Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika

Alois Švec
Two applications of an integral formula

Sbornîk prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika, Vol. 17 (1978), No. 1, 5--12

Persistent URL: http://dml.cz/dmlcz/120058

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1978
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

Katedra algebry a geometrie přirodovědecké fakulty Univerzity Palackého v Olomouci
Vedoucí katedry: prof. RNDr. L. Sedláček, CSc.

TWO APPLICATIONS OF AN INTEGRAL FORMULA

ALOIS SVVEC

(Received March 14, 1977)

We are going to present two consequences of a general integral formula presented in [1].

1. Harmonic mappings of Riemannian manifolds

Be given a Riemannian manifold $\left(M, \mathrm{~d} s^{2}\right), \operatorname{dim} M=m$. In a suitable domain $U \subset M$, let us write $(i, j, \ldots=1, \ldots, m)$

$$
\begin{equation*}
\mathrm{d} s^{2}=\sum_{i}\left(\omega^{i}\right)^{2} \tag{1.1}
\end{equation*}
$$

ω^{i} being linearly independent 1-forms on U. Then there are on U 1-forms ω_{i}^{j} such that

$$
\begin{equation*}
\mathrm{d} \omega^{i}=\sum_{j} \omega^{j} \wedge \omega_{j}^{i}, \quad \omega_{i}^{j}+\omega_{i}^{j}=0 \tag{1.2}
\end{equation*}
$$

the forms ω_{i}^{j} are uniquely determined by (1.2). The components of the curvature tensor be introduced by

$$
\begin{equation*}
\mathrm{d} \omega_{i}^{j}=\sum_{k} \omega_{i}^{k} \wedge \omega_{k}^{j}-\frac{1}{2} R_{i k l}^{j} \omega^{k} \wedge \omega^{l}, \quad R_{i k l}^{j}+R_{i l k}^{j}=0 \tag{1.3}
\end{equation*}
$$

they satisfy the symmetry relations

$$
\begin{equation*}
R_{i k l}^{j}+R_{j k l}^{i}=0, \quad R_{i k l}^{j}=R_{k i j}^{l}, \quad R_{i k l}^{j}+R_{i l j}^{k}+R_{i j k}^{l}=0 \tag{1.4}
\end{equation*}
$$

Let v_{1}, \ldots, v_{m} be the field of orthonormal frames on U dual to the field of coframes $\omega^{1}, \ldots, \omega^{m}$. Denote by $K\left(v_{i}, v_{j}\right), i \neq j$, the sectional curvature of the 2-plane $\left\{v_{i}, v_{j}\right\}$; of course, $K\left(v_{i}, v_{j}\right)=R_{i i j}^{j}$.

Further, be given another Riemannian manifold $\left(N, \mathrm{~d} \sigma^{2}\right), \operatorname{dim} N=n$, and a mapping $f: M \rightarrow N$. Consider a neighbourhood $V \subset N$ such that $f(U) \subset V$ and there are 1 -forms $\varphi^{\alpha}(\alpha, \beta, \ldots=1, \ldots, n)$ satisfying

$$
\begin{equation*}
\mathrm{d} \sigma^{2}=\sum_{\alpha}\left(\varphi^{\alpha}\right)^{2} \tag{1.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tau^{\alpha}:=f^{*} \varphi^{\alpha}=\sum_{i} A_{i}^{\alpha} \omega^{i}, \quad \tau_{\alpha}^{\beta}:=f^{*} \varphi_{\alpha}^{\beta} . \tag{1.6}
\end{equation*}
$$

The exterior differentiation of $\left(1.6_{1}\right)$ yields

$$
\begin{equation*}
\sum_{i}\left(\mathrm{~d} A_{i}^{\alpha}-\sum_{j} A_{j}^{\alpha} \omega_{i}^{j}+\sum_{\beta} A_{i}^{\beta} \tau_{\beta}^{\alpha}\right) \wedge \omega^{i}=0, \tag{1.7}
\end{equation*}
$$

and, according to E. Cartan's lemma, we get the existence of functions $A_{i j}^{\alpha}$ on U satisfying

$$
\begin{equation*}
\mathrm{d} A_{i}^{\alpha}-\sum_{j} A_{j}^{\alpha} \omega_{i}^{j}+\sum_{\beta} A_{i}^{\beta} \tau_{\beta}^{\alpha}=\sum_{j} A_{i j}^{\alpha} \omega^{j}, \quad A_{i j}^{\alpha}=A_{j i}^{\alpha} \tag{1.8}
\end{equation*}
$$

