
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Jan Štěpán
Propositional calculus proving methods in Prolog

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 29 (1990), No.
1, 301--321

Persistent URL: http://dml.cz/dmlcz/120239

Terms of use:
© Palacký University Olomouc, Faculty of Science, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/120239
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

FACULTAS RERUM NATURALIUM

1990 MATHEMATICA XXIX VOL. 97

Katedra výpočetní techniky
přírodovědecké fakulty Univerzity Palackého v Olomouci

Vedoucí katedry: Doc.RNDr.Drantišek Koliba, CSc.

PROPOSITIONAL
CALCULUS PROVING METHODS IN PROLOG

JAN STEPAN

(Received March 3 1 , 1989)

Two methods of proving the theorems of the propositional

calculus are described in this paper - Wang's algorithm (ace.

[l]) and the method of analytical tables (ace. [3]). Two pro

grams in Prolog are quotated to Wang's algorithm (from [l] and

[2]), for the method of analytical tables author s program is

presented. Efficiency of the programs is demonstrated on

examples. Further, the practical and didactic value of pre

sented methods and programs is discussed.

I. WANG S METHOD

Wang s method lies in the transformation of given formula

to the sequence of formulas, in which the relation of inference

is held. Further, this sequence is simplified by transformation

of its constituents (formulas). During these modifications

either inference relation among these formulas is confirmed or

301 -

it is evident that given formula is not provable. Proper pro

cess is following:

(Denotation: symbols ~, & , v, => , <=> denote negation,

conduction, disjunction, implication and equivalence respecti

vely; —> is the symbol of inference - let's expression A -» B,

where A, B are sets (of fo rmu las) , call sequent, and the set

of formulas A antecedent and set B succedent of the sequent

A -» B.

1. We express the given formula into the form of sequence, in

which premises are on the left of the symbol -*(separated

by comma) and assertion is on the right of the symbol —> ,

for instance

premisel, premise2, ..., premisen -> assertion;

any of sequences separated by ~> can be empty.

2. The transformations of partial formulas are performed by

these rules:

- if the formula is negation, i.e. ^ , we erase it and on

the other side of the sequent according to symbol —> we

add the formula A - for instance

p v q, v (r { s), ~q, p v r -> s, ̂ p

we change to sequence

p v q , p v r , p-*s, r * s, q_;

- if the formula is conduction in antecedent or disjunction

in succedent, we replace these connectives by comma, for

instance

p & q, r $ (~p v s) —> ~q v ~r

we change to sequence

p, q, r, ~p v s -> ^ , ~r;

- if the formula is disjunction in antecedent or con

junction in succedent, we decompose considerated sequent

to two sequents - the first one contains one argument of

the formula, the second one contains remaining argument;

each of these sequents must be further transformated se

parately; for instance

302

г, ~p v s -> ~q, ^ A s

*p -> ~q, ~г & s г, s -> ̂ q, ^т 81 s

r , ~p -> ~q , "c r , ~p -> ~q , s r , s -> ~q , ~r r , s -> ̂ q , s

- if the formula is implication or equivalence, we re

place it on the principle of the schemas_:

A => B . . . ~A v B, or

A <=> B ... (A => B)*(B => A) , event.

A < = > B . .. (~A&~B) v (A & B) .

3. If there is the same formula both in the antecedent and

succedent, the given formula is a theorem. If it is not

more possible to apply any of the rules mentioned in 2

(i.e. both antecedent and succedent are sequences of ato

mic formulas and no of them occurs in the antecedent and

the succedent at the same time), the given formula is

not provable.

Note: In both following programs based on Wang's method

there is the symbol of inference used as the symbol for impli

cation, which is not quite correct. It is motivated by tech

nical reasons, the function of proper programs is not influ

enced and it is always evident from the documentation of the

proofs which sense of the symbol => is considered.

II. ALGORITHMS IN PROLOG TO WANG S METHOD

Algorithm 1 - comes from [l], where it is published with

errors. In the same way it is accepted even in [2]. I bring up

the original version here, incorrect clause is mentioned la

tely.

