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Products of partially ordered quasigroups
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Abstract. We describe necessary and sufficient conditions for a direct product and a lex-
icographic product of partially ordered quasigroups to be a positive quasigroup. Analo-
gous questions for Riesz quasigroups are studied.
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1. Preliminaries

The concept of an ordered loop was introduced by D. Zelinsky [10] who was
the first to consider valuations of nonassociative algebras. Their values are in
ordered loops and D. Zelinsky [11] determined all such ordered loops. Ordered
loops and quasigroups were later studied by several other authors (e.g. [1], [2],
[3], [4]), also in the connection with the ordered planar ternary rings ([5]). The
previous research seems to indicate that the area is interesting and rich enough
to justify a systematic study. In this paper we shall consider products of special
types of ordered quasigroups — positive quasigroups and Riesz quasigroups.
The concept of a positive quasigroup was introduced by V.M. Tararin [7]. Fur-

ther, properties of left-positive quasigroups and left-positive Riesz quasigroups
were studied by V.A. Testov [8], [9].
Let (Q, ·) be a quasigroup. Let a ∈ Q. By ea (fa) we denote the local left

(right) unit element for a, i.e., ea, fa are such elements that eaa = a and afa = a.
If (Q, ·) is a loop, we denote by 1 the unit element of (Q, ·).
A nonempty setQ with a binary operation · and a relation≤ is called a partially

ordered quasigroup (po-quasigroup) if

(i) (Q, ·) is a quasigroup;
(ii) (Q,≤) is a partially ordered set;
(iii) for all x, y, a ∈ Q, x ≤ y ⇔ ax ≤ ay ⇔ xa ≤ ya.

A po-quasigroup Q is called a partially ordered loop (po-loop) if (Q, ·) is a loop.
We say that a po-quasigroup Q is trivially ordered , if any two different ele-

ments a, b ∈ Q are non-comparable (for non-comparable elements we will use the
notation a ‖ b).
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Let Q be a po-quasigroup. An element p ∈ Q is called a positive element , if
px ≥ x and xp ≥ x for all x ∈ Q. The set of all positive elements of Q will be
denoted by PQ. Obviously, PQ = {p ∈ Q : p ≥ ex and p ≥ fx for all x ∈ Q}.
A po-quasigroup Q is said to be a positive quasigroup, if for all x, y ∈ Q, x < y,
there exist positive elements p, q ∈ PQ such that y = px and y = xq.
Clearly, a partially ordered loop Q (and obviously a partially ordered group,

too) is a positive quasigroup with the set of all positive elements PQ = {p ∈ Q :
p ≥ 1}. If Q is a trivially ordered quasigroup, then Q is a positive quasigroup.
The following example shows that there exists a non-trivially ordered positive
quasigroup which is not a loop.

1.1 Example. Let Q = R × R (R is the set of all real numbers). Take the
operation

(x, y) · (u, v) = (x+ u, 2y + v)

and the relation ≤, where = is defined componentwise and < is defined by

(x, y) < (u, v)⇔ x < u.

Then Q is a positive quasigroup with the set of all positive elements PQ = {(x, y) :
x > 0}. The set of all local unit elements of Q is E = {(0, y) : y ∈ R}.

It is easy to verify that a direct product and a lexicographic product of partially
ordered quasigroups is a partially ordered quasigroup. The situation is different
in the case of positive quasigroups. In this note we are interested in conditions
under which a direct product and a lexicographic product of partially ordered
quasigroups is a positive quasigroup. Analogous questions for Riesz quasigroups
are studied as well.

2. Direct products of positive quasigroups

Let I be a nonempty set and let {Qi : i ∈ I} be a family of partially ordered
quasigroups. By the direct product of po-quasigroups Qi, i ∈ I, we mean the
Cartesian product of sets Qi with the operation · and the relation ≤ defined
componentwise, i.e.,

x · y = z ⇔ x(i) · y(i) = z(i) for all i ∈ I,

x ≤ y ⇔ x(i) ≤ y(i) for all i ∈ I,

where x(i), y(i) and z(i) is the ith component of x, y and z, respectively. The
direct product of po-quasigroups Qi, i ∈ I will be denoted by

∏
i∈I Qi.

