Commentationes Mathematicae Universitatis Carolinae

Vladimír Volenec; Ružica Kolar-Šuper

Skewsquares in quadratical quasigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 3, 397--410

Persistent URL: http://dml.cz/dmlcz/119731

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Skewsquares in quadratical quasigroups

Vladimir Volenec, Ružica Kolar-Šuper

Abstract

The concept of pseudosquare in a general quadratical quasigroup is introduced and connections to some other geometrical concepts are studied. The geometrical presentations of some proved statements are given in the quadratical quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$.

Keywords: quadratical quasigroup, skewsquare
Classification: 20N05

1. Introduction

The "geometrical" concept of skewsquare is defined and investigated in any quadratical quasigroup.

A groupoid (Q, \cdot) is said to be quadratical if the identity

$$
\begin{equation*}
a b \cdot a=c a \cdot b c \tag{1}
\end{equation*}
$$

holds and the equation $a x=b$ has a unique solution $x \in Q$ for any $a, b \in Q$ (cf. [12] and [2]). Every quadratical groupoid (Q, \cdot) is a quasigroup, i.e. the equations $x a=b$ and $a y=b$ have unique solutions for any $a, b \in Q$. In a quadratical quasigroup (Q, \cdot) the identities

$$
\begin{align*}
a a & =a \tag{2}\\
a b \cdot c d & =a c \cdot b d, \tag{3}\\
a \cdot b a & =a b \cdot a \tag{4}\\
a b \cdot c & =a c \cdot b c \tag{5}\\
a \cdot b c & =a b \cdot a c, \tag{6}
\end{align*}
$$

and the equivalencies

$$
\begin{gather*}
a b=c d \Leftrightarrow b c=d a \tag{7}\\
a b=c \Leftrightarrow b c=c a \tag{8}
\end{gather*}
$$

hold (cf. [12]).

If \mathbb{C} is the set of all points of a Euclidean plane and if a groupoid (\mathbb{C}, \cdot) is defined so that $a a=a$ for any $a \in \mathbb{C}$ and for any two different points $a, b \in \mathbb{C}$ the point $a b$ is the centre of the positively oriented square with two adjacent vertices a and b, then (\mathbb{C}, \cdot) is a quadratical quasigroup (cf. [12]). This quasigroup will be denoted by $\mathbb{C}\left(\frac{1+i}{2}\right)$ because if $a=0$ and $b=1$ then $a b=\frac{1+i}{2}$. The figures in this quasigroup illustrate the "geometrical" relations in any quadratical quasigroup (Q, \cdot).

From now on let (Q, \cdot) be any quadratical quasigroup. The elements of Q are said to be points, the pairs of points are segments, the quadruples of points are quadrangles and an ordered quadruple of points is said to be an oriented quadrangle.

If an operation \bullet is defined on the set Q by

$$
\begin{equation*}
a \bullet b=a \cdot b a=a b \cdot a=c a \cdot b c \tag{9}
\end{equation*}
$$

then (Q, \bullet) is an idempotent medial commutative quasigroup (cf. [12]), i.e. the identities

$$
\begin{align*}
a \bullet a & =a, \tag{10}\\
(a \bullet b) \bullet(c \bullet d) & =(a \bullet c) \bullet(b \bullet d), \tag{11}\\
a \bullet b & =b \bullet a \tag{12}
\end{align*}
$$

hold and the operations • and • are mutually medial, i.e. the identity

$$
\begin{equation*}
a b \bullet c d=(a \bullet c)(b \bullet d) \tag{13}
\end{equation*}
$$

