Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Alena Vanžurová
Natural transformations of the second tangent functor and soldered morphisms

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 31 (1992), No. 1, 109--118

Persistent URL: http://dml.cz/dmlcz/120273

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1992
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

NATURAL TRANSFORMATIONS OF THE SECOND TANGENT FUNCTOR AND SOLDERED MORPHISMS

ALENA VANŻUROVA
(Received July 12, 1990)

Abstract. In [3], all natural transformations of the second order prolongation functor $T T$ into itself were found. We shall show here another method of obtaining similar results using $G L(V)$-equivariant maps of double vector space $V X V X V$ with TT-soldering, and avoiding coordinates where possible.

Key words: Double vector space, double linear morphism, soldering, natural transformation.

MS Classification : 53C05

Given a vector space V, let 1_{V} denote the identity on V, and $A u t(V)$ the linear automorphisms group of V.

Lemma 1. Let V be an n-dimensional space over a field K with char $K \neq 2$. Let $f: V \longrightarrow V$ be a map satisfying (1) $\varphi f=f \varphi$ for all $\varphi \in \operatorname{Aut}(V)$. Then there exists' a unique $\lambda \in \mathbb{R}$ such that $f=\lambda .1_{V}$.

Proof. First we shall show that f is an endomorphism. By our assumption, f commutes with $\varphi=\mu .1_{V}$ for $\mu \neq 0$, i.e. $f(\mu v)=\mu f(v)$ for all $v \in V, \mu \neq 0$. This equality holds even for $\mu=0$. Therefore f is homogenous. In the case $r=1, f$ is obviously additive. So suppose $r \geq 2$, and assume v_{1}, v_{2} from V linearly independent. We shall prove $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$. Choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in v such that $e_{1}=v_{1}, e_{2}=v_{2}$. We can write $f(v)=\sum_{k=1}^{n} f_{k}(v) e_{k}$. Let $i \neq j$ be two different indexis, $i, j \in\{1, \ldots, n\}$. We define $\varphi^{*} \in A u t(V)$ by

$$
\varphi^{*}\left(e_{1}\right)=e_{j}, \quad \varphi^{*}\left(e_{j}\right)=e_{1}, \quad \varphi^{*}\left(e_{k}\right)=e_{k} \quad \text { for } k \neq i, j
$$

Using (1) and comparing the corresponding coefficients in the expressions of $\varphi^{*} f\left(e_{i}\right)$ and $f \varphi^{*}\left(e_{i}\right)$ gives

$$
f_{i}\left(e_{j}\right)=f_{j}\left(e_{i}\right), f_{i}\left(e_{i}\right)=f_{j}\left(e_{j}\right) .
$$

Similarly, an evaluation of $\varphi^{* *} f\left(e_{1}\right)$ and $f \varphi^{* *}\left(e_{1}\right)$ where $\varphi^{* *}$ is given by $\varphi^{* *}\left(e_{1}\right)=e_{1}+e_{2}, \quad \varphi^{* *}\left(e_{2}\right)=e_{1}-e_{2}, \quad \varphi^{* *}\left(e_{k}\right)=e_{k} \quad$ for $k \geq 2 \quad y i e l d s$ $f_{1}\left(e_{1}+e_{2}\right)=f_{1}\left(e_{1}\right)+f_{1}\left(e_{2}\right)$. An application of φ^{\prime} with $\varphi^{\prime}\left(e_{1}\right)=-e_{1}+e_{2}$, $\varphi^{\prime}\left(e_{2}\right)=e_{1}+e_{2^{\prime}} \varphi^{\prime}\left(e_{k}\right)=e_{k}$ for $k>2$ and comparison of $\varphi^{\prime} f\left(e_{2}\right)$ with $f \varphi^{\prime}\left(e_{2}\right)$ gives $f_{2}\left(e_{1}+e_{2}\right)=f_{2}\left(e_{1}\right)+f_{2}\left(e_{2}\right)$. If $n=2$, the proof is finished. Suppose $n>2$, and choose a fixed index i>2. Define φ by $\varphi e_{1}=e_{2}+e_{1}, \varphi e_{2}=e_{1}+e_{i}, \varphi e_{1}=e_{1}+e_{2}, \varphi e_{k}=e_{k}$ for $k \neq 1,2, i$. Comparing coefficients in $\varphi f\left(e_{i}\right)$ and $f \varphi\left(e_{i}\right)$, we find $f_{i}\left(e_{1}+e_{2}\right)=f_{i}\left(e_{1}\right)+f_{i}\left(e_{2}\right)$ which proves the additivity of f. Hence f is an endomorphism of V commuting with all automorphisms of V.