A furhter exterior differentiation implies

$$
\begin{gather*}
\sum_{j}\left(\mathrm{~d} A_{i j}^{\alpha}-\sum_{k} A_{i k}^{\alpha} \omega_{j}^{k}-\sum_{k} A_{k j}^{\alpha} \omega_{i}^{k}+\sum_{\beta} A_{i j}^{\beta} \tau_{\beta}^{\alpha}\right) \wedge \omega^{j}= \\
=\frac{1}{2} \sum_{j, k}\left(\sum_{l} A_{l}^{\alpha} R_{i j k}^{l}-\sum_{\beta, \gamma, \delta} A_{i}^{\beta} A_{j}^{\gamma} A_{k}^{\delta} S_{\beta \gamma \delta}^{\alpha}\right) \omega^{j} \wedge \omega^{k}, \tag{1.9}
\end{gather*}
$$

$S_{\beta \gamma \delta}^{\alpha}$ being the components of the curvature tensor of $\left(N, \mathrm{~d} \sigma^{2}\right)$. Thus there are functions $A_{i j k}^{\chi}$ such that

$$
\begin{gather*}
\mathrm{d} A_{i j}^{\alpha}-\sum_{k} A_{i k}^{\alpha} \omega_{j}^{k}-\sum_{k} A_{k j}^{\alpha} \omega_{i}^{k}+\sum_{\beta} A_{i j}^{\beta} \tau_{\beta}^{\alpha}=\sum_{k} A_{i j k}^{\alpha} \omega^{k}, \quad A_{i j k}^{\alpha}=A_{j i k}^{\alpha}, \tag{1.10}\\
A_{i j k}^{\alpha}-A_{i k j}^{\alpha}=\sum_{l} A_{l}^{\alpha} R_{i k j}^{l}-\sum_{\beta, \gamma, \delta} A_{i}^{\beta} A_{k}^{\gamma} A_{j}^{\delta} S_{\beta \gamma \delta}^{\alpha} . \tag{1.11}
\end{gather*}
$$

Let us consider on U the 1 -forms

$$
\begin{equation*}
\varphi_{1}=\sum_{\alpha, i, j} A_{i}^{\alpha} A_{i j}^{\alpha} \omega^{j}, \quad \varphi_{2}=\sum_{\alpha, i, j} A_{j}^{\alpha} A_{i i}^{\alpha} \omega^{j} . \tag{1.12}
\end{equation*}
$$

It is easy to see that the forms (1.12) are globally defined over all of M. The usual *-operator be defined by

$$
\begin{gather*}
* \omega^{i}=(-1)^{i+1} \omega^{1} \wedge \ldots \wedge \omega^{i-1} \wedge \omega^{i+1} \wedge \ldots \wedge \omega^{n}, \tag{1.13}\\
\text { i.e., d } t:=\omega^{1} \wedge \ldots \wedge \omega^{n}=\omega^{i} \wedge * \omega^{i} .
\end{gather*}
$$

Now,

$$
\begin{align*}
& \mathrm{d} * \varphi_{1}=\sum_{\alpha, i, j}\left\{\left(A_{i j}^{\alpha}\right)^{2}+A_{i}^{\alpha} A_{j i j}^{\alpha}\right\} \mathrm{d} o, \\
& \mathrm{~d} * \varphi_{2}=\sum_{\alpha, i, j}\left(A_{i i}^{\alpha} A_{j j}^{\alpha}+A_{i}^{\alpha} A_{j j i}^{\alpha}\right) \mathrm{d} o, \tag{1.14}
\end{align*}
$$

and, according to (1.11),

$$
\begin{equation*}
\mathrm{d} *\left(\varphi_{1}-\varphi_{2}\right)=\sum_{\alpha, i, j}\left\{\left(A_{i j}^{\alpha}\right)^{2}-A_{i i}^{\alpha} A_{j j}^{\alpha}+\sum_{k} A_{i}^{\alpha} A_{k}^{\alpha} R_{j j i}^{k}-\sum_{\beta, \gamma, \delta} A_{j}^{\alpha} A_{i}^{\dot{\beta}} A_{i}^{\gamma} A_{j}^{\delta} S_{\beta \gamma \delta}^{\alpha}\right\} \mathrm{d} o . \tag{1.15}
\end{equation*}
$$