holds. The point $a \bullet b$ is said to be the midpoint of two points a and b. Because of
$g(a, b, c, d)=(a \bullet c) \bullet(b \bullet d) \stackrel{(11)}{=}(a \bullet b) \bullet(c \bullet d) \stackrel{(12)}{=}(a \bullet b) \bullet(d \bullet c) \stackrel{(11)}{=}(a \bullet d) \bullet(b \bullet c)$
the point $g(a, b, c, d)$ is said to be the centroid of the quadrangle $\{a, b, c, d\}$.
An oriented quadrangle (a, b, c, d) is said to be a parallelogram and we write $\operatorname{Par}(a, b, c, d)$ if $a \bullet c=b \bullet d$. If $a \bullet c=b \bullet d=o$, then we say that the point o is the centre of this parallelogram and we write $\operatorname{Par}_{o}(a, b, c, d)$. In [14] it is proved that (Q, Par) is a parallelogram space (cf. [8] and [11]) and the following statement which will be used later.
Lemma 1. For any points a, b, c, d the statement $\operatorname{Par}(a \bullet b, b \bullet c, c \bullet d, d \bullet a)$ is valid.

An oriented quadrangle (a, b, c, d) is said to be a square and we write $\mathrm{S}(a, b, c, d)$ if $a b=b c=c d=d a$. If $a b=b c=c d=d a=o$, then we say that the point o is the centre of this square and we write $\mathrm{S}_{o}(a, b, c, d)$. Obviously $\mathrm{S}_{o}(a, b, c, d) \Rightarrow$ $\mathrm{S}_{o}(e, f, g, h)$, where (e, f, g, h) is any cyclical permutation of (a, b, c, d).

In [13] it is proved:

Lemma 2. The statement $S(a, b, c, d)$ is equivalent to any two of four (and then all four) equalities $a c=d, b d=a, c a=b, d b=c$.

In [14] the following statements are proved and they will be used later.
Lemma 3. The statement $S_{o}(a, b, c, d)$ implies $\operatorname{Par}_{o}(a, b, c, d)$.
Lemma 4. $\operatorname{Par}_{o}(a, b, c, d) \Leftrightarrow S_{o}(b a, c b, d c, a d)$.

2. The concept of skewsquare in quadratical quasigroup

In the set Q^{2} a binary relation \sim is defined by

$$
(a, b) \sim(c, d) \Leftrightarrow \operatorname{Par}(a, b, d, c) .
$$

In [8] it is proved that \sim is a relation of equivalence. The elements of the set Q^{2} / \sim are said to be the vectors. A vector with a representative (a, b) is denoted by $[a, b]$. Therefore, we have

$$
[a, b]=[c, d] \Leftrightarrow \operatorname{Par}(a, b, d, c),
$$

i.e.

$$
\begin{equation*}
[a, b]=[c, d] \Leftrightarrow a \bullet d=b \bullet c . \tag{14}
\end{equation*}
$$

For any point a and any vector \mathbf{v} there is one and only one point b such that $\mathbf{v}=[a, b]$.

A vector \mathbf{u} is said to be orthogonally equal to a vector \mathbf{v} and we write $\mathbf{u} \perp \mathbf{v}$ if there are four points p, q, r, s such that

$$
\mathbf{u}=[p, r], \quad \mathbf{v}=[q, s], \quad S(p, q, r, s)
$$

(Figure 1).

Figure 1
The properties of squares imply at once:
Theorem 1. The statements $[a, b] \perp[c, d],[c, d] \perp[b, a],[b, a] \perp[d, c]$ and $[d, c] \perp[a, b]$ are mutually equivalent (Figure 1).

The following theorem gives a simple characterization for orthogonally equal vectors.