Now let $v \in V$ be a non-zero vector. Choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ in V with $e_{1}=V$, and define $\varphi \in \operatorname{Aut}(V)$ by $\varphi e_{1}=e_{1}, \varphi e_{k}=v e_{k}$ for $\nu \neq 0,1$, $\nu \in \pi, \quad k \neq 1$. Since $\varphi f\left(e_{1}\right)=f \varphi\left(e_{1}\right)$ we have $f_{k}\left(e_{1}\right)=0$ for $k>1$. Thus there exists a unique function $\lambda: V-\{0\} \longrightarrow \pi$ such that $f(v)=\lambda(v) . v$ for all $v \in V, v \neq 0$. Let $v_{1}, v_{2} \in V$ be non-zero vectors, and $\varphi^{*} \in \operatorname{Aut}(V)$ sends v_{1} onto v_{2}. Then we obtain

$$
\lambda\left(v_{2}\right) v_{2}=f\left(v_{2}\right)=f \varphi^{*}\left(v_{1}\right)=\varphi^{*} f\left(v_{1}\right)=\lambda\left(v_{1}\right) \cdot \varphi^{*}\left(v_{1}\right)=\lambda\left(v_{1}\right) \cdot v_{2}
$$

which proves that λ is a constant function. Since $f(0)=0$ the equality $f(v)=\lambda v$ is fullfilled for all $v \in V$, and the unicity of λ is obvious.

Consider a trivial double vector space $C=A x B x C \longrightarrow A x B$ where A, B, V are finite-dimensional vector spaces over reals.

Any automorphism $\varphi \in A u t(C)$ can be identified with a quadruple $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \sigma\right)$ where $\varphi_{1} \in \operatorname{Aut}(A), \varphi_{2} \in \operatorname{Aut}(B), \varphi_{3} \in \operatorname{Aut}(V)$ are the underlying linear morphisms, and $\sigma \in \operatorname{Hom}(A x B, V)$ is bilinear. It holds $\varphi(a, b, v)=\left(\varphi_{1}(a), \varphi_{2}(b), \sigma(a, b)+\varphi_{3}(v)\right),[4]$. A map $f: C \longrightarrow C$ will be expressed by means of it components f_{1}, f_{2}, f_{3}.

Proposition 1. Let $f: C \longrightarrow C$ be a continuous map such that

$$
\begin{equation*}
\varphi f=f \varphi \quad \text { for all } \varphi \in \operatorname{Aut}(C) \tag{2}
\end{equation*}
$$

Then there are uniquely determined $\lambda, \mu \in \mathbb{R}$ satisfying

$$
f(a, b, v)=(\lambda a, \mu b, \lambda \mu v)=\lambda \cdot ._{1}\left(\mu \cdot{ }_{2}(a, b, v)\right)
$$

Proof.
Using components of f and φ, we rewrite (2) as follows:

$$
\begin{align*}
& \varphi_{1}\left(f_{1}(a, b, v)\right)=f_{1}\left(\varphi_{1}(a), \varphi_{2}(b), \sigma(a, b)+\varphi_{3}(v)\right), \tag{3}\\
& \varphi_{2}\left(f_{2}(a, b, v)\right)=f_{2}\left(\varphi_{1}(a), \varphi_{2}(b), \sigma(a, b)+\varphi_{3}(v)\right), \\
& \varphi_{3}\left(f_{3}(a, b, v)\right)+\sigma\left(f_{1}(a, b, v), f_{2}(a, b, v)\right)= \tag{5}\\
& \quad f_{3}\left(\varphi_{1}(a), \varphi_{2}(b), \sigma(a, b)+\varphi_{3}(v)\right) .
\end{align*}
$$