Let us turn our attention to the geometrical interpretation of the above introduced invariants. Let $p \in U \subset M$ be a given point. The Euclidean connection on M or N resp. is given by

$$
\begin{array}{rll}
\nabla m=\sum_{i} \omega^{i} v_{i}, & \nabla v_{i}=\sum_{j} \omega_{i}^{j} v_{j} & \text { or } \tag{1.16}\\
\nabla^{*} n=\sum_{\alpha} \varphi^{\alpha} w_{\alpha}, & \nabla^{*} w_{\alpha}=\sum_{\beta} \varphi_{\alpha}^{\beta} w_{\beta} & \text { resp.; }
\end{array}
$$

here, w_{1}, \ldots, w_{n} is the dual basis to $\varphi^{1}, \ldots, \varphi^{n}$. Evidently,

$$
\begin{equation*}
\mathrm{d} f_{p}\left(v_{i}\right)=A_{i}^{\alpha} w_{\alpha} \tag{1.17}
\end{equation*}
$$

Let $v \in T_{p}(M)$ be a non-zero vector. Choose a curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ such that $\gamma(0)=p$; let s be its arc and v its tangent vector at p. Denote by $\gamma^{*}=f \circ \gamma:(-\varepsilon, \varepsilon) \rightarrow$ $\rightarrow N$ the corresponding curve. Then it is easy to see that

$$
\begin{equation*}
\frac{\nabla^{*} n}{\mathrm{~d} s^{2}}-\mathrm{d} f_{p}\left(\frac{\nabla^{2} m}{\mathrm{~d} s^{2}}\right)=\frac{L(v)}{|v|^{2}} \tag{1.18}
\end{equation*}
$$

where $|v|^{2}=\sum_{i}\left(\omega^{i}(v)\right)^{2}$ and

$$
\begin{equation*}
L(v)=A_{i j}^{\alpha}(p) \omega^{i}(v) \omega^{j}(v) w_{\alpha}(f(p)) \tag{1.19}
\end{equation*}
$$

This gives the geometrical interpretation of the quadratic mapping

$$
\begin{equation*}
L: T_{p}(M) \rightarrow T_{f(p)}(N) \tag{1.20}
\end{equation*}
$$

Let $L(.$, .) be the corresponding bilinear mapping.
At p, let us choose an orthonormal frame v_{i}, let w_{α} be an orthonormal frame at $f(p)$. Then

$$
\begin{equation*}
L\left(v_{i}, v_{j}\right)=A_{i j}^{\alpha} w_{\alpha} \tag{1.21}
\end{equation*}
$$

and the expressions

$$
\begin{equation*}
\sum_{i, j}\left|L\left(v_{i}, v_{j}\right)\right|^{2}=\sum_{i, j, \alpha}\left(A_{i j}^{\alpha}\right)^{2}, \quad\left|\sum_{i} L\left(v_{i}\right)\right|^{2}=\sum_{\alpha, i, j i} A_{i i}^{\alpha} A_{j j}^{\alpha} \tag{1.22}
\end{equation*}
$$

do not depend on the choice of the frames v_{i} and w_{α}. In the same way, the vector

$$
\begin{equation*}
t=\sum_{i} L\left(v_{i}\right) \tag{1.23}
\end{equation*}
$$

is invariant; the mapping

$$
\begin{equation*}
t: M \rightarrow T(N), \quad t(p) \in T_{f(p)}(N) \tag{1.24}
\end{equation*}
$$

is the so-called tension field. The mapping $f: M \rightarrow N$ is said to be harmonic if $t=0$ for each $p \in M$.