Theorem 2. $[a, b] \perp[c, d] \Leftrightarrow a c=b d$.
Proof: Let $[a, b]=[p, r],[c, d]=[q, s], S_{o}(p, q, r, s)$ (Figure 1), i.e. $[a, b] \perp[c, d]$. Then we have the equalities $p q=r s=o$ and by (14) the equalities $a \bullet r=b \bullet p$, $c \bullet s=d \bullet q$. Hence

$$
a c \bullet o=a c \bullet r s \stackrel{(13)}{=}(a \bullet r)(c \bullet s)=(b \bullet p)(d \bullet q) \stackrel{(13)}{=} b d \bullet p q=b d \bullet o,
$$

wherefrom $a c=b d$ follows. Conversely, let $a c=b d$ and let p be any point. There is a point r such that $[a, b]=[p, r]$. Let $q=r p, s=p r$, i.e. let $S(p, q, r, s)$ hold. There is a point d^{\prime} such that $[q, s]=\left[c, d^{\prime}\right]$. Now we have $[a, b] \perp\left[c, d^{\prime}\right]$ and the proved part of our theorem implies $a c=b d^{\prime}$. Therefore we have $b d^{\prime}=b d$, i.e. $d^{\prime}=d$ and hence $[a, b] \perp[c, d]$.

Theorem 2 and the equivalence (7) give an alternative proof of Theorem 1.
The proof of Theorem 2 implies:
Corollary 1. For any vector \mathbf{v} and any point c there is one and only one point d such that $\mathbf{v} \perp[c, d]$ holds.

Because of Theorem 2 the equality (1) can be interpreted as the statement $[c a, a b] \perp[b c, a]$.

Theorem 3. (i) $[a, b] \perp[c, d],[c, d]=[e, f] \Rightarrow[a, b] \perp[e, f]$.
(ii) $[a, b]=[c, d],[c, d] \perp[e, f] \Rightarrow[a, b] \perp[e, f]$.
(iii) $[a, b] \perp[c, d],[c, d] \perp[e, f] \Rightarrow[a, b]=[f, e]$.
(iv) $[a, b] \perp[d, e],[b, c] \perp[e, f] \Rightarrow[a, c] \perp[d, f]$.

Proof: (i) By Theorem 2 and by (14) we have the equalities $a c=b d$ and $c \bullet f=d \bullet e$. Therefore

$$
a c \bullet a e=b d \bullet a e \stackrel{(13)}{=}(b \bullet a)(d \bullet e) \stackrel{(12)}{=}(a \bullet b)(c \bullet f) \stackrel{(13)}{=} a c \bullet b f,
$$

wherefrom $a e=b f$ follows and by Theorem 2 we have the statement $[a, b] \perp[e, f]$. (ii) Now we have the equalities $a \bullet d=b \bullet c$ and $c e=d f$ and we obtain

$$
a e \bullet d f \stackrel{(13)}{=}(a \bullet d)(e \bullet f) \stackrel{(12)}{=}(b \bullet c)(f \bullet e) \stackrel{(13)}{=} b f \bullet c e=b f \bullet d f
$$

Therefore $a e=b f$, i.e. again $[a, b] \perp[e, f]$.
(iii) We have the equalities $a c=b d, c e=d f$, which imply

$$
a \bullet e \stackrel{(12)}{=} e \bullet a \stackrel{(9)}{=} c e \cdot a c=d f \cdot b d \stackrel{(9)}{=} f \bullet b \stackrel{(12)}{=} b \bullet f
$$

i.e. $[a, b]=[f, e]$ by (14).
(iv) By Theorem 2 we must prove the implication $a d=b e, b e=c f \Rightarrow a d=c f$. It is obvious.

Because of (7) the following definition has a sense.
An oriented quadrangle (a, b, c, d) is a skewsquare and we write $S S(a, b, c, d)$ if $a b=c d$ and $b c=d a$. It is sufficient to have only one of these two equalities (cf. [7] and [4]). If we have the equalities $a b=c d=p$ and $b c=d a=q$, then the points p and q are said to be the skewcenters of the considered skewsquare and we write $S S_{p, q}(a, b, c, d)$ (Figure 2) (cf. [4], where p and q are said to be the foci of the skewsquare).

Obviously we get:
Theorem 4. The statements $S S_{p, q}(a, b, c, d), S S_{q, p}(b, c, d, a), S S_{p, q}(c, d, a, b)$ and $S S_{q, p}(d, a, b, c)$ are mutually equivalent.

