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ITERATIVE SOLUTION OF NONLINEAR EQUATIONS OF THE
PSEUDO-MONOTONE TYPE IN BANACH SPACES

A.M. Saddeek and Sayed A. Ahmed

Abstract. The weak convergence of the iterative generated by J(un+1 −
un) = τ(Fun − Jun), n ≥ 0,

(
0 < τ = min

{
1, 1
λ

})
to a coincidence point

of the mappings F, J : V → V ? is investigated, where V is a real reflexive
Banach space and V ? its dual (assuming that V ? is strictly convex). The
basic assumptions are that J is the duality mapping, J − F is demiclosed at
0, coercive, potential and bounded and that there exists a non-negative real
valued function r(u, η) such that

sup
u,η∈V

{r(u, η)} = λ <∞

r(u, η)‖J(u− η)‖V ? ≥ ‖(J − F )(u)− (J − F )(η)‖V ? , ∀ u, η ∈ V .
Furthermore, the case when V is a Hilbert space is given. An application
of our results to filtration problems with limit gradient in a domain with
semipermeable boundary is also provided.

1. Introduction

A map Φ: [0,∞) → [0,∞) is said to be a gauge function if Φ is continuous
and strictly increasing, Φ(0) = 0, and limt→+∞Φ(t) = +∞. Suppose V is a real
Banach space with a strictly convex dual V ?. A map J : V → V ? is said to be a
duality map with gauge function Φ if for each u ∈ V , 〈Ju, u〉 = Φ(‖u‖V )‖u‖V and
‖Ju‖V ? = Φ(‖u‖V ), where 〈·, ·〉 denotes the duality relation between V and V ?. It
is well known that (see, e.g. [7]) if V ? is strictly convex, then J is single-valued and
if V ? is uniformly convex and V is a reflexive Banach space, then J is uniformly
continuous on bounded sets (see e.g. [5, Chapter 8]).

When Φ(t) = t, J is called a normalized duality map. If V is a Hilbert space,
then the normalized duality map J is the identity map I.

It is known (see, e.g. [7]) that Ju = Φ(‖u‖V )u?0 where u?0 ∈ V ?, ‖u?0‖V ? = 1 and
〈u?0, u0〉 = ‖u0‖V = 1 (u0 = u

‖u‖V , u 6= 0).
We always use the symbols “→” and “⇀” to indicate strong and weak conver-

gence, respectively.
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A map F : V → V ∗ is called demiclosed at 0 (see, e.g. [4]) if for any sequence
{un}∞n=0 in V the following implication holds: un ⇀ u and Fun → 0 as n → ∞
implies u ∈ V and Fu = 0.

According to [2] and [11], the mapping F : V → V ? is said to be pseudo-monotone
if it is bounded and

un ⇀ u ∈ V and lim
n→∞

sup〈Fun, un − u〉 ≤ 0

imply
〈Fu, u− η〉 ≤ lim

n→∞
inf〈Fun, un − η〉 for all η ∈ V .

Recall that a map A : V → V ? is said to be bounded Lipschitz continuous (see,
e.g. [3]) if

‖Au−Aη‖V ? ≤ µ(R)Φ(‖u− η‖V ) ∀ u, η ∈ V ,
where R = max{‖u‖V , ‖η‖V }, µ is nondecreasing function on [0,∞) and Φ is the
gauge function.

An operator A : V → V ? is said to be coercive (see, e.g. [7]) if
〈Au, u〉 ≥ ρ(‖u‖V )‖u‖V ? ; lim

ξ→+∞
ρ(ξ) = +∞ .

According to [3] the mapping A is said to be potential if∫ 1

0

(
〈A(t(u+ η)), u+ η〉 − 〈A(tu), u〉

)
dt =

∫ 1

0
〈A(u+ tη), η〉 dt ∀ u, η ∈ V .

The main objective of this work is the construction and investigation of approxi-
mation methods for solving the nonlinear equation
(?) Au = f

in Banach and Hilbert spaces, where A is a bounded Lipschitz continuous, potential
coercive, pseudo monotone operator from V into V ? and f ∈ V ?. The problem (?)
arises in the description of steady-state filtration processes (see, e.g. [8]).

2. Main results

We now establish the main results of this section:

Theorem 1. Let V be a real reflexive Banach space with a strictly convex dual
space V ?, and let F, J : V → V ? (where J is the duality map) be two mappings.
Suppose J − F is demiclosed at 0, coercive, potential and bounded, and there exists
a non-negative real valued function r(u, η) such that

sup
u,η∈V

{r(u, η)} = λ <∞(1)

r(u, η)‖J(u− η)‖V ? ≥ ‖(J − F )(u)− (J − F )(η)‖V ? , ∀ u, η ∈ V .(2)
Then the sequence {un}∞n=0 defined by
(3) J(un+1 − un) = τ(Fun − Jun) , n ≥ 0 ,
where u0 is a point in V and 0 < τ = min

{
1, 1
λ

}
, is bounded in V and all its weak

limit points are elements of F = {u ∈ V : Fu = Ju}.



