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Skewsquares in quadratical quasigroups

Vladimir Volenec, Ružica Kolar–Šuper

Abstract. The concept of pseudosquare in a general quadratical quasigroup is introduced
and connections to some other geometrical concepts are studied. The geometrical pre-
sentations of some proved statements are given in the quadratical quasigroup C( 1+i

2
).
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1. Introduction

The “geometrical” concept of skewsquare is defined and investigated in any
quadratical quasigroup.
A groupoid (Q, ·) is said to be quadratical if the identity

(1) ab · a = ca · bc

holds and the equation ax = b has a unique solution x ∈ Q for any a, b ∈ Q (cf.
[12] and [2]). Every quadratical groupoid (Q, ·) is a quasigroup, i.e. the equations
xa = b and ay = b have unique solutions for any a, b ∈ Q. In a quadratical
quasigroup (Q, ·) the identities

aa = a,(2)

ab · cd = ac · bd,(3)

a · ba = ab · a,(4)

ab · c = ac · bc,(5)

a · bc = ab · ac,(6)

and the equivalencies

ab = cd ⇔ bc = da,(7)

ab = c ⇔ bc = ca(8)

hold (cf. [12]).
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If C is the set of all points of a Euclidean plane and if a groupoid (C, ·) is
defined so that aa = a for any a ∈ C and for any two different points a, b ∈ C the
point ab is the centre of the positively oriented square with two adjacent vertices
a and b, then (C, ·) is a quadratical quasigroup (cf. [12]). This quasigroup will be

denoted by C(1+i
2 ) because if a = 0 and b = 1 then ab = 1+i

2 . The figures in this
quasigroup illustrate the “geometrical” relations in any quadratical quasigroup
(Q, ·).
From now on let (Q, ·) be any quadratical quasigroup. The elements of Q

are said to be points , the pairs of points are segments , the quadruples of points
are quadrangles and an ordered quadruple of points is said to be an oriented
quadrangle.
If an operation • is defined on the set Q by

(9) a • b = a · ba = ab · a = ca · bc,

then (Q, •) is an idempotent medial commutative quasigroup (cf. [12]), i.e. the
identities

a • a = a,(10)

(a • b) • (c • d) = (a • c) • (b • d),(11)

a • b = b • a(12)

hold and the operations · and • are mutually medial, i.e. the identity

(13) ab • cd = (a • c)(b • d)

holds. The point a • b is said to be the midpoint of two points a and b.
Because of

g(a, b, c, d) = (a • c) • (b • d)
(11)
= (a • b) • (c • d)

(12)
= (a • b) • (d • c)

(11)
= (a • d) • (b • c)

the point g(a, b, c, d) is said to be the centroid of the quadrangle {a, b, c, d}.

An oriented quadrangle (a, b, c, d) is said to be a parallelogram and we write
Par(a, b, c, d) if a• c = b•d. If a• c = b•d = o, then we say that the point o is the
centre of this parallelogram and we write Paro(a, b, c, d). In [14] it is proved that
(Q,Par) is a parallelogram space (cf. [8] and [11]) and the following statement
which will be used later.

Lemma 1. For any points a, b, c, d the statement Par(a • b, b • c, c • d, d • a) is
valid.

An oriented quadrangle (a, b, c, d) is said to be a square and we write S(a, b, c, d)
if ab = bc = cd = da. If ab = bc = cd = da = o, then we say that the point o
is the centre of this square and we write So(a, b, c, d). Obviously So(a, b, c, d) ⇒
So(e, f, g, h), where (e, f, g, h) is any cyclical permutation of (a, b, c, d).
In [13] it is proved:
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Lemma 2. The statement S(a, b, c, d) is equivalent to any two of four (and then
all four) equalities ac = d, bd = a, ca = b, db = c.

In [14] the following statements are proved and they will be used later.

Lemma 3. The statement So(a, b, c, d) implies Paro(a, b, c, d).

Lemma 4. Paro(a, b, c, d) ⇔ So(ba, cb, dc, ad).

2. The concept of skewsquare in quadratical quasigroup

In the set Q2 a binary relation ∼ is defined by

(a, b) ∼ (c, d)⇔ Par(a, b, d, c).

In [8] it is proved that ∼ is a relation of equivalence. The elements of the set
Q2/∼ are said to be the vectors . A vector with a representative (a, b) is denoted
by [a, b]. Therefore, we have

[a, b] = [c, d]⇔ Par(a, b, d, c),

i.e.

(14) [a, b] = [c, d]⇔ a • d = b • c.

For any point a and any vector v there is one and only one point b such that
v = [a, b].