The direct product of positive quasigroups need not be a positive quasigroup.
For instance, take Q as in 1.1. Then the direct product

∏
i∈I Qi, where I = {1, 2}

and Qi = Q for i = 1, 2, is not a positive quasigroup.
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2.1 Lemma. Let I be a nonempty set and let {Qi : i ∈ I} be a family of partially
ordered quasigroups. If Q =

∏
i∈I Qi is a positive quasigroup, then each Qi is a

positive quasigroup, too.

Proof: Let Q =
∏

i∈I Qi and let j ∈ I. If Qj is a trivially ordered quasigroup,
then it is a positive quasigroup. Assume that Qj is non-trivially ordered. Let
a, b ∈ Qj , a > b. There exist p, q ∈ Qj such that a = qb = bp. We are going to
show that p, q are positive elements. Let us define x, y ∈ Q in such a way that
x(j) = a, y(j) = b and x(i) = y(i) for each i ∈ I, i 6= j. Clearly x > y. Since Q

is a positive quasigroup, there exists u, v ∈ PQ such that x = uy = yv. Evidently
u(j) = q, v(j) = p. Now, let c be any element of Qj . Take z ∈ Q with z(j) = c.
Since u ∈ PQ, uz ≥ z and zu ≥ z. Thus we have qc ≥ c and cq ≥ c. Analogously,
pc ≥ c and cp ≥ c. Thus p, q ∈ PQj

. �

2.2 Lemma. Let I be a nonempty set and let {Qi : i ∈ I} be a family of
partially ordered quasigroups such that there are at least two non-trivially ordered

quasigroups. Then Q =
∏

i∈I Qi is a positive quasigroup if and only if Qi is a

po-loop for each i ∈ I.

Proof: Let Q =
∏

i∈I Qi be a positive quasigroup. Let ea, eb be the local left
unit elements for a, b ∈ Qj , respectively. We are going to show that ea = eb.
By assumption there exists k ∈ I, k 6= j, such that Qk is a non-trivially ordered
quasigroup. Let us take x, y ∈ Q such that x(j) = y(j) = b, x(k) > y(k) and
x(i) = y(i) for each i ∈ I − {j, k}. Since x > y, there is p ∈ PQ such that x = py.
Obviously, p(j) = eb. Now, let z be an element of Q with z(j) = a. Since p ∈ PQ,
pz ≥ z. Hence p(j)z(j) ≥ z(j), i.e., eba ≥ a. This yields eb ≥ ea. Analogously
we can prove that ea ≥ eb. Therefore ea = eb. By the similar way we obtain that
any two local right unit elements from Qj are equal. Thus we can conclude that
Qj is a po-loop.
Conversely, if Qi is a partially ordered loop for each i ∈ I, then Q =

∏
i∈I Qi

is a partially ordered loop, too. Thus Q is a positive quasigroup. �

2.3 Theorem. Let I be a nonempty set and {Qi : i ∈ I} a family of partially
ordered quasigroups. Then Q =

∏
i∈I Qi is a positive quasigroup if and only if

one of the following conditions is fulfilled:

(i) Qi is a trivially ordered quasigroup for each i ∈ I;

(ii) there exists an index k ∈ I such that Qk is a non-trivially ordered positive

quasigroup and for all i ∈ I, i 6= k, Qi is a trivially ordered loop;

(iii) there exist at least two indices j, k ∈ I such that Qj , Qk are non-trivially

ordered quasigroups and Qi is a partially ordered loop for each i ∈ I.