Logic program for algorith 1:

/x Operations x/

_:-op(700,xfy, < = >).

_:-op(650,xfy,=>).

_:-op(600,xfy,v).

_:-op(550,xfy,$).

_:-op(500,fy,^).

/x equivalence x/

/x implication x/

/* disjunction x/

/x conjunction x/

/x negation x/

303

/* Read in and try to prove formula;

write valid' or not valid' accordingly */

formulas:- repeat,write('Formula: '),nl,

read(T),(T==stop;theorem(T),fail).

theorem(T):- nl,nl,

(prove([]*[]-> [] * [T]),!,nl,

write(Formula is valid);

nl,write('Formula is not valid')) ,nl,nl.

to.„prove(T):- write('prove, '),nl,write(T),nl,nl,

prove(T).

prove(El)_:~ rule(El, E2 , Rule), ! ,

write(E2) , by_rule(Rule), nl,

prove(E2).

/* Case for v on l.h.s. */

p r o v e d [H v I ! T] => R)_:- !,

first_branch,to_prove(L4 [H;T] => R),

branch-proved,

second„branch , to_prove(L 4 [l\ T] => R),

brancruproved.

/* Case for v on r.h.s. */

prove(Ll{ [H $ I« T] => R)_:- ! ,

nrst_branch,to_prove(L => R4[HjT]),

branchuproved,

secondjDranch, to_prove(L => R k [i! T]),

branch^proved.

/* Case for atom */

prove(L* [H',T] => R):- ! ,prove([H! L] «< T => R).

prove(L => R*[H!T]):- !,prove(L => [H ! R] M) .

/* Finally, check whether tautology */

proved):- tautology(T),write('Tautology. '),nl.

prove(_):- write('This branch is not provable.),fail,

/* Case where => appears in one of the sides x/

rule(L 4r [H => I.T] => R,

L ̂ [*H v IIT] => R, rule_5).

rule(L => R4 [H => I'.T] ,

L => R 4 [~H v I IT] , rule„6).

304

/x Cases where <=> appears in one of the sides */

r u l e (L & [H < = > 11 T] => R,

L4 [(H => 1) 4 (1 => H)iT] => R, r u l e_7) .

ru le (L => R4 [H <=> I . T] ,

L => R^ [(H => 1)4 (I => H) ! T] , mle_.8) .

/x Case where ** appears x/

ru le (L 4 ['"HIT] => R4 R2,

L$ T => R4 [HIR2] , r u l e_2) .

r u l e (L l $ L2 => R$ [~H 4 T] ,

L l 4 [H:L2] => R 4 T, r u l e_2) .

/x Case for 4 on l . h . s . x/

ru le (L 4 [H 4 I i T] => R,

L 4 [H, I : T] => R, r u l e_3) .

/x Case for v on r . h . s . x/

ru le (L => R «t [H V I : T] ,

L => R& [H ,HT] , r u l e . 3) .

t au to l ogy (L4 [] => R 4 []) : - member(M,L),

member(M,R).

branch_proved:- w r i t e (t h i s branch has been p r o v e d . ') , n l .

f i r s t _ b r a n c h : - n l , w r i t e (F i r s t branch:) .

second_branch:- n l , w r i t e (Second b r a n c h : ') .

by_ ru le (R) : - w r i t e (' by ') , w r i t e (R) , n l , n l .

member(H, [H L]) .

member(I, [_JT]) : - member(I,T).

Examples of a lgor i thm 1 performance (by | i |) :

Formula:

a => a.

[] * [] -> [H h v a]
[] * [] = > [H [~ a , a]
[]A [a] = > [] « , [a]
Tautology.

Formula is valid

by rule_6

by rule_3

by rule_2

Formula :

(a => b)4 (b => c) => (a => c).