A vector u is said to be orthogonally equal to a vector v and we write u⊥v if
there are four points p, q, r, s such that

u = [p, r], v = [q, s], S(p, q, r, s)

(Figure 1).

Figure 1

The properties of squares imply at once:

Theorem 1. The statements [a, b]⊥[c, d], [c, d]⊥[b, a], [b, a]⊥[d, c] and [d, c]⊥[a, b]
are mutually equivalent (Figure 1).

The following theorem gives a simple characterization for orthogonally equal
vectors.
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Theorem 2. [a, b]⊥[c, d]⇔ ac = bd.

Proof: Let [a, b] = [p, r] , [c, d] = [q, s] , So(p, q, r, s) (Figure 1), i.e. [a, b]⊥[c, d].
Then we have the equalities pq = rs = o and by (14) the equalities a • r = b • p ,
c • s = d • q. Hence

ac • o = ac • rs
(13)
= (a • r)(c • s) = (b • p)(d • q)

(13)
= bd • pq = bd • o,

wherefrom ac = bd follows. Conversely, let ac = bd and let p be any point. There
is a point r such that [a, b] = [p, r]. Let q = rp , s = pr, i.e. let S(p, q, r, s) hold.
There is a point d′ such that [q, s] = [c, d′]. Now we have [a, b]⊥[c, d′] and the
proved part of our theorem implies ac = bd′. Therefore we have bd′ = bd, i.e.
d′ = d and hence [a, b]⊥[c, d]. �

Theorem 2 and the equivalence (7) give an alternative proof of Theorem 1.

The proof of Theorem 2 implies:

Corollary 1. For any vector v and any point c there is one and only one point
d such that v⊥[c, d] holds.

Because of Theorem 2 the equality (1) can be interpreted as the statement
[ca, ab]⊥[bc, a].

Theorem 3. (i) [a, b]⊥[c, d], [c, d] = [e, f ] ⇒ [a, b]⊥[e, f ].
(ii) [a, b] = [c, d], [c, d]⊥[e, f ] ⇒ [a, b]⊥[e, f ].
(iii) [a, b]⊥[c, d], [c, d]⊥[e, f ] ⇒ [a, b] = [f, e].
(iv) [a, b]⊥[d, e], [b, c]⊥[e, f ] ⇒ [a, c]⊥[d, f ].

Proof: (i) By Theorem 2 and by (14) we have the equalities ac = bd and
c • f = d • e. Therefore

ac • ae = bd • ae
(13)
= (b • a)(d • e)

(12)
= (a • b)(c • f)

(13)
= ac • bf,

wherefrom ae = bf follows and by Theorem 2 we have the statement [a, b]⊥[e, f ].

(ii) Now we have the equalities a • d = b • c and ce = df and we obtain

ae • df
(13)
= (a • d)(e • f)

(12)
= (b • c)(f • e)

(13)
= bf • ce = bf • df.

Therefore ae = bf , i.e. again [a, b]⊥[e, f ].

(iii) We have the equalities ac = bd, ce = df , which imply

a • e
(12)
= e • a

(9)
= ce · ac = df · bd

(9)
= f • b

(12)
= b • f,

i.e. [a, b] = [f, e] by (14).
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(iv) By Theorem 2 we must prove the implication ad = be, be = cf ⇒ ad = cf .
It is obvious. �

Because of (7) the following definition has a sense.

An oriented quadrangle (a, b, c, d) is a skewsquare and we write SS(a, b, c, d) if
ab = cd and bc = da. It is sufficient to have only one of these two equalities (cf.
[7] and [4]). If we have the equalities ab = cd = p and bc = da = q, then the
points p and q are said to be the skewcenters of the considered skewsquare and
we write SSp,q(a, b, c, d) (Figure 2) (cf. [4], where p and q are said to be the foci
of the skewsquare).

Obviously we get:

Theorem 4. The statements SSp,q(a, b, c, d), SSq,p(b, c, d, a), SSp,q(c, d, a, b) and
SSq,p(d, a, b, c) are mutually equivalent.

According to Theorem 2 it follows.

Corollary 2. SS(a, b, c, d)⇔ [a, c]⊥[b, d] (Figure 2).

Figure 2

By Corollaries 1 and 2 we obtain the following statement.

Corollary 3. For any points a, b, c there is one and only one point d such that
SS(a, b, c, d) holds.

The equation ax = b has a unique solution x = (b · ba) · (b · ba)(ba · a) (cf. [12,
Corollary]). Therefore the equality ab = cd is equivalent to the equality

(15) d = (ab)(ab · c) · [(ab)(ab · c) · (ab · c)c],

i.e. we have the following theorem, which expresses the statement of Corollary 3
precisely.
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Theorem 5. The statement SS(a, b, c, d) is equivalent to the equality (15) (Fi-
gure 3).