In (3), let us fix the vectors b, v, and set $\varphi_{2}=1_{B^{\prime}} \varphi_{3}=1_{V^{\prime}} \sigma=0$. We obtain a map $f_{1}(-, b, v): A \longrightarrow A$ satisfying the condition (1) of L.1. Hence there is $\lambda(b, v) \in \mathbb{R}$ such that

$$
f_{1}(a, b, v)=\lambda(b, v) \cdot a .
$$

This formula defines a continuous function $\lambda: B X V \longrightarrow \Re$.
A substitution $\varphi_{1}=1_{A}, \sigma=0$ in (3) shows that λ is constant on a dense subset $\{(b, v) \mid b \neq 0, V \neq 0\}$ of $B x V$. Since λ is continuous, it is constant on the whole $B X V$. Thus $f_{1}(a, b, v)=\lambda a$. The existence of μ can be proved similarly. Further, a substitution $\varphi_{1}=1 A^{\prime}$ $\varphi_{2}=1_{B}, \sigma=0$ in (5) yields a continuous function $v: A x B \longrightarrow R$ satisfying $f_{3}(a, b, v)=\nu(a, b) v$. Using $\varphi_{1}=1_{A^{\prime}} \quad \varphi_{1}=1_{B^{\prime}} \quad \varphi_{3}=1_{V}$ in (5) gives $\nu(a, b)=\lambda \mu$. The unicity of λ, μ is obvious.

The TT-soldered double vector space $V x V x V$.

Let $C, \pi: C \longrightarrow A x B$ be a double vector space with the kernel V, [4]. A TT-soldering on C is a couple of linear isomorphisms

$$
x_{1}: V \longrightarrow A, \quad x_{2}: V \longrightarrow B
$$

The space C with a TT-soldering will be called TT-soldered.
A double linear morphism $\varphi: C \longrightarrow C^{\prime}$ of two TT-soldered DL-spaces
with $T T$-solderings χ_{1}, χ_{2}, or $\chi_{1}^{\prime}, \chi_{2}^{\prime}$ respectively will be called $T T$-soldered if the underlying linear maps $\varphi_{1^{\prime}}, \varphi_{2}, \varphi_{3}$ satisfy

$$
\chi_{1}^{\prime} \varphi_{3}=\varphi_{1} \chi_{1} \quad \text { and } \quad \chi_{2}^{\prime} \varphi_{3}=\varphi_{2} \chi_{2}
$$

From now on, V will denote an n-dimensional vector space over reals, with the usual topology and differentiable structure. Assume a trivial double vector space $C^{\circ}=V x V x V \longrightarrow V x V$ with a TT-soldering $\chi_{1}=\chi_{2}=1_{V}$. A double linear automorphism of C°, φ, is TT-soldered if and only if $\varphi_{1}=\varphi_{2}=\varphi_{3}$. A TT-soldered automorphism of $C^{\circ}, \Phi=(\varphi, \varphi, \varphi, \sigma)$, will be called strongly soldered if the bilinear map σ is symmetric.

In this part, we shall investigate differentiable maps $f: C^{\circ} \longrightarrow C^{\circ}$ commuting with all TT-soldered (or strongly TT-soldered, respectively) automorphisms of C°.

Assume a fixed continuous map $f: V^{m} \longrightarrow V$ commuting with all $\varphi \in A u t(V)$. We shall need some of its properties:

Lemma 2. Let v_{1}, \ldots, v_{m} be a set of linearly independent vectors in V. Then there exist uniquely determined reals $f_{k}\left(v_{1}, \ldots, v_{m}\right), k=1, \ldots, m$ such that

$$
f\left(v_{1}, \ldots, v_{m}\right)=\sum_{k=1}^{m} f_{k}\left(v_{1}, \ldots, v_{m}\right) v_{k} .
$$

Proof.
The unicity is obvious. To prove the existence, choose $\lambda \neq 0$, and consider $\varphi=\lambda .1_{V}$. By the above assumption,

$$
\lambda f\left(v_{1}, \ldots, v_{m}\right)=f\left(\lambda v_{1}, \ldots, \lambda v_{m}\right)
$$