- 305

[] * [] => [] * ["((a => b) * (b => c)) v (a => c)] by ru le jS

[3 If [] => [] ^ [^ ((a => b) * (b => c)),(a => c)] by rule_3
[]ti [(a => b)* (b => c)) => [] * [a => c] by rule_2
[] fc [(a => b)^ (b => c)] => [] 2r[a v c] by rule_6

[] fc,[a => b,b => c] => [] %. [a v c] by rule_3

[] it [^a v b,b => cj => [] *r [a v c] by rule_5

[] fr [<va v b,b => c] => [] V [a,c] by rule_3

[] h- [a ,*a v b,b => c] => [] V [c] by rule_2

F i r s t branch: prove,

[a] V [a,b => c] => [] J r [c]

[a] v [b => c] => [] v [a , c] by rule...2

[a]4r[-vb v c] =) [] ! r [a , c] by rule_5

F i r s t branch: prove,

f a] « r [* b] => [] t r [a , c]

[a] %r[] => [] &r [b ,a,c] by ru le^2

Tautology .

This branch has been proved.

Second branch: prove,

[a] H e] => U H a . c]
Tautology .

This branch has been proved.

Second branch: prove,

[a]^[b,b => c] => []v[c]
[b , a l a - [* b v c] => [] & - [c] by rule_5

First branch: prove,

[b , a I S r [/ v b] = > • [] « r [c]

[b,a] »-[] => [] v [b , c] by r u l e . 2

Tautology.

This branch has been proved.

Second branch: prove,

[b .a lKe] * [] V [c]
Tautology.

This branch has been proved.

Formula is valid.

These examples are quotated as it was mentioned above. But

this program evaluates proper formulas as improvable, because it

- 306

contains an error. Apart from that algorithm 1 causes runaway

for the (improvable) formula

(/vp v q)V-(<vq v r)V(vr v s)V(<vu v s) => (<vp v u) (*)

which is recommended to verification of this program in |l| and

|2|. The first deffect can be remedied by changing the second

of rules labelled as "rule 2" to

"rule(Ll L2 = R | H T|, LI |H L2| = R T, rule 2).".

The second deffect can be put away by suitable location of cut

in the clauses "prove" (separating branches). Then we can intro

duce the proofs of other theorems for comparison.

Formula:

p v /vp.

[] V [I => [] *r[p,<vp] by rule_3

[] V [p] => [p l V [] by rule_2
Tautology.

Formula is valid.

Formula:

'v(pXrvp).

[] V [p V * p] = > [] V [] by rule_2

[]<&r [p , "P] => [] V [] by rule_3

[p] «r [] => [] V [p] by rule_2

Tautology.

Formula is v a l i d .

Formula:

.vp V p.

First branch: prove,

[] V [] => [] V [^ p]

[] * - [p] => [] V [1 by rule_2
This branch is not provable.

Formula is not valid.

Algorithm 2 is founded on Wang's method as well. It differs

from algorithm 1 especially by technique of programming and more

- 307 -

over by documentation of proof. The proof of (nonvalid) formula

(p => q) => ((p => r) =>(q => r))

following program leads to runaway, for quotated formula (x) as

well. So it provides only partial decision of given formula

provability.

Logic program of algorithm 2:

/x Wang s algorithm x/

-op(700,xfy, <=>) . /x equivalence x/

-op(600,xfy,=>). /x implication x/

-op(500,xfy,v). /x disjunction x/

-op(400,xfy,V) . /* conjunction x/

-op(300,fy,^). /x negation x/

wang:- nl,nl,write('Formula: '),nl,read(T),

(T==stop,!;prove(T),wang).

prove(L => R):-

nl, theorem(L2rtrue => R v false),!, /x procedure theorem x/

write(Formula is a theorem); /x requires this x/

nl,write(Formula is not a theorem) .

prove(T):- prove(true => T) .

theorem(T):- nl,write('Prove:'),write(T),(tautology(T));

perpartes(T);transf(T,Tl),theorem(Tl)).

tautology(L => R) : - conmember(Exp,L),dismember(Exp,L),!,

nl,write(' This is tautology),nl.

perpartes(L => R):- conconc(Ll, (El v E2)^L2,L),

conconc(Ll,L2,LL),

nl,write(First branch:'),nl,

theorem(El$r LL => R) ,

nl,write('Second branch:'),nl,

theorem(E2$LL => R) .

perpartes(L => R):- disconc(Rl, (El fl~-E2) v R2,R),

disconc(Rl,R2,RR),theorem(L => El v RR),

theorem(L => E2 v RR).

transf(L => R,LL => Exp v R):- /x negation x/

conconc(Ll,A,Exp V L 2 , L) ,

conconc(Ll,L2,LL).