The frames $\left(v_{1}, \ldots, v_{m}\right)$ and $\left(w_{1}, \ldots, w_{t}\right)$ at p and $f(p)$ resp. are called adapted to f if

$$
\begin{array}{ll}
\mathrm{d} f_{p}\left(v_{i}\right)=A_{i} w_{i} & \text { for } i=1, \ldots, m \text { in the case } m \leqq n \text { and } \\
\mathrm{d} f_{p}\left(v_{\alpha}\right)=A_{\alpha} \mathrm{w}_{\alpha} & \text { for } \alpha=1, \ldots, n, \tag{1.25}\\
\mathrm{~d} f_{p}\left(v_{Q}\right)=0 & \text { for } \varrho=n+1, \ldots, m \text { in the case } m>n
\end{array}
$$

Thus, we may always write $\left(25_{1}\right)$ setting $w_{i}=0$ for $i>n$. The adapted bases exist for each couple $(p, f(p))$. In the adapted bases, we have

$$
\begin{gather*}
\sum_{\alpha, i, j} \sum_{k} A_{i}^{\alpha} A_{k}^{\alpha} R_{j j i}^{k}=\sum_{i}\left(A_{i}\right)^{2} \sum_{j \neq i} K\left(v_{j}, v_{i}\right), \tag{1.26}\\
\sum_{\alpha, i, j, j, \gamma, \delta} \sum_{j, \delta}^{\alpha} A_{j}^{\alpha} A_{i}^{\beta} A_{i}^{\gamma} A_{j}^{\delta} S_{\beta \gamma \delta}^{\alpha}=2 \sum_{i \neq j}\left(A_{i} A_{j}\right)^{2} K^{*}\left(w_{i}, w_{j}\right) . \tag{1.27}
\end{gather*}
$$

Further,

$$
\begin{equation*}
\varphi_{1}\left(v_{i}\right)=\sum_{j}\left\langle\mathrm{~d} f\left(v_{j}\right), L\left(v_{i}, v_{j}\right)\right\rangle, \quad \varphi_{2}\left(v_{i}\right)=\left\langle\mathrm{d} f\left(v_{i}\right), t\right\rangle, \tag{1.28}
\end{equation*}
$$

\langle,$\rangle being the scalar product in T_{f(p)}(N)$.
Choosing for each couple ($p, f(p)$) the adapted bases, we have the integral formula

$$
\begin{gather*}
\int_{\partial M} *\left(\varphi_{1}-\varphi_{2}\right)=\int_{M}\left\{\sum_{i, j}\left|L\left(v_{i}, v_{j}\right)\right|^{2}-|t|^{2}+\right. \\
\left.+\sum_{i}\left(A_{i}\right)^{2} \sum_{j \neq i} K\left(v_{j}, v_{i}\right)-2 \sum_{i \neq j}\left(A_{i} A_{j}\right)^{2} K^{*}\left(w_{i}, w_{j}\right)\right\} \mathrm{d} v . \tag{1.29}
\end{gather*}
$$

Thus we get the following
Theorem. Let M, N be Riemannian manifolds and $f: M \rightarrow N$ a harmonic mapping. Let N have non-positive sectional curvatures and let M have, at each point $p \in M$ and for each unit vector $v \in T_{p}(M)$ the following property: $v_{1}, \ldots, v_{m-1}, v$ being an orthonormal basis of $T_{p}(M)$, we have $\sum_{r=1, \ldots, m-1} K\left(v, v_{r}\right)>0$. Let $\varphi_{1}=\varphi_{2}$ on the boundary ∂M of M. Then f is a constant mapping.
2. Holomorphic curves in the Hermitian plane

Be given a Hermitian plane H^{2} and let $m: D \rightarrow H^{2}$ be a holomorphic curve, $D \subset \mathscr{C}$ being a bounded domain. To each its point $m(d), d \in D$, let us associate an orthonormal frame $\left\{m, w_{1}, w_{2}\right\}$. Then we have the equations

$$
\begin{gather*}
\mathrm{d} m=\tau^{1} w_{1}+\tau^{2} w_{2} \\
\mathrm{~d} w_{1}=\tau_{1}^{1} w_{1}+\tau_{1}^{2} w_{2}, \quad \mathrm{~d} w_{2}=\tau_{2}^{1} w_{1}+\tau_{2}^{2} w_{2} \tag{2.1}
\end{gather*}
$$

clearly $(i, j, \ldots=1,2)$

$$
\begin{gather*}
\tau_{i}^{j}+\bar{\tau}_{j}^{i}=0, \tag{2.2}\\
\mathrm{~d} \tau^{i}=\tau^{j} \wedge \tau_{j}^{i}, \quad \mathrm{~d} \tau_{i}^{j}=\tau_{i}^{k} \wedge \tau_{k}^{j} . \tag{2.3}
\end{gather*}
$$