Since f is continuous, this equality holds also for $\lambda=0$, i.e. $f(0, \ldots, 0)=0$. Let us add $n-m$ vectors so as $\left\{v_{1}, \ldots, v_{m}, v_{m+1}, \ldots\right.$, $\left.v_{n}\right\}$ would be a basis in V. We can write

$$
f\left(v_{1}, \ldots, v_{m}\right)=\sum_{k=1}^{m} f_{k}\left(v_{1}, \ldots, v_{m}\right) v_{k}
$$

Using. $\varphi^{*} \in \operatorname{Aut}(V), \varphi^{*}\left(v_{k}\right)=\lambda v_{k}$ with $\lambda \neq 1$ for $k=1, \ldots, m, \varphi^{*}\left(v_{k}\right)=v_{k}$ for $k=m+1, \ldots, n$, we get

$$
f_{k}\left(\lambda v_{1}, \ldots, \lambda v_{m}\right)=f_{k}\left(v_{1}, \ldots, v_{m}\right) \text { for } k=m+1, \ldots, n
$$

Further,

$$
f_{k}\left(v_{1}, \ldots, v_{m}\right)=\lim _{\lambda \rightarrow 0} f_{k}\left(\lambda v_{1}, \ldots, \lambda v_{m}\right)=f_{k}(0, \ldots, 0)=0
$$

for $k=m+1, \ldots, n$ which finishes the proof.

Lemma 3. There are uniquely determined functions

$$
g_{k}: V-\{0\} \longrightarrow R,
$$

$k=1, \ldots, m$ such that for linearly independent $v_{1}, \ldots, v_{m} \in V$,

$$
f\left(v_{1}, \ldots, v_{m}\right)=\sum_{k=1}^{m} g_{k}\left(v_{k}\right) v_{k}
$$

Proof.
Let $i \in\{1, \ldots, m\}$ be fixed. Let v_{1}, \ldots, v_{m} and $v_{1}^{\prime}, \ldots, v_{m}^{\prime}$ be two independent sets of vectors from V with $v_{i}=v_{i}^{\prime}$.
By L.2., there are uniquely determined numbers $f_{k}\left(v_{1}, \ldots, v_{m}\right)$, $f_{k}^{\prime}\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right) ; k=1, \ldots, m$ satisfying

$$
\begin{align*}
& f\left(v_{1}, \ldots, v_{m}\right)=\sum_{k=1}^{m} f_{k}\left(v_{i}, \ldots, v_{m}\right) v_{k}, \tag{6}\\
& f\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)=\sum_{k=1}^{m} f_{k}^{\prime}\left(v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right) v_{k}^{\prime} .
\end{align*}
$$

Applying suitable automorphisms we get

$$
\begin{gathered}
f_{i}^{\prime}\left(v_{1}^{\prime}, \ldots, v_{i}^{\prime}, v_{i}, v_{i+1}^{\prime}, \ldots, v_{m}^{\prime}\right)=f_{i}\left(v_{1}, \ldots, v_{i}, \ldots, v_{m}\right)= \\
=f_{i}\left(0, \ldots, v_{i}, \ldots, 0\right)=0 .
\end{gathered}
$$

Let $v \in V-\{0\}$. Choose a linearly independent set v_{1}, \ldots, v_{m} in V with $v_{i}=v$. We can use (6) to define the function

$$
g_{i}(v)=f_{i}\left(v_{1}, \ldots, v_{m}\right),
$$

$i=1, \ldots, m$ having the required properties.