308 -

transf(L => R,Exp^L => RR):- disconc(Rl ,/̂ Exp v R2,R),

disconc(Rl,R2,RR).

transf(L => R,LL => R) : - conconc(Ll, (ASr B)V L2 ,L),

conconc(Ll,A^(B8rL2),LL).

transf(L => R,L => RR):- disconc(Rl,(A v B) v R2,R),

disconc(Rl,A v (B v R2),RR).

transf(L => R,LL => R) : - conconc(Ll,Exp&-L2,L),rule(Exp,Expl),

conconc(Ll,ExplSrL2,LL).

transf(L => R,L => RR):- disconc(Rl,Exp v R2,R),rule(Exp,Expl),

disconc(Rl,Expl v R2,RR).

/x Rules x/

rule(A => B,"A v B) .

rule(A <=> B,(~ASTA,B) V (AVB)).

coneone(true,Exp,Exp).

conconc(Term &~Expl,Exp2 ,Term &~Exp3) : -

conconc(Expl,Exp2,Exp3).

conmember(Term,Exp):- conconc(Expl,Term&-Exp2,Exp).

disconc(false,Exp,Exp).

disconc(Term v Expl,Exp2,Term v Exp3):-

disconc(Expl,Exp2,Exp3).

dismember(Term,Exp):- discont(Expl,Term v Exp2,Exp).

/xEmpty expression on the left is true, on the right is falsex/

Examples of algorithm 2 performance:

Formula:

p => p.

Prove: pXrtrue => p v false

This is tautology

Formula is a theorem

Formula :

p v "/p.

Prove: true&true => (p v A^D) v false

Prove: true ̂ -true => p v *>p v false

Prove: p irtrue Jrtrue => p v false

This is tautology

Formula is a theorem

- 309

Formula:

*(p h *jp).

Prove: true^rtrue => ^(p2r/up) v false

Prove: (p2r *>p) *&-true >true => false

Prove: p 2r «,p V true Sr true => false

Prove: p & true 2rtrue => p v false

This is tautology

Formula is a theorem

Formula:

A/p 8rp.

Prove: true &- true => <vp 2r p v false

Prove: true ^ true => ~p v false

Prove: p $r true %- true => false

Formula is not a theorem

Formula :

(p => q) %• (q => r) => (p => r).

Prove: ((p => q) V (q => r)) V true => (p => r)

Prove: (p => q) V (q => r) V true => (p => r) v

Prove: (*/p v q) Xr (q => r) &~ true => (p => r) v

First branch:

Prove: /vp V (q => r) %- true => (p => r) v false

Prove: (q => r) %r true => p v (p => r) v false

Prove: (<vq v r) V true => p v (p => r) v false

First branch:

Prove: ^q &• true => p v (p => r) v false

Prove: true => q v p v (p => r) v false

Prove: true => q v p v (̂ p v r) v false

Prove_: true => q v p v ^ p v r v false

Prove: p v true => q v p v r v false

This is tautology

Second branchj

Prove: r V true => p v (p => r) v false

Prove: r & true => p v (/vp v r) v false

Provej r Sr true => p v *p v r v false

This is tautology

v false

f alse

false

- 310

Second branch:

Prove*, q -> (q => r) V true => (p => r) v false

Prove: q 2r (/vq v r) V true => (p => r) v false

First branch:

Prove: Ajq %• q %- true => (p => r) v false

Prove-, q $r true => q v (p => r) v false

This is tautology

Second branch:

Prove: r %- q &-true => (p => r) v false

Prove: r 3- q %~ true => (<vp v r) v false

Prove: r %• q V true => */p v r v false
This is tautology

Formula is a theorem

The form of algorithm 2 listings is better arranged than

that of algorithm 1. The protocol of proof is closely related

to logical symbolics, it is not necessary to differentiate two

meanings of the symbol => , it can be considered only as im

plication. Then it is evident, that given formula is trans

formed to form (of tautology)

X & A => X v B,

where X, A, B are arbitrary formulas. The front memeber is

considered as a conjunction, the back one as a disjunction of

certain expressions - subformulas of given formula.