Let us restrict ourselves to the tangent frames satisfying

$$
\begin{equation*}
\tau^{2}=0 \tag{2.4}
\end{equation*}
$$

By successive exterior differentiations we get the existence of functions $R, S, T, U: D \rightarrow \mathscr{C}$ such that

$$
\begin{gather*}
\tau_{1}^{2}=R \tau^{1} \tag{2.5}\\
\mathrm{~d} R+R\left(\tau_{2}^{2}-2 \tau_{1}^{1}\right)=S \tau^{1}, \tag{2.6}\\
\mathrm{~d} S+S\left(\tau_{2}^{2}-3 \tau_{1}^{1}\right)+3 R^{2} \bar{R} \bar{\tau}^{1}=T \tau^{1} \tag{2.7}\\
\mathrm{~d} T+T\left(\tau_{2}^{2}-4 \tau_{1}^{1}\right)+10 R \bar{R} S \bar{\tau}^{1}=U \tau^{1} . \tag{2.8}
\end{gather*}
$$

Let us consider another field of orthonormal frames

$$
\begin{equation*}
u_{1}=e^{i \alpha} w_{1}, \quad u_{2}=e^{i \beta} w_{2} ; \quad \alpha, \beta: D \rightarrow \mathscr{R} ; \tag{2.9}
\end{equation*}
$$

let us write

$$
\begin{equation*}
\mathrm{d} m=\varphi^{1} u_{1}, \quad \mathrm{~d} u_{1}=\varphi_{1}^{1} u_{1}+\varphi_{1}^{2} u_{2}, \quad \mathrm{~d} u_{2}=\varphi_{2}^{1} u_{1}+\varphi_{2}^{2} u_{2} . \tag{2.10}
\end{equation*}
$$

Then it is easy to see that

$$
\begin{gather*}
\varphi^{1}=e^{-i \alpha} \tau^{1} \tag{2.11}\\
\varphi_{1}^{1}=\tau_{1}^{1}+i \mathrm{~d} \alpha, \quad \varphi_{2}^{2}=\tau_{2}^{2}+i \mathrm{~d} \beta, \quad \varphi_{1}^{2}=e^{i(\alpha-\beta)} \tau_{1}^{2} \tag{2.12}
\end{gather*}
$$

Write

$$
\begin{gather*}
\varphi_{1}^{2}=R^{\prime} \varphi_{1} \tag{2.13}\\
\mathrm{~d} R^{\prime}+R^{\prime}\left(\varphi_{2}^{2}-2 \varphi_{1}^{1}\right)=S^{\prime} \varphi^{1} \tag{2.14}\\
\mathrm{~d} S^{\prime}+S^{\prime}\left(\varphi_{2}^{2}-3 \varphi_{1}^{1}\right)+3 R^{\prime 2} \bar{R}^{\prime} \bar{\varphi}^{1}=T^{\prime} \varphi^{1} \tag{2.15}\\
\mathrm{~d} T^{\prime}+T^{\prime}\left(\varphi_{2}^{2}-4 \varphi_{1}^{1}\right)+10 R^{\prime} \bar{R}^{\prime} S^{\prime} \bar{\varphi}^{1}=U^{\prime} \varphi^{1} \tag{2.16}
\end{gather*}
$$

Then

$$
\begin{array}{ll}
R^{\prime}=e^{i(2 \alpha-\beta)} R, & S^{\prime}=e^{i(3 \alpha-\beta)} S, \\
T^{\prime}=e^{i(4 \alpha-\beta)} T, & U^{\prime}=e^{i(5 \alpha-\beta)} U . \tag{2.17}
\end{array}
$$

The mappings $B^{(k)}: T_{m} \rightarrow N_{m}$ be introduced by

$$
\begin{gather*}
B\left(z w_{1}\right)=z^{2} R w_{2}, \quad B^{(1)}\left(z w_{1}\right)=z^{3} S w_{2}, \tag{2.18}\\
B^{(2)}\left(z w_{1}\right)=z^{4} T w_{2} ; \quad z \in \mathscr{C} .
\end{gather*}
$$