Proof: Let Q =
∏

i∈I Qi be a positive quasigroup. By 2.1 Qi is a positive
quasigroup for each i ∈ I. Suppose that there exists exactly one index k ∈ Q

such that Qk is a non-trivially ordered positive quasigroup. By the same way as
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in the proof of 2.2 we obtain that Qj is a loop for each j 6= k. Obviously Qj

is a trivially ordered loop. If there exist two indices k, j ∈ I such that Qk and
Qj are non-trivially ordered positive quasigroups, then, according to 2.2, Qi is a
partially ordered loop for each i ∈ I.
Conversely, from (i) it follows that Q =

∏
i∈I Qi is a trivially ordered quasi-

group and thus it is a positive quasigroup. Let (ii) hold and let x, y ∈ Q, x > y.
There exist p, q ∈ Q such that x = py = qy. We are going to show that p, q ∈ PQ.
Obviously x(k) > y(k) and x(i) = y(i) for each i 6= k. By assumption Qk is a
positive quasigroup, therefore p(k), q(k) ∈ PQk

. Further, for each i ∈ I, i 6= k,
p(i) = q(i) = 1. Thus pz ≥ z and zq ≥ z for each z ∈ Q. Hence p, q ∈ PQ and Q

is a positive quasigroup. Finally, in view of 2.2, (iii) implies that Q is a positive
quasigroup. �

2.4 Corollary. Let Q be a partially ordered quasigroup which can be expressed

as a direct product of non-trivially ordered quasigroups. Then Q is positive if and

only if Q is a po-loop.

3. Lexicographic products of positive quasigroups

Let I be a well-ordered set and let {Qi : i ∈ I} be a family of partially ordered
quasigroups. By the lexicographic product of Qi, i ∈ I, we mean the direct
product of quasigroups Qi with the relation ≤ defined by

x ≤ y ⇔ x = y or x(i) < y(i) for the least i ∈ I with x(i) 6= y(i),

where x(i) and y(i) is the ith component of x and y, respectively. The lexico-
graphic product of po-quasigroups Qi, i ∈ I, will be denoted by Γi∈IQi.
The lexicographic product of positive quasigroups need not be a positive quasi-

group. For instance, the lexicographic product Γi∈IQi, where I = {1, 2} and Qi

is a positive quasigroup from 1.1 for each i ∈ I, is not a positive quasigroup.
Using the similar methods to those in the proof of 2.1 the following lemma can

be proved.

3.1 Lemma. Let I be a well-ordered set and {Qi : i ∈ I} a family of partially
ordered quasigroups. If Q = Γi∈IQi is a positive quasigroup, then each Qi is a

positive quasigroup, too.

3.2 Lemma. Let I be a well-ordered set and {Qi : i ∈ I} a family of partially
ordered quasigroups. Let Q = Γi∈IQi be a positive quasigroup. If Qk, k ∈ I, is

a non-trivially ordered quasigroup, then Qi is a po-loop for each i ∈ I, i < k.

Proof: Let j ∈ I, j < k. Let ea, eb be local left unit elements for a, b ∈ Qj ,
respectively. We take x, y ∈ Q with x(j) = y(j) = b, x(k) > y(k) and x(i) = y(i)
for each i 6= j, k. Clearly x > y. Thus there is p ∈ PQ such that x = py.
Evidently, p(i) is the local left unit for x(i) for each i 6= k. Especially, for j we
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have p(j) = eb. Now, let z be an element of Q with z(j) = a and z(i) = x(i) for
each i 6= j. Since p ∈ PQ, z ≤ pz. Therefore z(j) ≤ p(j)z(j), i.e., a ≤ eba. Hence
ea ≤ eb. Using analogous methods, it can be shown that eb ≤ ea. Therefore
ea = eb. Similarly we obtain that any two local right unit elements from Qj are
equal. �

3.3 Theorem. Let I be a well-ordered set and {Qi : i ∈ I} a family of partially
ordered quasigroups. Let each Qi, i ∈ I, contain more than one element. Then

Q = Γi∈IQi is a positive quasigroup if and only if Qi is a positive quasigroup for

each i ∈ I and

(i) if Qk, k ∈ I, is a non-trivially ordered quasigroup, then Qj is a po-loop

for each j ∈ I, j < k;

(ii) if Qk, k ∈ I, is a non-trivially ordered quasigroup and Qi is a trivially

ordered quasigroup for each i > k, then every two different local unit

elements from Qk are non-comparable.