III. METHOD OF ANALYTICAL TABLES

Method of analytical tables is founded on decomposition

of formula to simpler components - subformulas of considered

formula. The models of the decomposition are rules for con

struction of tables. The analytical table of the formula X is

taken as a dyadic tree (graph), the nodes of which are occu

rences of the formulas, and which is constructed by following

way - by the help of two-type rulesj

311

- conjunctive of form K and disjunctive of form D

Kl Dl|D2

K2

The process of construction:

1. the root of the tree is formula X;

2. let formula Y be terminal node of the given tree

if there - on the way from X to Y - occurs a formula K,

then any of formulas Kl or K2 as the only successor of

node Y can be added - we usually add step by step firstly

Kl, secondly K2 (the tree in considered branch develops

linearly);

if there - on the way from X to Y - occurs a formula D,

then formula Dl can be added as left successor and D2 as

right successor of formula Y (the tree in the node Y de

velops into two branches).

The branch of given tree is said to be closed, if it

contains a formula and its negation. Analytical table (tree)

is called to be closed, if every of its branches is closed. The

proof of the formula X is then understood as a closed table

for formula A/X. Such accepted proof seems to demonstrate that

every branch of decomposition of formula /vX forms inconsistent

set of formulas. That is why the formula /vX inconsistent,

hence formula X is a tautology or theorem.

Decompositional rules, which may be used in above men

tioned process, are according types:

- conjunctive rules with two successors

X 8rY /uQC v Y) A / (X => Y)

X A>X X

Y "Y . /vY

- con junct ive ru les w i th one successor

/UA/X X <=> Y A , (X <=> Y)

X (X => Y) V (Y => X) /vX <=> Y

- d i s j u n c t i v e r u l e s

/v(X 3r Y) X v Y X => Y

rvX I A/Y X I Y ^ X I Y

312

Example: proof of formula (p => q) => (/vq => /̂ p)

1 . * / ((p => q) => (*>q => /up))

2 . (p => q) <V A/(A/q => A / P) (1)

3. p => q (2)

4. /v(.A/q => A/p) (2)

5. /vp q (3)

6 . A/q A.«q (4)

7 . /VA/p A/AVp (4)

8 . p p (7)

In this proof on the left there are lines numbered, on the

right there is the source of formula, which occurs here, in

troduced by a line number. Both branches of proof are closed.

In the left branch there is a contradiction between formulas

in lines 5 and 7 or 5 and 8, in the right one there is a

contradiction between formulas in lines 5 and 6. There is no

need to continue in decomposition of given branch when contra

diction appears. In this proof there are redundant the formulas

of line 8 and in the right branch that of line 7. The proof

can be shortened by the preferring of the conjunctive type

rules applications.

IV. ALGORITHM TO METHOD OF ANALYTICAL TABLES IN PROLOG

Algorithm 3 is written in Prolog-80, that is why here are

some differences from algorithms 1 a 2. Especially, there

differs priorities of "operations" - logical connectives, but

only by numerical values. Usual convention of descending

prioriry of sequence of conectives /v, &•, v, => , <=> is

respected. It appears in the proof protocol - the brackets

are omitted always there, where the order of operations is

given by implicit relationship.

Optimizing of proof construction is not applied, because

it would make computation longer.

In proof protocol the branches are signed only as the

first one and the second one. Corresponding assignment is re

alized on the principle of LIFO.

- 313 -

Algorithm works as follows - if it finds out the first

branch, in which there is no contradiction, the computation is

finished, because the formula cannot become a theorem.