Figure 3

Obviously we obtain.

Theorem 6. So(a, b, c, d)⇔ SSo,o(a, b, c, d).

Let us prove the following statement now.

Theorem 7. The statement SSp,q(a, b, c, d) implies So(p, a• c, q, b•d) (Figure 4)
where

o = a • db = b • ac = c • bd = d • ca = p • q = g(a, b, c, d).

Proof: Let o = p • q. Because of ab = p, da = q we get

o = p • q = ab • da
(13)
= (a • d)(b • a)

(12)
= (a • d)(a • b)

(13)
= aa • db

(2)
= a • db,

and similarly it can be obtained o = b • ac = c • bd = d • ca. Further, we get

p(a • c) = ab · (a • c)
(9)
= ab · (ac · a)

(1)
= (b · ac)b

(9)
= b • ac = o,

(a•c)q = (a•c) ·da
(9)
= (ac ·a) ·da

(4)
= (a ·ca) ·da

(1)
= (ca ·d) ·ca

(9)
= ca•d

(12)
= d•ca = o,

and similarly the following equalities q(b • d) = o, (b • d)p = o can be proved, so
it is valid So(p, a • c, q, b • d), and then Paro(p, a • c, q, b • d). Because of that we
also get the equalities

p • q = o = (a • c) • (b • d) = g(a, b, c, d).
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�

Figure 4

In the case of the quasigroup C(1+i
2 ) Theorem 7 proves one statement from [4]

and [7].

The point o from Theorem 7 will be called centre of the skewsquare (a, b, c, d).

Theorem 8. SS(a, b, c, d)⇔ S(a • b, b • c, c • d, d • a) (Figure 5).

Proof: As we have

(a • b)(b • c)
(13)
= ab • bc,

(b • c)(c • d)
(13)
= bc • cd

(12)
= cd • bc,

the equalities ab = cd and (a • b)(b • c) = (b • c)(c • d) are equivalent. The
equivalence of the remaining equalities can be proved in a similar way. �

One part of Theorem 8 can be stated more precisely in the form:

Theorem 9. SSp,q(a, b, c, d)⇒ Sp•q(a • b, b • c, c • d, d • a) (Figure 5).
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Figure 5

Proof: We have for example

(a • b)(b • c)
(13)
= ab • bc = p • q,

(b • c)(c • d)
(13)
= bc • cd = q • p

(12)
= p • q

because of p = ab = cd, q = bc. �

In a case of the quasigroup C( i+12 ) Theorem 9 proves one statement from [4].

Corollary 4. The statement SS(a, b, c, d) implies the equalities (a • b)(c • d) =
d • a, (b • c)(d • a) = a • b, (c • d)(a • b) = b • c, (d • a)(b • c) = c • d (Figure 5).

Because of Lemma 3 and Theorem 6 the statement So(a, b, c, d) implies
Paro(a, b, c, d) and SS(a, b, c, d). However, the converse is also valid.

Theorem 10. Paro(a, b, c, d), SS(a, b, c, d) ⇒ So(a, b, c, d).

Proof: Let SSp,q(a, b, c, d). Then according to Theorem 7 we get S(p, o, q, o),
since Paro(a, b, c, d) implies a • c = b • d = o. Because of that we get p = oo,
q = oo, i.e. because of (2) we obtain p = q = o, and then SSo,o(a, b, c, d), i.e.
owing to Theorem 6 it follows So(a, b, c, d). �

Theorem 11. From statement Paro(a, b, c, d) the statements SSo,p(ac, a, bd, b),
SSq,o(ac, d, bd, c) follow where p and q are some points such that qp = o (Figure 6).

Proof: Owing to (9) we have

ac · a = a • c = o, bd · b = b • d = o, d · bd = d • b = o, c · ac = c • a = o,
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and equalities ac · a = bd · b and d · bd = c · ac prove the first two statements of
theorem. Because of that there are points p and q such that a · bd = b · ac = p
and ac · d = bd · c = q. Finally, we get

qp = (bd · c)(a · bd)
(9)
= c • a = o.

�

Figure 6

Theorem 12. The validity of the statements S(a, b, p, q), S(c, a, s, r) and o = cb
imply the statements SSo,a(c, b, q, s) and o = qs = p • r (Figure 7).

Proof: On the basis of Lemma 2 we get equalities pa = b, bq = a, ar = c, sc = a.
So we get bq = sc, wherefrom due to (7) it follows qs = cb = o. Besides that
owing to (9) and (12) we obtain

p • r = r • p = ar · pa = cb = o.