Proof: Let Q = Γi∈IQi be a positive quasigroup. From 3.1 it follows that Qi is
a positive quasigroup for each i ∈ I. The assertion (i) follows from 3.2. To prove
(ii) suppose that Qk is a non-trivially ordered quasigroup and Qi is a trivially
ordered quasigroup for each i > k. First, assume that there are different local left
unit elements ea, eb for a, b ∈ Qk, respectively. We are going to show that ea ‖ eb.
Assume that ea > eb. There exists c ∈ Qk such that b = eac. Since eab > b, we
have b > c. Let x, y be elements of Q with x(k) = b, y(k) = c, x(i) ‖ y(i) for i > k

and x(i) = y(i) for i < k. Obviously, x > y, and thus x = py, where p ∈ PQ.
Clearly p(k) = ea and, by (i), p(i) = 1 for each i < k. Now, take z ∈ Q with
z(k) = a, z(i) = y(i) for i > k and z(i) = x(i) for i < k. Then p(i)z(i) = z(i) for
i ≤ k. Further, since p(i)z(i) = p(i)y(i) = x(i) for i > k, we can conclude that
p(i)z(i) ‖ z(i) for each i ∈ I, i > k. Thus pz ‖ z. But, on the other hand, since
p ∈ PQ, we have pz ≥ z, which contradicts the relation above. Assuming eb < ea

we again obtain a contradiction. Therefore ea ‖ eb. Analogously we can show
that any two different local right units from Qk are non-comparable. Finally, to
end this direction of the proof, suppose that ea is the local left unit for a ∈ Qk,
fb is the local right unit for b ∈ Qk and ea 6= fb. Let ea > fb. Then bea > b and
since Qk is a positive quasigroup, we have bea = bp, where p ∈ PQk

. Therefore
ea ∈ PQk

, i.e., ea ≥ ex for each x ∈ Qk. Now, using the fact that any two different
local left unit elements from Qk are non-comparable, we obtain ea = ex for each
x ∈ Qk. This yields eaea = ea and therefore ea = fea , where fea is the local
right unit for ea. And since ea > fb, we have fea > fb, which contradicts the
fact that any two different local right unit elements from Qk are non-comparable.
Analogously the case fb > ea cannot occur. Thus ea ‖ fb.
To prove the converse, let Qi be a positive quasigroup for each i ∈ I and let (i),

(ii) be valid. A quasigroup Q = Γi∈IQi is trivially ordered if and only if Qi is a
trivially ordered quasigroup for each i ∈ I. In this particular case, Q is a positive
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quasigroup. In the next we assume that Q is a non-trivially ordered quasigroup.
Let x, y ∈ Q, x > y. There are p, q ∈ Q such that x = py = yq. We are going

to show that p, q ∈ PQ. Since x > y, there exists k ∈ I such that x(k) > y(k)
and x(i) = y(i) for each i ∈ I, i < k. Obviously p(k) ∈ PQk

and, by (i), Qi

is a loop for each i < k. Moreover, for each i < k, p(i) is the unit of Qi. Let
z be any element of Q. Clearly, p(k)z(k) ≥ z(k) and p(i)z(i) = z(i) for i < k.
Suppose that there exists r ∈ I, r > k, such that Qr is a non-trivially ordered
quasigroup. Then, by (i), Qk is a loop. Since x(k) = p(k)y(k) and x(k) > y(k),
we have p(k) 6= 1. Thus p(k)z(k) > z(k), and therefore pz > z. Assume that
Qi is a trivially ordered quasigroup for each i > k. If Qk is a loop, then again
pz > z. Suppose that Qk is not a loop. Since p(k) ∈ PQk