According to Theorem 2 it follows.
Corollary 2. $S S(a, b, c, d) \Leftrightarrow[a, c] \perp[b, d]$ (Figure 2).

Figure 2
By Corollaries 1 and 2 we obtain the following statement.
Corollary 3. For any points a, b, c there is one and only one point d such that $S S(a, b, c, d)$ holds.

The equation $a x=b$ has a unique solution $x=(b \cdot b a) \cdot(b \cdot b a)(b a \cdot a)$ (cf. [12, Corollary]). Therefore the equality $a b=c d$ is equivalent to the equality

$$
\begin{equation*}
d=(a b)(a b \cdot c) \cdot[(a b)(a b \cdot c) \cdot(a b \cdot c) c] \tag{15}
\end{equation*}
$$

i.e. we have the following theorem, which expresses the statement of Corollary 3 precisely.

Theorem 5. The statement $S S(a, b, c, d)$ is equivalent to the equality (15) (Figure 3).

Figure 3
Obviously we obtain.
Theorem 6. $S_{o}(a, b, c, d) \Leftrightarrow S S_{o, o}(a, b, c, d)$.
Let us prove the following statement now.
Theorem 7. The statement $S S_{p, q}(a, b, c, d)$ implies $S_{o}(p, a \bullet c, q, b \bullet d)$ (Figure 4) where

$$
o=a \bullet d b=b \bullet a c=c \bullet b d=d \bullet c a=p \bullet q=g(a, b, c, d) .
$$

Proof: Let $o=p \bullet q$. Because of $a b=p, d a=q$ we get

$$
o=p \bullet q=a b \bullet d a \stackrel{(13)}{=}(a \bullet d)(b \bullet a) \stackrel{(12)}{=}(a \bullet d)(a \bullet b) \stackrel{(13)}{=} a a \bullet d b \stackrel{(2)}{=} a \bullet d b,
$$

and similarly it can be obtained $o=b \bullet a c=c \bullet b d=d \bullet c a$. Further, we get

$$
p(a \bullet c)=a b \cdot(a \bullet c) \stackrel{(9)}{=} a b \cdot(a c \cdot a) \stackrel{(1)}{=}(b \cdot a c) b \stackrel{(9)}{=} b \bullet a c=o,
$$

$(a \bullet c) q=(a \bullet c) \cdot d a \stackrel{(9)}{=}(a c \cdot a) \cdot d a \stackrel{(4)}{=}(a \cdot c a) \cdot d a \stackrel{(1)}{=}(c a \cdot d) \cdot c a \stackrel{(9)}{=} c a \bullet d \stackrel{(12)}{=} d \bullet c a=o$, and similarly the following equalities $q(b \bullet d)=o,(b \bullet d) p=o$ can be proved, so it is valid $S_{o}(p, a \bullet c, q, b \bullet d)$, and then $\operatorname{Par}_{o}(p, a \bullet c, q, b \bullet d)$. Because of that we also get the equalities

$$
p \bullet q=o=(a \bullet c) \bullet(b \bullet d)=g(a, b, c, d) .
$$

Figure 4
In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Theorem 7 proves one statement from [4] and [7].

The point o from Theorem 7 will be called centre of the skewsquare (a, b, c, d).
Theorem 8. $S S(a, b, c, d) \Leftrightarrow S(a \bullet b, b \bullet c, c \bullet d, d \bullet a)$ (Figure 5).
Proof: As we have

$$
\begin{gathered}
(a \bullet b)(b \bullet c) \stackrel{(13)}{=} a b \bullet b c \\
(b \bullet c)(c \bullet d) \stackrel{(13)}{=} b c \bullet c d \stackrel{(12)}{=} c d \bullet b c
\end{gathered}
$$

the equalities $a b=c d$ and $(a \bullet b)(b \bullet c)=(b \bullet c)(c \bullet d)$ are equivalent. The equivalence of the remaining equalities can be proved in a similar way.