Proposition 2. Let $m \leq \operatorname{dim} V$, and let $f: V^{m} \longrightarrow V$ satisf Y

$$
\begin{equation*}
\varphi f=f \varphi \quad \text { for, all } \quad \varphi \in \operatorname{Aut}(V) \tag{7}
\end{equation*}
$$

Then there exist unique $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}$ such that

$$
\begin{equation*}
f\left(v_{1}, \ldots, v_{m}\right)=\sum_{k=1}^{m} \lambda_{k} v_{k} \quad \text { for any } \quad v_{1}, \ldots, v_{m} \in V . \tag{8}
\end{equation*}
$$

Proof. Choose $v \in V-\{0\}$, and $v_{1}, \ldots, v_{m} \in V$ independent with $v_{1}=V$. By L.2. and (7), $g_{1}(\varphi(v))=g_{1}(v)$ for any $\varphi \in \operatorname{Aut}(V)$. Therefore $g_{1}: V-\{0\} \longrightarrow \Re$ is a constant function with a value denoted by λ_{1}, and the equality (8) holds for any independent set v_{1}, \ldots, v_{m}. By continuity, this formula is true for any m-tuple from V^{m}.

The above proposition does not involve some useful cases as $\operatorname{dim} V=1, m=2,3$, or $\operatorname{dim} V=2, m=3$. So we shall slightly modify our assumptions.

Proposition 3. Let $f: V^{n} \longrightarrow V$ satisfy (7), and has a differential at a point $0 \in V^{n}$. Then there exist uniquely determined reals $\lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ satisfying (8).

Proof. Since f has a differential at 0 , we can write

$$
f\left(v_{1}, \ldots, v_{\mathrm{m}}\right)=(T f)_{0}\left(v_{1}, \ldots, v_{\mathrm{m}}\right)+g\left(v_{1}, \ldots, v_{\mathrm{m}}\right)
$$

where

$$
\lim _{v \rightarrow 0} \frac{g(v)}{\mid v \|}=0, \quad v=\left(v_{1}, \ldots, v_{\mathrm{m}}\right)
$$

and $\left\|\|\right.$ is any norm on V^{m}.
For $\lambda \neq 0, \lambda f\left(v_{1}, \ldots, v_{\mathrm{m}}\right)=\lambda(T f)_{0}\left(v_{1}, \ldots, v_{\mathrm{m}}\right)+\lambda g\left(v_{1}, \ldots, v_{\mathrm{m}}\right)$. On the other hand, $\lambda f\left(v_{1}, \ldots, v_{\mathrm{m}}\right)=f\left(\lambda v_{1}, \ldots, \lambda v_{\mathrm{m}}\right)=(T f)_{0}\left(\lambda v_{1}, \ldots, \lambda v_{\mathrm{m}}\right)$ $+g\left(\lambda v_{1}, \ldots, \lambda v_{\mathrm{m}}\right)=\lambda(T f)_{0}\left(v_{1}, \ldots, v_{\mathrm{m}}\right)+g\left(\lambda v_{1}, \ldots, \lambda v_{\mathrm{m}}\right)$.
Hence $\lambda g\left(v_{1}, \ldots, v_{\mathrm{m}}\right)=g\left(\lambda v_{1}, \ldots, \lambda v_{\mathrm{m}}\right)$. Further, for any $v \neq 0$,

$$
0=\lim _{\lambda \rightarrow 0^{+}} \frac{g(\lambda v)}{|\lambda v| \mid}=\lim _{\lambda \rightarrow 0^{+}} \frac{\lambda g(v)}{\lambda| | V \mid}=\frac{g(v)}{|v| \mid}
$$

which implies $g(v)=0$ for any $v \neq 0$. Since g has a differential at 0 , it is continuous, and $g(0)=0$. Therefore $f=(T f)_{0}, f$ is linear, and $f\left(v_{1}, \ldots, v_{m}\right)=\sum_{i=1}^{m} g_{i}\left(v_{1}\right)$ where $g_{i}: V \longrightarrow V$ are given by $g_{i}(v)=$ $f\left(0, \ldots, v_{1}, \ldots, 0\right), i=1, \ldots, m$. BY (7), any g_{i} commutes with all automorphisms of V, and by L.1., there exists $\lambda_{1} \in \mathbb{K}$ such that $g_{i}(v)=\lambda_{1} v$ for any $v \in V$, i.e. (8) is satisfied. The unicity is obvious.