These mappings are invariant. Indeed: Let $w=z w_{1}=z^{\prime} u_{1}$, then $z^{\prime}=e^{-i \alpha_{z}}$ and $z^{\prime 2} R^{\prime} u_{2}=z^{2} R w_{2} ;$ similarly for $B^{(k)}$. Let $S^{1}=\left\{w \in T_{m} ;\langle w, w\rangle=1\right\}$, i.e., $S^{1}=$ $=\left\{z w_{1} ;|z|^{2}=1\right\}$. Then $B^{(k)}\left(S^{1}\right)$ is a circle; the radius of $B\left(S^{1}\right)$ is equal to $|R|^{1 / 2}$, the radius of $B^{(1)}\left(S^{1}\right)$ is equal to $|S|^{1 / 2}$, etc. The geometrical interpretation of the mappings $B^{(k)}$ will be presented later on.

The area element of m is given by

$$
\begin{equation*}
\mathrm{d} o=\frac{1}{2} i \tau^{1} \wedge \bar{\tau}^{1} . \tag{2.19}
\end{equation*}
$$

The Hodge operator be introduced by

$$
\begin{equation*}
* \tau^{1}=-i \tau^{1}, \quad * \bar{\tau}^{1}=i \bar{\tau}^{1} . \tag{2.20}
\end{equation*}
$$

Let $f: D \rightarrow \mathscr{R}$ be a function. Then its Laplacian Δf is given, as usually, by

$$
\begin{equation*}
\Delta f \mathrm{~d} o=\mathrm{d} * \mathrm{~d} f \tag{2.21}
\end{equation*}
$$

The straightforward calculations lead to ($n \geqq 1$)

$$
\begin{gather*}
\mathrm{d}|R|^{2 n}=2 n|R|^{2 n-2} \operatorname{Re}\left(\bar{R} S \tau^{1}\right), \tag{2.22}\\
\Delta|R|^{2 n}=4 n|R|^{2 n-2}\left(n|S|^{2}-3|R|^{4}\right), \tag{2.23}\\
\mathrm{d}|S|^{2 n}=2 n|S|^{2 n-2} \operatorname{Re}\left\{\left(\bar{S} T-3 S R \bar{R}^{2}\right) \tau^{1}\right\}, \tag{2.24}
\end{gather*}
$$

$$
\begin{align*}
\Delta|S|^{2 n}= & 4 n\left\{|S|^{2 n-2}\left(n|T|^{2}-16|S|^{2}|R|^{2}+9 n|R|^{6}\right)-\right. \\
& \left.-6(n-1)|S|^{2 n-4}|R|^{2} \operatorname{Re}\left(\bar{S}^{2} R T\right)\right\} . \tag{2.25}
\end{align*}
$$

Especially,

$$
\begin{align*}
& \Delta|R|^{2}=4\left(|\mathrm{~S}|^{2}-3|R|^{4}\right), \\
& \Delta|R|^{4}=8|R|^{2}\left(2|S|^{2}-3|R|^{4}\right), \tag{2.26}\\
& \Delta|S|^{2}=4\left(|T|^{2}-16|S|^{2}|R|^{2}+9|R|^{6}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\Delta\left(|S|^{2}+4|R|^{4}\right)=4\left(|T|^{2}-15|R|^{6}\right) \tag{2.27}
\end{equation*}
$$

Lemma. Let $S=0$ on D. Then $m(D)$ is a part of a straight line of H^{2}.
Proof. The equation (2.7) implies $R=0$. QED.
Theorem. Let $S=0$ on ∂D and

$$
\begin{equation*}
3|R|^{4} \geqq|S|^{2} \quad \text { on } D . \tag{2.28}
\end{equation*}
$$

Then $m(D)$ is a part of a straight line of H^{2}.
Proof. Obviously, $* \mathrm{~d}|R|^{2 n}=0$ on ∂D. From the integral formula

$$
\begin{equation*}
0=\int_{M} \Delta|R|^{2} \mathrm{~d} v \tag{2.29}
\end{equation*}
$$

we get, because of (2.26),

$$
\begin{equation*}
3|R|^{4}=|S|^{2} \quad \text { on } D . \tag{2.30}
\end{equation*}
$$