One part of Theorem 8 can be stated more precisely in the form:
Theorem 9. $S S_{p, q}(a, b, c, d) \Rightarrow S_{p \bullet q}(a \bullet b, b \bullet c, c \bullet d, d \bullet a)$ (Figure 5).

Figure 5
Proof: We have for example

$$
\begin{gathered}
(a \bullet b)(b \bullet c) \stackrel{(13)}{=} a b \bullet b c=p \bullet q, \\
(b \bullet c)(c \bullet d) \stackrel{(13)}{=} b c \bullet c d=q \bullet p \stackrel{(12)}{=} p \bullet q
\end{gathered}
$$

because of $p=a b=c d, q=b c$.
In a case of the quasigroup $\mathbb{C}\left(\frac{i+1}{2}\right)$ Theorem 9 proves one statement from [4].
Corollary 4. The statement $S S(a, b, c, d)$ implies the equalities $(a \bullet b)(c \bullet d)=$ $d \bullet a,(b \bullet c)(d \bullet a)=a \bullet b,(c \bullet d)(a \bullet b)=b \bullet c,(d \bullet a)(b \bullet c)=c \bullet d$ (Figure 5).

Because of Lemma 3 and Theorem 6 the statement $S_{o}(a, b, c, d)$ implies $\operatorname{Par}_{o}(a, b, c, d)$ and $S S(a, b, c, d)$. However, the converse is also valid.

Theorem 10. $\operatorname{Par}_{o}(a, b, c, d), S S(a, b, c, d) \Rightarrow S_{o}(a, b, c, d)$.
Proof: Let $S S_{p, q}(a, b, c, d)$. Then according to Theorem 7 we get $S(p, o, q, o)$, since $\operatorname{Par}_{o}(a, b, c, d)$ implies $a \bullet c=b \bullet d=o$. Because of that we get $p=o o$, $q=o o$, i.e. because of (2) we obtain $p=q=o$, and then $S S_{o, o}(a, b, c, d)$, i.e. owing to Theorem 6 it follows $S_{o}(a, b, c, d)$.

Theorem 11. From statement $\operatorname{Par}_{o}(a, b, c, d)$ the statements $S S_{o, p}(a c, a, b d, b)$, $S S_{q, o}(a c, d, b d, c)$ follow where p and q are some points such that $q p=o$ (Figure 6).

Proof: Owing to (9) we have

$$
a c \cdot a=a \bullet c=o, \quad b d \cdot b=b \bullet d=o, \quad d \cdot b d=d \bullet b=o, \quad c \cdot a c=c \bullet a=o,
$$

and equalities $a c \cdot a=b d \cdot b$ and $d \cdot b d=c \cdot a c$ prove the first two statements of theorem. Because of that there are points p and q such that $a \cdot b d=b \cdot a c=p$ and $a c \cdot d=b d \cdot c=q$. Finally, we get

$$
q p=(b d \cdot c)(a \cdot b d) \stackrel{(9)}{=} c \bullet a=o .
$$

Figure 6
Theorem 12. The validity of the statements $S(a, b, p, q), S(c, a, s, r)$ and $o=c b$ imply the statements $S S_{o, a}(c, b, q, s)$ and $o=q s=p \bullet r$ (Figure 7).

Proof: On the basis of Lemma 2 we get equalities $p a=b, b q=a, a r=c, s c=a$. So we get $b q=s c$, wherefrom due to (7) it follows $q s=c b=o$. Besides that owing to (9) and (12) we obtain

$$
p \bullet r=r \bullet p=a r \cdot p a=c b=o
$$

Figure 7
In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Theorem 12 proves some results from [1].

Theorem 13. The statements $S_{m}(a, b, p, q)$ and $S_{n}(c, a, s, r)$ imply $S(m, q \bullet$ $s, n, c \bullet b)$.