Logic program of algorithm 3:

/x Operations - logical connectives x/

- op(210,xfy, <=>) /x equivalence x/

- op(180,xfy,=>) /x implication x/

- op(150,xfy,v) /x disjunction x/

- op(120,xfy ,&-) /x conjunction x/

- op(90, xf y ,/v/) /x negation x/

/x Organisation of reading and proving of formula x/

formula:- repeat,nl,nl,write('Formula: '),nl,

read(F), (F = = stop_; theorem(^F),f ail).

theorem(T):- nl,nl,write(Proof of inconsistency of formula:'),

nl,write(T),nl,nl,write(Main branch: ') ,

(seq([T], [T]),!,nl,nl,write('formula is theorem);

nl ,nl,write(formula is not theorem')),

/x Decomposition of formula and branching x/

seq([Xl Y] ,Z)_:- nl ,write(X), f ail.

/x Conjunctive rules x/

seq([v̂ /Xll X2] ,Y)_:- append([Xl] ,Y,T),

append(X2, [Xl],Z),!,

seq(Z,T).

seq([XI 8r X2l X3] ,Y)_:- append ([XI, X2] ,Y,T),

append(X3, [X1,X2],Z),!,

seq(Z,T).

seq([A/(Xl v X2)IX3],Y):- append ([~>X1 h- A/X2] , Y , T) , ! ,

seq([A/Xl2r A/X2|X3] ,T).

seq([^(Xl => X2)| X3] ,Y)_:- append([XI tr <vX2] , Y , T) , ! ,

seq([Xl V A / X 2 | X 3] , T) .

seq([Xl <=> X2jX3],Y_:- append([(Xl => X2)2>~(X2 => X1)],Y,T),!,

seq([(Xl => X2) ^ (X2 => XI) | X3_), T) .

seq([~(Xl < = > X2)|X3],Y:- append([A/X1 <=> X2],Y,T),!,

seq([~Xl <=> X2|X3] ,T).

- 314 -

/x Disjunctive rules x/

s e q ([/ v (X l V X2)| X3] ,Y)_: - append([~X l] , Y , T 1) ,

append([/vX2] , Y , T 2) , ! ,

v l , s e q ([A / X l | X 3] , T l) , ! ,

v 2 , s e q ([v X 2 | X 3] , T 2) .

s e q ([X l v X 2 l X 3] , Y) _ : - append([x i] , Y , Tl) ,

a p p e n d ([X 2] , Y , T 2) , ! , .

v l , s e q ([X l | X 3] , T 1) , ! ,

v 2 , s e q ([X 2 | X 3] , T 2) .

s e q ([X l => X 2 | X 3] , Y) _ : - append([/vXl] , Y , T 1) ,

a p p e n d ([X 2] , Y , T 2) , ! ,

v l , s e q ([v X l | X3] , T 1) , ! ,

v 2 , s e q ([X 2 | X 3] , T 2) .

/ x A tomic f o r m u l a x /

s e q ([j X] ,Y)_: - s e q (X , Y) .

/ x End of d e c o m p o s i t i o n x /

seq([] ,X)_: - s c o n t r (X , X) .

a p p e n d ([] , L , L) .

a p p e n d ([H l T] , L [H | u])_: - a p p e n d U ,L , U) .

/ x S e a r c h i n g of c o n t r a d i c t i o n i n a c t u a l b ranch x /

s c o n t r ([] , _) . : - f a i l .

s c o n t r ([X I Y] , Z) : - (c o n t r (X , Y) , n l , w r i t e (' b r a n c h c l o s e d ')) ;

s c o n t r (Y , Z) .

c o n t r (X , [~ X | _]) .

c o n t r (/ u X , [X | _]) .

c o n t r (X , [_ l Y]) _ : - c o n t r (X , Y) .

v l : - n l , n l , w r i t e (' l . b r a n c h ') .

v 2 : - n l , n l , w r i t e (' 2 . b r a n c h ') .

Examples of algorithm 3 performance:

Formula:

p => p.

Proof of inconsistency of formula:

/v(p => p)

315

Main branch:

A/ (p => p)

p ir A/p

P

A/p

branch closed

formula is theorem

Formula:

p v p.

Proof of inconsistency of formula:

(p v A/p)

Main branch:

A/(p v A /p)

A»p a" A/A/p

A/p

A/A/p

P

branch closed

formula is theorem

Formula:

A/(p 8< <vp).