, p(k) is greater than
or equal to any local unit from Qk. But, according to (ii), any two different local
unit elements from Qk are non-comparable. This yields that p(k) is the local unit
for none element of Qk. Therefore p(k)z(k) > z(k) and hence pz > z. We have
shown that p ∈ PQ. Analogously we can prove that q ∈ PQ. Thus Q is a positive
quasigroup. �

3.4 Corollary. Let I be a well-ordered set, {Qi : i ∈ I} a family of non-trivially
ordered quasigroups. Then Q = Γi∈IQi is a positive quasigroup if and only if Qi

is a positive quasigroup for each i ∈ I and for each couple (j, k) of elements of I,

if k covers j, then Qj is a po-loop.

4. Riesz quasigroups

Riesz groups were studied by L. Fuchs, G. Birkhoff and some other authors.
The necessary and sufficient conditions for a lexicographic product of a family
of partially ordered group to be a Riesz group were given by J. Lihová in [6].
In this section we deal with the lexicographic product of Riesz quasigroups. As
for direct products of Riesz quasigroups, it is routine to verify that the direct
product of po-quasigroups is a Riesz quasigroup if and only if each factor is a
Riesz quasigroup.
A partially ordered quasigroup Q is said to be a directed quasigroup if Q is

a directed set (i.e. for each a, b ∈ Q there exist c, d ∈ Q such that c ≤ a, b and
a, b ≤ d).
Let a, b ∈ Q. By U(a, b) (L(a, b)) we denote the set of all upper (lower, respec-

tively) bounds of the set {a, b}.

4.1 Lemma. Let Q be not a directed po-quasigroup. Then there exist u, v, z ∈ Q

such that U(z, u) = ∅ and L(z, v) = ∅.

Proof: Suppose that Q is not a directed quasigroup. Then there are elements
a, b ∈ Q such that U(a, b) = ∅. In fact, if we assume that U(x, y) 6= ∅ for all
x, y ∈ Q, then for each x, y ∈ Q there exists g ∈ Q such that R−1

x x, R−1
y x ≤ g.

Hence L−1
g x ≤ x, y and thus L(x, y) 6= ∅ for all x, y ∈ Q. This yields that Q is
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a directed quasigroup, which contradicts the assumption. Analogously, provided
L(x, y) 6= ∅ for all x, y ∈ Q we also arrive at contradiction. Therefore there exist
a, b, c, d ∈ Q such that U(a, b) = ∅ and L(c, d) = ∅. Then U(ac, bc) = ∅ and
L(ac, ad) = ∅. Now, setting z = ac, u = bc and v = ad we obtain the required
elements. �

4.2 Definition. A partially ordered quasigroup Q is called a Riesz quasigroup if
it is directed and satisfies the following interpolation property

(IP)
for all ai, bj ∈ Q with ai ≤ bj , i, j ∈ {1, 2},

there exists c ∈ Q such that ai ≤ c ≤ bj .

Evidently every Riesz group is a Riesz quasigroup (Riesz groups are exactly the
associative Riesz quasigroups). To give an example of a Riesz quasigroup which is

not a Riesz group consider Q = R
2 with operation (x, y) ·(u, v) = (x+u, 12 (y+v))

and relation (x, y) < (u, v)⇔ x < u (cf. [9]).

4.3 Remark. Let h be any element from a partially ordered quasigroup Q. To
see that the condition (IP) holds, it is sufficient to show that for all elements
x, y, z ∈ Q such that h, x are non-comparable, y, z are non-comparable, h < y, z

and x < y, z there exists c ∈ Q such that h, x ≤ c ≤ y, z.

Using similar methods as in [6] (by 4.3, the group unit can be replaced by any
h ∈ Q) we can prove both following lemmas.