Proof: According to Theorem 12 it follows $S S(b, q, s, c)$, and owing to Theorem 8 we get $S(b \bullet q, q \bullet s, s \bullet c, c \bullet b)$. However, because of Lemma 3 it follows $b \bullet q=m$, $s \bullet c=n$, so the statement we are looking for follows.

Theorem 14. The statements $S(a, b, p, q), S\left(b, a, q^{\prime}, p^{\prime}\right), S(c, a, s, r), S\left(a, c, r^{\prime}, s^{\prime}\right)$ imply $S S_{a, o}\left(p^{\prime}, p, r, r^{\prime}\right)$, where o is some point (Figure 8).
Proof: According to Lemma 2 we get equalities $p a=b, a p^{\prime}=b, a r=c, r^{\prime} a=c$, so we have $a p^{\prime}=p a$, ar $=r^{\prime} a$, wherefrom owing to (8) the equalities $p^{\prime} p=a$ and $r r^{\prime}=a$ follow.

Figure 8
Theorem 15. For any points a, b, c, d the statement $S S_{a \bullet c, b \bullet d}(b a, c b, d c, a d)$ is valid (Figure 10) (van Aubel's theorem).

Proof: Based on (9) and (12) we get

$$
\begin{aligned}
& b a \cdot c b=a \bullet c=c \bullet a=d c \cdot a d \\
& c b \cdot d c=b \bullet d=d \bullet b=a d \cdot b a
\end{aligned}
$$

In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Theorem 15 proves the well known statement from (cf. [3], [5], [10]).

With $d=a$ from Theorem 15 we obtain:
Corollary 5. For any points a, b, c the statement $S S_{a \bullet c, b \bullet a}(b a, c b, a c, a)$ is valid.
In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Corollary 5 proves the known Belatti's result.

If we denote by \cdot the mapping which maps the quadrangle (a, b, c, d) to the quadrangle $(b a, c b, d c, a d)$, and if \bullet denote the mapping which maps quadrangle
(a, b, c, d) to the quadrangle $(a \bullet b, b \bullet c, c \bullet d, d \bullet a)$, then on the basis of Lemma 1 , Lemma 4, Theorem 8 and Theorem 15, we get following diagram (Figure 9).

In this diagram the operators \cdot and \bullet commute, it means: starting from the same quadrangle in two ways we get the same square. Really, on the basis of (13) we get for example

$$
(b \bullet c)(a \bullet b)=b a \bullet c b
$$

Figure 9
Theorem 16. For any points a, b, c, d it is valid $S(a \bullet c, b a \bullet d c, b \bullet d, c b \bullet a d)$ (Figure 10).

Proof: On the basis of (12) and (13) we get

$$
\begin{gathered}
(b \bullet d)(a \bullet c)=b a \bullet d c \\
(a \bullet c)(b \bullet d)=(c \bullet a)(b \bullet d)=c b \bullet a d,
\end{gathered}
$$

so the statement follows according to Lemma 2.
Theorem 17. With the labels $e_{1}=b a \cdot a d, e_{2}=c b \cdot b a, e_{3}=d c \cdot c b, e_{4}=a d \cdot d c$ the statements $S S_{c b \bullet a d, b a \bullet d c}\left(e_{1}, e_{2}, e_{3}, e_{4}\right), e_{1} \bullet e_{3}=a \bullet c, e_{2} \bullet e_{4}=b \bullet d$ hold (Figure 10).

Proof: If we apply Theorem 15 on the points $b a, c b, d c, a d$ we will obtain the first statement. Since owing to Theorem 16 the equality $(b a \bullet d c)(c b \bullet a d)=a \bullet c$ holds, we get

$$
e_{1} \bullet e_{3}=(b a \cdot a d) \bullet(d c \cdot c b) \stackrel{(13)}{=}(b a \bullet d c) \cdot(a d \bullet c b)=a \bullet c,
$$

and similarly $e_{2} \bullet e_{4}=b \bullet d$.
In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Theorems 15,16 and 17 prove results from [10] and [9].