The integral formula

$$
\begin{equation*}
\int_{\partial M} * \mathrm{~d}|R|^{4}=8 \int_{M}|R|^{2}\left(2|S|^{2}-3|R|^{4}\right) \mathrm{d} v \tag{2.31}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
0=\int_{M}|R|^{6} \mathrm{~d} v, \tag{2.32}
\end{equation*}
$$

and we get $R=0$. QED.
The formulas (2.23), (2.25), (2.27) imply new characterizations of straight lines of H^{2}. It is sufficient to suppose $S=0$ on ∂D and, for ex.,

$$
\begin{equation*}
14|R|^{6} \geqq|T|^{2} \tag{2.33}
\end{equation*}
$$

or

$$
\begin{equation*}
|T|^{2} \geqq 8|R|^{2}\left(2|S|^{2}-|R|^{4}\right) \tag{2.34}
\end{equation*}
$$

on D; see (2.27) and (2.26 $)$.
Now, the geometrical description of the mappings $B^{(k)}$ is given in [1]. To do this, let us consider H^{2} as a space over m, i.e., H^{2} becomes E^{4}. Write

$$
\begin{gather*}
v_{1}=w_{1}, \quad v_{2}=i w_{1}, \quad v_{3}=w_{2}, \quad v_{4}=i w_{2}, \\
\tau^{1}=\omega^{1}+i \omega^{2}, \quad \tau^{2}=\omega^{3}+i \omega^{4}, \quad \tau_{1}^{2}=\omega_{1}^{3}+i \omega_{1}^{4}, \tag{2.35}\\
\tau_{1}^{1}=i \omega_{1}^{2}, \quad \tau_{2}^{2}=i \omega_{3}^{4},
\end{gather*}
$$

i.e.,

$$
\begin{align*}
\mathrm{d} m & =\omega^{1} v_{1}+\omega^{2}{ }_{2}, \\
\mathrm{~d} v_{1} & =\omega_{1}^{2} v_{2}+\omega_{1}^{3} v_{3}+\omega_{1-4}^{4}, \\
\mathrm{~d} v_{2} & =-\omega_{1}^{2} v_{1} \quad-\omega_{1}^{4} v_{3}+\omega_{1}^{3} v_{4}, \tag{2.36}\\
\mathrm{~d} v_{3} & =-\omega_{1}^{3} v_{1}+\omega_{1}^{4} v_{2}+\omega_{3}^{4} v_{4}, \\
\mathrm{~d} v_{4} & =-\omega_{1}^{4} v_{1}-\omega_{1}^{3} v_{2}-\omega_{3}^{4} v_{3}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{1}^{3}=R_{1} \omega^{1}-R_{2} \omega^{2}, \quad \omega_{1}^{4}=R^{2} \omega^{1}+R_{1} \omega^{2} \tag{2.37}
\end{equation*}
$$

with $R_{1}=\operatorname{Re} R, R_{2}=\operatorname{Im} R$. In E^{4}, consider a general surface

$$
\begin{align*}
\mathrm{d} n & =\varrho^{1} v_{1}+\varrho^{2} v_{2}, \\
\mathrm{~d} v_{1} & =\varrho_{1}^{2} v_{2}+\varrho_{1}^{3} v_{3}+\varrho_{1}^{4} v_{4}, \\
\mathrm{~d} v_{2} & =-\varrho_{1}^{2} v_{1} \quad+\varrho_{2}^{3} v_{3}+\varrho_{2}^{4} v_{4}, \tag{2.38}\\
\mathrm{~d} v_{3} & =-\varrho_{1}^{3} v_{1}-\varrho_{2}^{3} v_{2}+\varrho_{3}^{4} v_{4}, \\
\mathrm{~d} v_{4} & =-\varrho_{1}^{4} v_{1}-\varrho_{2}^{4} v_{2}-\varrho_{3}^{4} v_{3}
\end{align*}
$$