ITERATIVE SOLUTION OF NONLINEAR EQUATIONS 287

Proof. Let us first prove the boundedness of the iterative sequence; more precisely,
let us show that

(4) {un}∞n=0 ⊂ S0 , ‖un‖V ≤ R0 , n = 0, 1, 2, . . . ,

where R0 = supu∈S0 ‖u‖V , S0 = {u ∈ M : F1(u) ≤ F1(u0)}, and F1 : V →
R ∪ {+∞} is a functional defined by the formula

(5) F1(u) =
∫ 1

0
〈(J − F )(tu), u〉 dt ∀ u ∈ V .

By definition, u0 ∈ S0. Let un ∈ S0; we claim that un+1 ∈ S0.
Indeed, substituting u = un+1 + t(un − un+1), η = un in (2) and writing r for
r(un+1, un), we obtain

r‖J((t− 1)(un − un+1))‖V ? ≥ ‖(J − F )(un+1 + t(un − un+1))− (J − F )(un)‖V ? .

Using the definition of J , we get

(6)
rΦ(‖un − un+1‖V ) ≥ rΦ(‖(t− 1)(un − un+1)‖V )

≥ ‖(J − F )(un+1 + t(un − un+1))− (J − F )(un)‖V ? ,

for t ∈ [0, 1]. Consequently, it follows that

(7)
|〈(J − F )(un+1 + t(un − un+1))− (J − F )(un), un − un+1〉|

≤rΦ(‖un − un+1‖V )‖un − un+1‖V .

Or

(8)
−|〈(J − F )(un+1 + t(un − un+1))− (J − F )(un), un − un+1〉|

≥ − rΦ(‖un − un+1‖V )‖un − un+1‖V .

Further, following [3], from (5), we obtain

F1(un)− F1(un+1) =
∫ 1

0
(〈(J − F )(t(un), un〉 − 〈(J − F )(tun+1), un+1〉) dt

=
∫ 1

0
〈(J − F )(un+1 + t(un − un+1)), un − un+1〉) dt

=
∫ 1

0
〈(J − F )(un+1 + t(un − un+1))

− (J − F )(un), un − un+1〉) dt+ 〈(J − F )(un), un − un+1〉

≥ −
∫ 1

0

∣∣〈(J − F )(un+1 + t(un − un+1))

− (J − F )(un), un − un+1〉
∣∣ dt+ 〈(J − F )(un), un − un+1〉 .
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This, together with [8] and (3), implies that

F1(un)− F1(un+1) ≥ −rΦ(‖un − un+1‖V )‖un − un+1‖V

+ τ−1〈J(un+1 − un), un+1 − un〉

≥ −λΦ(‖un+1 − un‖V )‖un+1 − un‖V

+ τ−1〈J(un+1 − un), un+1 − un〉

= µΦ(‖un+1 − un‖V )‖un+1 − un‖V , µ = (τ−1 − λ) > 0 .(9)

Therefore, F1(un+1) ≤ F1(un) ≤ F1(u0), i.e., un+1 ∈ S0, which completes the proof
of (4).

Since the iterative sequence is bounded and the operator J − F is bounded, it
follows from the definition of F1 that {F1(un)}∞n=0 is a bounded sequence; by (9),
it is monotone. Therefore, the numerical sequence {F1(un)}∞n=0 has a finite limit.
Consequently, from (9), we obtain

lim
n→+∞

µΦ(‖un − un+1‖V )‖un − un+1‖V = 0 .

This, together with the continuity and the strictly monotone growth of Φ, implies
that

(10) lim
n→+∞

‖un − un+1‖V = 0 .

Using the definition of J again, it follows from (3) and (10) that

lim
n→∞

‖Jun − Fun‖V ∗ = 0 .

Since V is reflexive and {un}∞n=0 is bounded, we find some subsequence {unj}∞j=0
of {un}∞n=0 which converges weakly to some u? ∈ V . Moreover, u? is a coincidence
point of F and J , since Junj − Funj → 0 and J − F is demiclosed at 0. Hence
Ju? = Fu?. This completes the proof. �

We close this section with the case when the space V is a Hilbert space

Theorem 2. Let V = H be a real Hilbert space, and let F be a self-mapping of H
such that I − F is demiclosed at 0, coercive, potential and bounded and there exists
a nonnegative real-valued function r(u, η) such that (1) holds,

(11) r(u, η)‖u− η‖H ≥ ‖(I − F )(u)− (I − F )(η)‖H , ∀ u, η ∈ H .