Figure 10
Theorem 18. For any points $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}$ let us denote $a_{i, i+1}=$ $a_{i} a_{i+1}, m_{i, i+1, i+4, i+5}=a_{i, i+1} \bullet a_{i+4, i+5}$, where indexes are taken modulo 8 from the set $\{1,2,3,4,5,6,7,8\}$. If $p=g\left(a_{2}, a_{4}, a_{6}, a_{8}\right), q=g\left(a_{1}, a_{3}, a_{5}, a_{7}\right)$, then we get $S S_{p, q}\left(m_{1256}, m_{4581}, m_{7834}, m_{2367}\right)$ (Figure 11).

Proof: On the bases of $(9),(12)$ and (13) we get for example

$$
\begin{aligned}
m_{1256} m_{4581} & =\left(a_{12} \bullet a_{56}\right)\left(a_{45} \bullet a_{81}\right)=\left(a_{12} \bullet a_{56}\right)\left(a_{81} \bullet a_{45}\right) \\
& =a_{12} a_{81} \bullet a_{56} a_{45}=\left(a_{1} a_{2} \cdot a_{8} a_{1}\right) \bullet\left(a_{5} a_{6} \cdot a_{4} a_{5}\right) \\
& =\left(a_{2} \bullet a_{8}\right) \bullet\left(a_{6} \bullet a_{4}\right)=g\left(a_{2}, a_{4}, a_{6}, a_{8}\right)=p
\end{aligned}
$$

In the case of the quasigroup $\mathbb{C}\left(\frac{1+i}{2}\right)$ Theorem 18 proves the result stated in [3], [6] and [9]:

The centres of squares constructed on the sides of the given octagon determine new octagon, and the midpoints of the main diagonals of the obtained octagon determine an skewsquare (Figure 11).

Figure 11

References

[1] Cavallaro V.G., Generalizzazione d'una proposizione d'Erone e d'una proposizione d'Huygens, Period. Mat. (4) 15 (1935), 293-294.
[2] Dudek W.A., Quadratical quasigroups, Quasigroups Related Systems 4 (1997), 9-13.
[3] Durieu M., Polygones bordés de triangles, Mathesis 57 (1948), 77-80.
[4] Echols W.H., Some properties of a skewsquare, Amer. Math. Monthly 30 (1923), 120-127.
[5] Gerber L., Napoleon's theorem and the parallelogram inequality for affine-regular polygons, Amer. Math. Monthly 87 (1980), 644-648.
[6] Laisant C.A., Sur quelques propriétés de polygones, Assoc. Franc. Advanc. Sci. 6 (1877), 142-154.
[7] Neuberg J., Question 878, Mathesis (2) 3 (1893), 216; 5 (1895), 118-119.
[8] Ostermann F., Schmidt J., Begründung der Vektorrechnung aus Parallelogrammeigenschaften, Math.-phys. Semesterber 10 (1963), 47-64.
[9] Thébault V., Octogone bordé de carrés, Mathesis 54 (1940), 114-117; Rev. Mat. Timişoara 20 (1940), 81-83.
[10] Thébault V., Quadrangle bordé de triangles isoscèles semblables, Ann. Soc. Sci. Bruxelles 60 (1940-46), 64-70; Mathesis 54 (1940), suppl., 7 pp.
[11] Volenec V., Geometry of medial quasigroups, Rad JAZU 421 (1986), 79-91.
[12] Volenec V., Quadratical groupoids, Note Mat. 13 (1993), 107-115.
[13] Volenec V., Squares in quadratical quasigroups, Quasigroups Related Systems 7 (2000), 37-44.
[14] Volenec V., Kolar-Šuper R., Parallelograms in quadratical quasigroups, to appear.
Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 002 Zagreb, Croatia
E-mail: volenec@math.hr
Faculty of Teacher Education, University of Osijek, Lorenza Jägera 9, HR-31 000 Osijek, Croatia

E-mail: rkolar@ufos.hr