with

$$
\begin{array}{r}
\varrho_{1}^{3}=a_{1} \varrho^{1}+a_{2} \varrho^{2}, \quad \varrho_{2}^{3}=a_{2} \varrho^{1}+a_{3} \varrho^{2}, \\
\varrho_{1}^{4}=b_{1} \varrho^{1}+b_{2} \varrho^{2}, \quad \varrho_{2}^{4}=b_{2} \varrho^{1}+b_{3} \varrho^{2}, \\
\mathrm{~d} a_{1}-2 a_{2} \varrho_{1}^{2}-b_{1} \varrho_{3}^{4}=\alpha_{1} \varrho^{1}+\alpha_{2} \varrho^{2}, \\
\mathrm{~d} a_{2}+\left(a_{1}-a_{3}\right) \varrho_{1}^{2}-b_{2} \varrho_{3}^{4}=\alpha_{2} \varrho^{1}+\alpha_{3} \varrho^{2}, \\
\mathrm{~d} a_{3}+2 a_{2} \varrho_{1}^{2}-b_{3} \varrho_{3}^{4}=\alpha_{3} \varrho^{1}+\alpha_{4} \varrho_{2}, \tag{2.40}\\
\mathrm{~d} b_{1}-2 b_{2} \varrho_{1}^{2}+a_{1} \varrho_{3}^{4}=\beta_{1} \varrho^{1}+\beta_{2} \varrho^{2}, \\
\mathrm{~d} b_{2}+\left(b_{1}-b_{3}\right) \varrho_{1}^{2}+a_{2} \varrho_{3}^{4}=\beta_{2} \varrho^{1}+\beta_{3} \varrho^{2}, \\
\mathrm{~d} b_{3}+2 b_{2} \varrho_{1}^{2}+a_{3} \varrho_{3}^{4}=\beta_{3} \varrho^{1}+\beta_{4} \varrho^{2} .
\end{array}
$$

Then it is known [1] that, for

$$
\begin{aligned}
\Phi & =\left(a_{1} \alpha_{3}+a_{2} \alpha_{4}-a_{2} \alpha_{2}-a_{3} \alpha_{3}+b_{1} \beta_{3}+b_{2} \beta_{4}-b_{2} \beta_{2}-b_{3} \beta_{3}\right) \varrho^{1}+ \\
& +\left(\mathrm{a}_{2} \alpha_{1}+a_{3} \alpha_{2}-a_{1} \alpha_{2}-a_{2} \alpha_{3}+b_{2} \beta_{1}+b_{3} \beta_{2}-b_{1} \beta_{2}-b_{2} \beta_{3}\right) \varrho^{2}
\end{aligned}
$$

we have

$$
\begin{gather*}
\int_{\partial N} * \Phi=\int_{N}\left[2\left(\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}-\alpha_{2}^{2}-\alpha_{3}^{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{4}-\beta_{2}^{2}-\beta_{3}^{2}\right)-\right. \\
-\left\{\left(a_{1}-a_{3}\right)^{2}+4 a_{2}^{2}+\left(b_{1}-b_{3}\right)^{2}+4 b_{2}^{2}\right\}\left(a_{1} a_{3}-a_{2}^{2}+b_{1} b_{3}-b_{2}^{2}\right)+ \\
\left.+2\left\{b_{2}\left(a_{1}-a_{3}\right)+a_{2}\left(b_{3}-b_{1}\right)\right\}^{2}\right] \mathrm{d} v . \tag{2.42}
\end{gather*}
$$

In our case, (2.42) is identical with

$$
\begin{equation*}
\int_{\partial N} * \mathrm{~d}|R|^{2}=\int_{N} \Delta|R|^{2} \mathrm{~d} v . \tag{2.43}
\end{equation*}
$$

BIBLIOGRAPHY

[1] Švec A.: On a general integral formula. To appear.

SOUHRN

DVĚ APLIKACE JEDNÉ INTEGRÁLNÍ FORMULE

ALOIS ŠVEC

V práci jsou vyloženy aplikace integrální formule [1] na teorii harmonických zobrazení a na teorii křivky v hermiteovské rovině.

PE3ЮME

ДВА ПРИМЕНЕНИЯ ОДНОЙ ИНТЕГРАЛЬНОЙ ФОРМУЛЫ

АЛОИС ШВЕЦ

В работе излагаются приложения интегральной формулы [1] на теорию гармонических отображений и на теорию кривых в пространствах Эрмита.