Then the sequence {un}∞n=0 of Mann iterates (see, e.g. [9]) defined by

un+1 = (1− τ)un + τFun , n ≥ 0 ,

where 0 < τ = min{1, 1
λ}, converges weakly to a fixed point of F .

Proof. By Theorem 1, it follows that there exists a subsequence {unj}∞j=0 of
{un}∞n=0 which converges weakly to a fixed point of F . The rest of the argument
now follows exactly as in ([10, p.70]) to yield that {un}∞n=0 converges weakly to a
fixed point of F . �
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3. An application to filtration problems with limit gradient in a
domain with semipermeable boundary

In this section we apply our results to the stationary problem on the filtration
of an incompressible fluid governed by a discontinuous filtration law with the limit
gradient (see, e.g. [8]).

We consider the nonlinear stationary problem of filtration theory for the case of
a discontinuous law with the limit gradient (see., e.g. [6])

−→v (u) = −g(|∇u|2)∇u ,

where −→v (u) is the filtration velocity, u the pressure, ∇u = gradu, g(ξ2)ξ is the
function describing the filtration law. Let Ω be a bounded domain in Rn, n ≥ 1, with
the Lipschitz continuous boundary Γ.

We assume that g(ξ2)ξ = g0(ξ2)ξ + g1(ξ2)ξ, where ξ → gi(ξ2)ξ, i = 0, 1, are
nonnegative functions, equal to zero when ξ ≤ β, (β ≥ 0 is the limit gradient),
ξ → g0(ξ2)ξ is continuous and strictly increasing when ξ > β,

(12) c1(ξ − β)p−1 ≤ g0(ξ2)ξ ≤ c2(ξ − β)p−1

when ξ ≥ β, p > 1, c1, c2 > 0, and g1(ξ2)ξ = ϑ > 0 for ξ > β. We also assume
that

(13) (g0(ξ2)ξ − g0(η2)η)
(ξ − η) ≤ c0(1 + ξ + η)p−2 for all ξ, η ∈ R ∪ {+∞} .

Following [6], we define the solution of stationary filtration problem with a discon-
tinuous law as the function u ∈W 1,p

0 (Ω), which satisfies the nonlinear equation

Au = f ,

where the operator A : W 1,p
0 (Ω)→W−1

q (Ω), q = p
p−1 is induced by the form

Au = −div(g(| ∇u |2)∇u) ,

and f ∈W−1
q (Ω) is the density of external sources.

It is known that the operator A is pseudo-monotone potential coercive (see, e.g.
[8]).

The following lemma is proved in [1].

Lemma 1 (see [1]). Let V = W 1,p
0 (Ω), p ≥ 2. Then A is bounded Lipschitz

continuous with

µ(ξ) = c3(1 + 2ξ)p(2−q) , c3 > 0 , and Φ(ξ) = ξ .

Remark 1. If we set p = q = 2 in Lemma 1, the bounded Lipschitz continuous
condition reduces to

‖Au−Aη‖V ? ≤ c3‖u− η‖V ∀ u, η ∈ V

which is exactly the condition of Lipschitz continuity of the operator A with
constant c3 > 0.
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Theorem 3. Let V = W 1,p
0 (Ω), p ≥ 2, V ? = W−1

q (Ω), q = p
p−1 . Suppose

A : V → V ? is a bounded Lipschitz continuous pseudo-monotone potential coercive
mapping. Then the sequence {un}∞n=0 generated from a suitable u0 ∈ V by

(14) J(un+1 − un) = τ(f −Aun) , n ≥ 0 ,

where 0 < τ = min
{

1, 1
λ

}
, f ∈ V ?, with

sup{(1 + ‖u‖V + ‖ η‖V )p(2−q)} = λ <∞ , p ≥ 2

is bounded in V and all its weak limit points are solutions of the equation

(15) Au = f .

Proof. Note that (15) has at least one solution because of conditions on A (see,
e.g. [7]). We apply Theorem 1 with F : V → V ? defined by Fu = Ju−Au+ f . If
we set

Ω+
η = {x ∈ Ω | ∇η(x) |> β} , Ω−η = Ω/Ω+

η

and

〈Ju, η〉 =
∫

Ω
|∇u|p−2(∇u,∇η) dx .

Then taking into account (12) for all u, η ∈ V , we get

〈A0u, η〉 =
∫

Ω
[g0(|∇u|2)(∇u,∇η)] dx

≤ c2
∫

Ω+
u

(|∇u| − β)p−1

|∇u|
(∇u,∇η) dx .