�

Figure 7

In the case of the quasigroup C(1+i
2 ) Theorem 12 proves some results from [1].
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Theorem 13. The statements Sm(a, b, p, q) and Sn(c, a, s, r) imply S(m, q •
s, n, c • b).

Proof: According to Theorem 12 it follows SS(b, q, s, c), and owing to Theorem 8
we get S(b • q, q • s, s • c, c • b). However, because of Lemma 3 it follows b • q = m,
s • c = n, so the statement we are looking for follows. �

Theorem 14. The statements S(a, b, p, q), S(b, a, q′, p′), S(c, a, s, r), S(a, c, r′, s′)
imply SSa,o(p

′, p, r, r′), where o is some point (Figure 8).

Proof: According to Lemma 2 we get equalities pa = b, ap′ = b, ar = c, r′a = c,
so we have ap′ = pa, ar = r′a, wherefrom owing to (8) the equalities p′p = a and
rr′ = a follow. �

Figure 8

Theorem 15. For any points a, b, c, d the statement SSa•c,b•d(ba, cb, dc, ad) is
valid (Figure 10) (van Aubel’s theorem).

Proof: Based on (9) and (12) we get

ba · cb = a • c = c • a = dc · ad,

cb · dc = b • d = d • b = ad · ba.
�

In the case of the quasigroup C(1+i
2 ) Theorem 15 proves the well known state-

ment from (cf. [3], [5], [10]).
With d = a from Theorem 15 we obtain:

Corollary 5. For any points a, b, c the statement SSa•c,b•a(ba, cb, ac, a) is valid.

In the case of the quasigroup C(1+i
2 ) Corollary 5 proves the known Belatti’s

result.

If we denote by · the mapping which maps the quadrangle (a, b, c, d) to the
quadrangle (ba, cb, dc, ad), and if • denote the mapping which maps quadrangle
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(a, b, c, d) to the quadrangle (a • b, b • c, c • d, d • a), then on the basis of Lemma 1,
Lemma 4, Theorem 8 and Theorem 15, we get following diagram (Figure 9).

In this diagram the operators · and • commute, it means: starting from the
same quadrangle in two ways we get the same square. Really, on the basis of (13)
we get for example

(b • c)(a • b) = ba • cb.

Figure 9

Theorem 16. For any points a, b, c, d it is valid S(a • c, ba • dc, b • d, cb • ad)
(Figure 10).

Proof: On the basis of (12) and (13) we get

(b • d)(a • c) = ba • dc,

(a • c)(b • d) = (c • a)(b • d) = cb • ad,

so the statement follows according to Lemma 2. �

Theorem 17. With the labels e1 = ba · ad, e2 = cb · ba, e3 = dc · cb, e4 = ad · dc
the statements SScb•ad, ba•dc(e1, e2, e3, e4), e1 • e3 = a • c, e2 • e4 = b • d hold
(Figure 10).

Proof: If we apply Theorem 15 on the points ba, cb, dc, ad we will obtain the
first statement. Since owing to Theorem 16 the equality (ba • dc)(cb • ad) = a • c
holds, we get

e1 • e3 = (ba · ad) • (dc · cb)
(13)
= (ba • dc) · (ad • cb) = a • c,

and similarly e2 • e4 = b • d. �

In the case of the quasigroup C(1+i
2 ) Theorems 15, 16 and 17 prove results

from [10] and [9].
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Figure 10

Theorem 18. For any points a1, a2, a3, a4, a5, a6, a7, a8 let us denote ai,i+1 =
aiai+1, mi,i+1,i+4,i+5 = ai,i+1 • ai+4,i+5, where indexes are taken modulo 8 from
the set {1, 2, 3, 4, 5, 6, 7, 8}. If p = g(a2, a4, a6, a8), q = g(a1, a3, a5, a7), then we
get SSp,q(m1256, m4581, m7834, m2367) (Figure 11).

Proof: On the bases of (9), (12) and (13) we get for example

m1256m4581 = (a12 • a56)(a45 • a81) = (a12 • a56)(a81 • a45)

= a12a81 • a56a45 = (a1a2 · a8a1) • (a5a6 · a4a5)

= (a2 • a8) • (a6 • a4) = g(a2, a4, a6, a8) = p.

�

In the case of the quasigroup C(1+i
2 ) Theorem 18 proves the result stated in

[3], [6] and [9]:

The centres of squares constructed on the sides of the given octagon determine

new octagon, and the midpoints of the main diagonals of the obtained octagon

determine an skewsquare (Figure 11).
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Figure 11
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