groups are exactly the associative Riesz quasigroups). To give an example of a Riesz quasigroup which is not a Riesz group consider $Q = \mathbb{R}^2$ with operation $(x, y) \cdot (u, v) = (x+u, \frac{1}{2}(y+v))$ and relation $(x, y) < (u, v) \Leftrightarrow x < u$ (cf. [9]).

4.3 Remark. Let *h* be any element from a partially ordered quasigroup *Q*. To see that the condition (IP) holds, it is sufficient to show that for all elements $x, y, z \in Q$ such that h, x are non-comparable, y, z are non-comparable, h < y, z and x < y, z there exists $c \in Q$ such that $h, x \leq c \leq y, z$.

Using similar methods as in [6] (by 4.3, the group unit can be replaced by any $h \in Q$) we can prove both following lemmas.

4.4 Lemma (cf. [6, Lemma 2.1]). Let I be a well-ordered set, $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. If $Q = \Gamma_{i \in I} Q_i$ satisfies (IP), then each Q_i satisfies (IP), too.

4.5 Lemma (cf. [6, Lemma 2.2]). Let *I* be a well-ordered set, $\{Q_i : i \in I\}$ a family of partially ordered quasigroups. Let $Q = \Gamma_{i \in I} Q_i$. If $h \leq u, v, a \leq u, v, a \parallel h, u \parallel v$ for some $h, a, u, v \in Q$, then there exists an index $i \in I$ such that a(i) < u(i), v(i), h(i) < u(i), v(i) and h(j) = a(j) = u(j) = v(j) for all $j \in I$, j < i.

By an *antilattice* we mean such a po-quasigroup, in which only pairs of comparable elements may have a greatest lower and a least upper bound. Choose any element $h \in Q$. To verify that a partially ordered quasigroup Q is an antilattice, it is sufficient to show that if $a \in Q$, $a \parallel h$, then a, h do not have a least upper bound.

A partially ordered quasigroup Q will be said to be *dense* if, whenever $a, b \in Q$, a < b, there exists $c \in Q$ with a < c < b. And again, to see that Q is dense, it is sufficient to show that for any chosen (fixed) element $h \in Q$ and all $b \in Q$ such that h < b, there exists $c \in Q$ with h < c < b.

The following theorem generalizes Theorem 2.3 in [6] which was formulated for Riesz groups.

4.6 Theorem. Let I be a well-ordered set and $\{Q_i : i \in I\}$ a family of partially ordered quasigroups such that each Q_i contains more than one element. Let $Q = \Gamma_{i \in I} Q_i$. Then Q satisfies (IP) if and only if all Q_i satisfy (IP) and for each couple (j, k) of elements of I such that k covers j it is true that if Q_k is not directed and Q_j is non-trivially ordered, then the quasigroup Q_j is a dense antilattice.

PROOF: Let Q satisfy (IP). Let j, k be such elements of I, that k covers j and let Q_k be not directed, Q_j be non-trivially ordered. By 4.1 there exist $e_k, t_k, r_k \in Q_k$ such that $U(e_k, t_k) = \emptyset$ and $L(e_k, r_k) = \emptyset$. Take any element $e \in Q$ with $e(k) = e_k$. To prove that Q_j is dense it is sufficient to verify that for each $g_j \in Q_j$, $e(j) < g_j$, there exists $h_j \in Q_j$ such that $e(j) < h_j < g_j$. Define elements $a, u, v \in Q$ by $a(j) = e(j), u(j) = v(j) = g_j, a(k) = t_k, u(k) = e_k, v(k) = r_k$ and a(l) = u(l) = v(l) = e(l) for all $l \in I - \{j, k\}$. We have $e < u, v, a < u, v, a \parallel e, u \parallel v$. By assumption there exists $p \in Q$ such that e, a . Evidently <math>p(i) = e(i) for all $i < j, e(j) \leq p(j) \leq g_j$. If p(j) = e(j), then $p(k) \geq e_k, t_k$, a contradiction. On the other hand, if $p(j) = g_j$, which proves the density of Q_j .

The rest of the proof can be performed by using the same methods as in [6]. \Box

4.7 Corollary (cf. [6]). Let *I* be a well-ordered set with the least element i_0 and let $\{Q_i : i \in I\}$ be a family of partially ordered quasigroups such that each Q_i contains more than one element. Then $Q = \Gamma_{i \in I} Q_i$ is a Riesz quasigroup if and only if the following conditions are satisfied:

- (i) Q_{i_0} is a directed quasigroup;
- (ii) all Q_i 's satisfy (IP);
- (iii) if $j, k \in I$, k covers j, Q_k is not directed, Q_j is non-trivially ordered, then Q_j is a dense antilattice.

References

- [1] Bosbach B., Lattice ordered binary systems, Acta. Sci. Math. 32 (1988), 257-289.
- [2] Bruck R.H., A Survey of Binary Systems, Ergebnisse der Mathematik, Neue Folge, Heft 20, Springer, Berlin, 1958.
- [3] Evans T., Lattice-ordered loops and quasigroups, J. Algebra 16 (1970), 218-226.
- [4] Hartman P.A., Integrally closed and complete ordered quasigroups and loops, Proc. Amer. Math. Soc. 33 (1972), 250–256.
- [5] Kalhoff F.B., Priess-Crampe S.H.G., Ordered loops and ordered planar ternary rings, Quasigroups and loops: theory and applications, Sigma Ser. Pure Math. 8, Heldermann, Berlin, 1990, pp. 445–465.
- [6] Lihová J., On Riesz groups, Tatra Mt. Math. Publ. 27 (2003), 163–176.
- [7] Tararin V.M., Ordered quasigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1979), 82–86 (in Russian).
- [8] Testov V.A., Left-positive quasigroups with a lattice order, Webs and quasigroups (in Russian), 153, pp. 110–114, Kalinin. Gos. Univ., Kalinin, 1982.

- [9] Testov V.A., Left-positive Riesz quasigroups, Problems in the theory of webs and quasigroups (in Russian), 158, pp. 81–83, Kalinin. Gos. Univ., Kalinin, 1985.
- [10] Zelinsky D., Nonassociative valuations, Bull. Amer. Math. Soc. 54 (1948), 175-183.
- [11] Zelinsky D., On ordered loops, Amer. J. Math. 70 (1948), 681–697.

Department of Mathematics, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia

E-mail: demko@unipo.sk

(Received October 5, 2007, revised December 10, 2007)