Therefore,

〈A0u, η〉 ≤ c2
∫

Ω+
u

||∇u| − β|p−1|∇η| dx

≤ c2[
∫

Ω+
u

||∇u| − β|p dx]q‖∇η‖V

≤ c2‖∇u‖p−1
V ‖∇η‖V

〈A1u, η〉 =
∫

Ω
g1(|∇u|2)(∇u,∇η) dx

≤ ϑ
∫

Ω+
u

|∇η| dx ≤ ϑ
∫

Ω
|∇η| dx = ϑ‖∇η‖V .

Thus

〈Au, η〉 ≤ [c2‖∇u‖p−1
V + ϑ]‖∇η‖V .
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This implies

〈Au− Ju, η〉 ≤ [c2‖∇u‖p−1
V + ϑ]‖∇η‖V + βp−1

∫
Ω+
u

|∇η| dx

≤ [c2‖∇u‖p−1
V + ϑ]‖∇η‖V + βp−1

∫
Ω
|∇η| dx

≤ [c2‖∇u‖p−1
V + ϑ+ βp−1]‖∇η‖V

Consequently,

‖Au− Ju‖V ? = sup
η 6=0

〈Au− Ju, η〉
‖η‖V

≤ [c2‖∇u‖p−1
V + ϑ+ βp−1] ∀ u ∈ V

which implies that
‖Fu‖V ? ≤ ‖Ju−Au‖V ∗ + ‖f‖V ?

≤ [c2‖∇u‖p−1
V + ϑ+ βp−1 + ‖f‖V ? ] .

Now we are going to prove that condition (2) is satisfied. Since p ≥ 2, it follows
from Lemma 1 that
‖(J − F )u− (J − F )η‖V ? = ‖Au−Aη‖V ?

≤ c3(1 + ‖u‖V + ‖η‖V )p(2−q)‖u− η‖V , ∀u, η ∈ V .

Hence we see that condition (2) is satisfied for
r(u, v) = (1 + ‖u‖V + ‖v‖V ) and ‖J(u− η)‖V ? = c3‖u− η‖V .

Also from the pseudomonotonicity, coercivity, and the potentiality of A we obtain
the boundedness, coercivity and the potentiality of J − F .

It remains to show that J−F is demiclosed at 0. Let {unk}∞k=0 be a subsequence
of {un}∞n=0 such that unk ⇀ u? and {Aunk − f}∞k=0 converges strongly in V to
zero. Suppose
(16) lim

k→∞
sup〈Aunk , unk − u?〉 ≤ 0 .

Since A is pseudo-monotone, then
lim
k→∞

inf〈Aunk , unk − η〉 ≥ 〈Au?, u? − η〉 ∀η ∈ V .

Or
(17) lim

k→∞
sup〈Aunk , η − unk〉 ≤ 〈Au?, η − u?)〉 ∀ η ∈ V .

Now we prove that A satisfies condition (16).
Since unk ⇀ u? in V , then it is bounded, consequently

lim
k→+∞

sup〈Aunk − f, unk − u?〉 ≤ lim
k→+∞

sup ‖Aunk − f‖V ?‖unk − u?‖V

≤ const lim
k→+∞

sup ‖Aunk − f‖V ? = 0.
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Hence, from (16), we have
〈Au? − f, η − u?〉 ≥ lim

k→∞
sup〈Aunk − f, η − unk〉 ∀ η ∈ V .

Analogically to the above argument, we get
lim
k→∞

sup〈Aunk − f, η − unk〉 = 0 ∀ η ∈ V ,

that is u? is the solution of the following variational inequality
〈Au? − f, η − u?〉 ≥ 0 ∀η ∈ V ,

and consequently (see, e.g. [7]), Au? − f = 0. Therefore J − F is demiclosed at
0 on V . �

An application of Theorem 1 now completes the proof of Theorem 3.

Remark 2. It follows from Remark 1 that relation (2) is satisfied with r(u, v) = 1
and

‖J(u− η)‖V ? = c3‖u− η‖V .
It is obvious that all conditions of Theorem 2 are satisfied. Therefore, the sequence
{un}∞n=0 generated by (14) converges weakly to a solution of (15).

Remark 3. It should be noted that at every step of the iterative process (14) it
is necessary to solve the nonlinear problem

−‖w‖2−pV div(|∇w|p−2∇w) = τ(f −Aun) , w = un+1 − un ∈ V , p > 2

which, with the help of the substitution w = ‖w1‖p−2
V w1, reduces to the problem

−div(|∇w1|p−2∇w1) = τ(f −Aun) .
When p = 2, (14) reduces to solve

−∆w = τ(f −Aun) , w = un+1 − un ∈ V .
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