4.4 Lemma (cf. [6, Lemma 2.1]). Let I be a well-ordered set, {Qi : i ∈ I} a
family of partially ordered quasigroups. If Q = Γi∈IQi satisfies (IP), then each
Qi satisfies (IP), too.

4.5 Lemma (cf. [6, Lemma 2.2]). Let I be a well-ordered set, {Qi : i ∈ I} a
family of partially ordered quasigroups. Let Q = Γi∈IQi. If h ≤ u, v, a ≤ u, v,

a ‖ h, u ‖ v for some h, a, u, v ∈ Q, then there exists an index i ∈ I such that

a(i) < u(i), v(i), h(i) < u(i), v(i) and h(j) = a(j) = u(j) = v(j) for all j ∈ I,

j < i.

By an antilattice we mean such a po-quasigroup, in which only pairs of com-
parable elements may have a greatest lower and a least upper bound. Choose any
element h ∈ Q. To verify that a partially ordered quasigroup Q is an antilattice,
it is sufficient to show that if a ∈ Q, a ‖ h, then a, h do not have a least upper
bound.
A partially ordered quasigroupQ will be said to be dense if, whenever a, b ∈ Q,

a < b, there exists c ∈ Q with a < c < b. And again, to see that Q is dense, it is
sufficient to show that for any chosen (fixed) element h ∈ Q and all b ∈ Q such
that h < b, there exists c ∈ Q with h < c < b.
The following theorem generalizes Theorem 2.3 in [6] which was formulated for

Riesz groups.
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4.6 Theorem. Let I be a well-ordered set and {Qi : i ∈ I} a family of partially
ordered quasigroups such that each Qi contains more than one element. Let

Q = Γi∈IQi. Then Q satisfies (IP) if and only if all Qi satisfy (IP) and for
each couple (j, k) of elements of I such that k covers j it is true that if Qk is

not directed and Qj is non-trivially ordered, then the quasigroup Qj is a dense

antilattice.

Proof: Let Q satisfy (IP). Let j, k be such elements of I, that k covers j and let
Qk be not directed, Qj be non-trivially ordered. By 4.1 there exist ek, tk, rk ∈ Qk

such that U(ek, tk) = ∅ and L(ek, rk) = ∅. Take any element e ∈ Q with e(k) =
ek. To prove that Qj is dense it is sufficient to verify that for each gj ∈ Qj ,
e(j) < gj , there exists hj ∈ Qj such that e(j) < hj < gj . Define elements
a, u, v ∈ Q by a(j) = e(j), u(j) = v(j) = gj , a(k) = tk, u(k) = ek, v(k) = rk and
a(l) = u(l) = v(l) = e(l) for all l ∈ I − {j, k}. We have e < u, v, a < u, v, a ‖ e,
u ‖ v. By assumption there exists p ∈ Q such that e, a < p < u, v. Evidently
p(i) = e(i) for all i < j, e(j) ≤ p(j) ≤ gj . If p(j) = e(j), then p(k) ≥ ek, tk, a
contradiction. On the other hand, if p(j) = gj , then p(k) ≤ ek, rk, which is again
a contradiction. So we have e(j) < p(j) < gj which proves the density of Qj .
The rest of the proof can be performed by using the same methods as in [6].

�

4.7 Corollary (cf. [6]). Let I be a well-ordered set with the least element i0 and

let {Qi : i ∈ I} be a family of partially ordered quasigroups such that each Qi

contains more than one element. Then Q = Γi∈IQi is a Riesz quasigroup if and

only if the following conditions are satisfied:

(i) Qi0 is a directed quasigroup;

(ii) all Qi’s satisfy (IP);
(iii) if j, k ∈ I, k covers j, Qk is not directed, Qj is non-trivially ordered, then

Qj is a dense antilattice.
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E-mail : demko@unipo.sk

(Received October 5, 2007, revised December 10, 2007)


		webmaster@dml.cz
	2013-09-22T09:33:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