Proof of inconsistency of formula:
*w(p %r vp)
Main branch:

A/A/(p &- A/p)

p 6r A/p

p
A/p

branch closed

formula is theorem

Formula:

A/p &~ p.

Proof of inconsistency of formula:

A/ (A/p %" p)

- 316

Main branch:

/v(/vp V p)

1 . branch
/\/A/p

P
formula is not theorem

Formula:

(p => q) *r (q => r) => (p => r) .

Proof of inconsistency of formula:

^((p => q) 2r (q => r) => (p => r))

Main branch:
/v((p => q) 2r (q => r) => (p => r))

(p => q) &-(q => r)

A/(p => r)

p Sr ,vr

p => q

1. branch 2. branch

~P q

q => r q => r

1 . branch 1 . branch
A/ q A/q

P P

A/r A/T

branch closed branch closed

2. branch 2. branch

r r

P P

^r n/r

branch closed branch closed

formula is theorem

V. COMPARISON OF ALGORITHMS

Let's choose the law of implication transitivity as re

presentative - it is more complicated formula, individual

- 317 -

proofs are regardless of used algorithm approximately of the

same length and in all proofs multiple branching is used.

Firstly we can assume that documentation of proofs at
>

all algorithms is badly arranged as soon as the proof "length"

overpasses screen range. It seems to be a serious didactic

deffect, if uwer wants to understand more complicated proofs.

If we eliminate algorithm 1, which has not a character

of logic program (see [2]), there are algorithms 2 and 3 left

to evaluation. The length of the proof made by algorithm 2

will be usually little bit less than that of algorithm 3.

Essential advantage of algorithm 3 is the fact that

during realization the proof the formulas become more and

more simple, so the proof is clearer than at the other

algorithms,

formulas are in usual syntactic form and so it is easy

to find the reason of contradiction in actual branch

(closed branch).

- 318

SOUHRN

METODY DOKAZOVÁNÍ TEORÉM0 VÝROKOVÉHO POČTU V PROLOGU

JAN ŠTĚPÁN

V článku jsou popsány dva algoritmy důkazu teorémů výro

kového počtu - Wangova metoda a metoda analytických tabulek.

Wangova metoda je doložena dvěma programy v Prologu převzatý

mi z [l] a [2]. Pro metodu analytických tabulek je předložen

autorův program. Efektivnost programů je demonstrována na pří

kladech. Dále je diskutována praktická a didaktická hodnota

uvedených metod a programů.

319 -

РЕЗЮМЕ

МЕТОДЫ ДОКАЗАТЕЛЬСТВА ТЕОРЕМОВ ПРОПОЗИЦИОНАЛЬНОГО

ИСЧИСЛЕНИЯ В ПРОЛОГЕ

Я» ШТЕПАН

1

В этой статье описаны два алгорифме доказательства

теоремов пропозиционального исчисления - метод Венге и

метод енелитичных таблиц* Метод Ванге является основа

нием двух программ, которые приняты и8 /1/ и /2/* Для

метода енелитичных таблиц вдесь покаеене программе авто

ра • Действенность этих прогремм показана не примерах* Де-

лее здесь обсуждена практическая и учебнея ценность этих

елгорифмов и прогремм*

320

REFERENCES

[l] C o e 1 h o, H. - C o t t a, J.C. - P e r e i r a , L.M.: How t o
solve i t w i th Prolog. Lisboa, LNEC 1985.

[2] C o e l h o , H. - C o t t a , J .C. : Prolog by example. Sprinqer-Ver-
lag 1988.

[3] S m u 1 1 y a n, R.M.: F i r s t order l o g i c . B r a t i s l a v a , ALFA 1979.

Authors address_:

RNDr.PhDr.Jan Štěpán, CSc.

katedra výpočetní techniky
přírodovědecké fakulty UP

771 46 Olomouc

Czechoslovakia

Acta UP0, Fac.rer.nat.97, Mathematica XXIX, 1990, 301 - 321.

321 -

		webmaster@dml.cz
	2012-05-03T21:16:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