Let us return to our problem. Among the maps $f: C^{\circ} \longrightarrow C^{\circ}$ having differential at $0 \in C^{\circ}=V X V X V$, we shall distinguish such ones that commute with all soldered (or strongly soldered,resp.) automorphisms $\Phi=(\varphi, \varphi, \varphi, \sigma)$ of C°. The equality $\Phi f=\Phi f$ can be rewritten by means of components in the form (3),(4),(5) with $\varphi_{1}=\varphi, i=1,2,3$. If we choose $\sigma=0$, Prop. 3. guarantees the existence of a set of real numbers $\lambda_{i j} ; i, j=1,2,3$ satisfying (8) with $m=3$. A substitution of (8) into (3) and (4) gives

$$
\lambda_{13} \sigma\left(v_{1}, v_{2}\right)=0, \quad \lambda_{23} \sigma\left(v_{1}, v_{2}\right)=0
$$

for any bilinear (or symmetric bilinear, respectively) map $\sigma: V X V \longrightarrow V$; therefore $\lambda_{13}=0, \lambda_{23}=0$. Similarly, substituing (8) into (5), we obtain
(9) $\quad \lambda_{11} \lambda_{21}=0, \quad \lambda_{12} \lambda_{22}=0, \quad \lambda_{11} \lambda_{22}=\lambda_{33} \quad \lambda_{12} \lambda_{21}=0$
(and $\lambda_{11} \lambda_{22}+\lambda_{12} \lambda_{21}=\lambda_{33^{\prime}}$ respectively).

Obviously, (9) can be fullfilled in three (or four, resp.) ways:
I. If $\lambda_{11}=\lambda_{12}=0$, then f is of the form
$f_{1}\left(v_{1}, v_{2}, v_{3}\right)=0, \quad f_{2}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{21} v_{1}+\lambda_{22} v_{2}$,
$f_{3}\left(v_{1}, V_{2}, V_{3}\right)=\lambda_{31} V_{1}+\lambda_{32} V_{2}$.
II. If $\lambda_{12}=\lambda_{21}=0$, then $f_{1}\left(v_{1}, V_{2}, v_{3}\right)=\lambda_{11} V_{1}$,
$f_{, 2}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{22} V_{2}, \quad f_{3}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{31} v_{1}+\lambda_{32} v_{2}+\lambda_{11} \lambda_{22} v_{3}$.
III. In the case $\lambda_{21}=\lambda_{22}=0$, we have $f\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{11} v_{1}+\lambda_{12} v_{2}$, $f_{2}\left(v_{1}, v_{2}, v_{3}\right)=0, \quad f_{3}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{31} v_{1}+\lambda_{32} v_{2}$.
(IV. If $\lambda_{11}=\lambda_{22}=0$, then f is of the form $f_{1}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{12} v_{2}$, $\left.f_{2}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{21} V_{1}, \quad f_{3}\left(v_{1}, v_{2}, v_{3}\right)=\lambda_{31} v_{1}+\lambda_{32} v_{2}+\lambda_{12} \lambda_{21} v_{3}.\right)$

On the set $Z\left(C^{\circ}\right)$ of all differentiable maps of the double linear space $C^{\circ}=V x V x V$ into itself, we can define usual composition, and addition in the following cases:

$$
f+{ }_{1} g \text { if } \pi_{1} f=\pi_{1} g, \quad f+{ }_{2} g \text { if } \pi_{2} f=\pi_{2} g
$$

$f+g$ if $g\left(C^{\circ}\right) \subset V, \quad f, g \in Z\left(C^{\circ}\right)$.
Denote by $Z_{s}\left(C^{\circ}\right)$ (or $Z_{s s}\left(C^{\circ}\right)$, respectively) the subset of all $f \in Z\left(C^{\circ}\right)$ satisfying $\Phi f=f \Phi$ for any $T T$-soldered (or strongly $T T$-soldered) double linear automorphism $\Phi: C^{\circ} \longrightarrow C^{\circ} . Z_{s}\left(C^{0}\right)$ as well as $Z_{s s}\left(C^{\circ}\right)$ are closed with respect to the above operations. It can be verified the following:

Proposition 4. By means of the abo: o operations, the set $Z_{s}\left(C^{\circ}\right)\left(\right.$ or $Z_{s s}\left(C^{\circ}\right)$, respectively) is generated by the following maps:
(10) $\quad\left(v_{1}, v_{2}, v_{3}\right) \longrightarrow \lambda .{ }_{1}\left(\mu . v_{2}\left(v_{1}, v_{2}, v_{3}\right)\right), \lambda, \mu \in R$
(11) $\left(v_{1}, v_{2}, v_{3}\right) \longrightarrow\left(v_{1}+V_{2}, 0,0\right)$
(12) $\left(v_{1}, v_{2}, v_{3}\right) \longrightarrow\left(0, v_{1}+V_{2}, 0\right)$
(13) $\left(v_{1}, V_{2}, v_{3}\right) \longrightarrow\left(0,0, v_{1}+v_{2}\right)$
(and (14) $\left.\left(v_{1}, v_{2}, v_{3}\right) \longrightarrow\left(v_{2}, v_{1}, v_{3}\right)\right)$.
The maps of the type (10) comaute even with all $D \mathscr{L}$-automorphisms.

Natural transformations of TT into itself.

The second order lifting functor $T T$ will be here regarded as a covariant functor from the category of n-dimensional differentiable manifolds and their diffeomorphisms to the category of fibred manifolds and morphisms. TT assigns a double linear fibration $T T M$ to a differentiable manifold M, and for any diffeomorphism $\varphi: M \longrightarrow N$, the assigned map $T T \varphi: T T M \longrightarrow T T N$ is a double linear morphism. All three underlying vector fibrations are identified with $T M$.

Consider a natural transformation $\psi: T T \longrightarrow T T$. Let $\alpha: \mathfrak{K}^{n} \longrightarrow \mathbb{K}^{n}$ be a diffeomorphism with $\alpha(0)=0$. The space $T T_{0} \mathbb{R}^{n}$ is canonically $D \mathscr{L}$-isomorphic with the trivial $D \mathscr{L}$-space $\pi^{n} x \pi^{n} x \pi^{n}$. The map $T T_{0}^{\alpha}$ regarded as a double linear automorphism has the components

$$
\begin{equation*}
T T_{0} \alpha=\left(T_{0} \alpha, T_{0} \alpha, T_{0} \alpha, \dot{\sigma}_{\alpha}\right) \tag{15}
\end{equation*}
$$

where $T_{0} \alpha$ is a differential of α at $0 \in \mathscr{K}^{n}$, and σ_{α} is its second differential at 0 . Clearly, (15) is a strongly soldered \mathscr{D}-automorphism of the trivial $D \mathscr{L}$-space $x^{n} x x^{n} x^{x^{n}}$, and it depencs only on the $2-j e t$ of α at 0 . This fact enables us to define a map $v: L_{n}^{2} \longrightarrow A u t_{0}\left(\mathbb{R}^{n} x \mathbb{R}^{n} X R^{n}\right)$ by $v\left(j_{0}^{2} \alpha\right)=\left(T_{0} \alpha, T_{0} \alpha, T_{0} \alpha, \sigma_{\alpha}\right)$ where L_{n}^{2} denotes the group of all invertible 2-jets (2-jets of local diffeomorphisms) on x^{n} with source and target 0 , and $A u t_{0}$ is the group of all strongly soldered $D \mathscr{L}$-automorphisms. It can be verified that L_{n}^{2} is a semidirect product of L_{n}^{1} and the Abelian group $\operatorname{Hom}_{s}\left(x^{n} x x^{n}, x^{n}\right)$ of all symmetric bilinear maps; $j_{0}^{2} \alpha$ corresponds to the couple $\left(T_{0} \alpha, \sigma_{\alpha}\right)$. Expressing L_{n}^{2} via this semidirect product, we find that v is a group isomorphism.

The following diagram is commutative :

Therefore $\psi_{0} s^{n}$ commutes with all strongly soldered
$D \mathscr{D}$-automorphisms of the $D \mathscr{L}$-space $T T_{0} S^{n}$, i.e. $\psi_{0} X^{n} \in Z_{s s}\left(T T_{0} T^{n}\right)$. Further, any natural transformation ψ is fully determined by $\psi_{0} \mathbb{R}^{n}$. In fact, choose a map $\varphi: U \longrightarrow \mathbb{R}^{n}$ in a neighborhood U of $x \in M$ with $\varphi(x)=0$. Then the diagram

commutes which proves our assertion.
Finally, if $f \in Z_{s s}\left(T T_{0} R^{n}\right)$ there exists a natural transformation $\Psi: T T \longrightarrow T T$ such that $\psi_{0} \mathbb{R}^{n}=f$. We define $\psi_{\mathrm{x}} M=\left(T T_{\mathrm{x}} \varphi\right)^{-1} . \mathrm{f} .\left(T T_{\mathrm{x}} \varphi\right)$ where φ is a map chosen as above. The map $\psi M:: T T M \longrightarrow T T M$ coinciding with $\psi_{x} M$ on the fibre over $x \in M$ is differentiable, independent of the choice of φ, and satisfies $\psi_{0} x^{n}=f$. So we have proved:

Proposition 5. There exists a bijective correspondence between all natural transformations of the functor $T T$ into $T T$ and the set $Z_{s s}\left(T T_{0} X^{n}\right)$.

Proposition 6. Using the operation of composition and the operation + (the action of the vector fibration $V=T M$ on the affine fibration TTM,[5]), the set of all natural transformations of $T T$ into itself is generated by the following natural transformations:
(16) $\quad X \in T_{y}(T M) \longrightarrow \lambda .{ }_{1}\left(\lambda^{\prime} \cdot{ }_{2} X\right) \in T_{\lambda \cdot 2^{y}}(T M), \quad \lambda, \lambda^{\prime} \in \mathbb{R}$,
(17) $X \in T_{y}(T M) \longrightarrow 0 \in T_{y+T p(X)}(T M)$ where 0 is a zero vector, $T p: T T M \longrightarrow T M$ is a tangent map of the natural projection $p: T M \longrightarrow M$,
(18) $X \in T_{y}(T M) \longrightarrow\left(T o_{K}\right)_{x}(Y+T p(X))$ where $x=p(Y)$, and o_{k} denotes a zero section of the vector fibration TM,

$$
\begin{equation*}
X \in T_{y}(T M) \longrightarrow e_{M}(y+T p(X)) \in T_{0}\left(T_{x} M\right) \text { where } x \in p(y) \text {, and } \tag{19}
\end{equation*}
$$ $e_{H}: T_{X} M \longrightarrow T_{0}\left(T_{X} M\right)$ is a canonical isomorphism, $X \in T_{y}(T M) \longrightarrow i_{M} X \in T_{T p(X)}(T M)$ where i_{M} denotes a canonical involution on TTM.

Proof. By Prop. 5., the set of all natural transformations of $T T$ into itself is generated by the natural transformations corresponding to the generators of $Z_{s s}\left(T T_{0} R^{n}\right)$ described in Prop. 4. An evaluation in local coordinates shows that the transformations from (16)-(20) correspond respectively to the maps given by the formulas (10)-(14).

References

[1] J.Janyška: Geometrical properties of prolongation functors, Casop. pěst. mat. 110 (1985), 77-86.
[2] I. Kolář and Z. Radziszewski: Natural transformations of second tangent and cotangent functors, Czech. Mat. J. 38 (113) 1988, 274-279.
[3] I.Kolář: Natural transformations of the second tangent functor into itself, Arch. Math. 4, Fac. Rer. Nat. UJEP Brunensis XX (1984), 169-172.
[4] A.Vanžurová: Double vector spaces, Acta UPO, Fac. rer. nat. 88 (1987), 9-25.
[5] A.Vanžurová: Double linear connections, Acta UPO, Fac. rer. nat. 100 (1991), 257-271.
[6] A.Vanžurová: Soldered double linear morphisms, Mathematica Bohemica, to appear in 1992.

Author's address: Department of Algebra and Geometry Faculty of Sciences, Palacký University Svobody 26,
77146 Olomouc
Czechoslovakia

Acta UPO, Fac. rer. nat. 105, Mathematica XXXI (1992)

