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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1992 Mathematica XXXI Vol .105 

NATURAL TRANSFORMATIONS OF THE SECOND TANGENT 
FUNCTOR AND SOLDERED MORPHISMS 

ALENA VANČUROVÁ 

(Received July 12, 1990) 

Abstract. In [3], all natural transformations of the second 

order prolongation functor TT into itself were found. We shall 
show here another method of obtaining similar results using 

G L ( V ) - e q u i v a r i a n t maps of double vector space VxVxV with 

TT-soldering, and avoiding coordinates where possible. 

Key words: Double vector space, double linear morphism, 

soldering, natural t r a n s f o r m a t i o n . 

MS Classification : 53C05 

Given a vector space V, let 1^ denote the identity on V, 
and Aut(V) the linear automorphisms group of V. 

Lemma 1 . Let V be' an n-dimensional space over a field K 
with char K*2. Let f:V ——>V be a map satisfying 
(1) ?f=ftp for all tpeAut(V). 
Then there exists a unique \e% such that f=A . l . 
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Proof. First we shall show that f is an endomorphism. By 

our assumption, f commutes with f-ji. 1 for ii*0, i.e. f(uv)=uf(v) 

for all vev, u*0. This equality holds even for {i=0. Therefore f 

is homogenous. In the case r=l, f is obviously additive. So 

suppose r£2, and assume v ,v from V linearly independent. We 

shall prove f(v+v)=f(v )+f(v ) . Choose a basis {e , . . . ,e } in 
n 

V such that e =F , e =r .We can write f(v)= > f (v)e . Let i*f 
1 1 2 2 Z - k k ** 

k=l 

be two different indexis, i, je{ 1, . . . ,n}. We define <p*eAut(V) by 

cp*(e )=e , <p*(e )=e , >̂'(e )=e for k*i,j. 

Using (1) and comparing the corresponding coefficients in the 

expressions of <p*f(e.) and f<p*(e.) gives 

f (e.K.fe.) , f(e)=f(e) . 
- J J i i i J J 

Similarly, an evaluation of <p**f(e ) and ff>**fe ) where <p** is 

given by <p**(e )=e +e , tp**(e )=e -e , «>*"(e )=e for k^l yields 
3 J r 1 1 2 r 2 1 2 r k k 

f (e +e )=f (e )+f (e ) . An application of <p' with <p' (e )=-e +e , 
1 1 2 1 1 1 2 r r ^ 1 1 2 

ip' (e )*=e +e , <pf (e )=e for k>2 and comparison of <p' f(e ) with 

ftp' (e ) gives f (e +e )=f (e )+f (e ) . If n=2, the proof is 

f i n i s h e d . Suppose n>2, and choose a fixed index i > 2 . Define <p by 

cpe =e +e , <pe =e +e , a>e =e +e , <pe =e for Jr*l, 2, i . Comparing 
r 1 2 i ' r 2 1 i ' r i l 2 ' r k k ' ' r s 

c o e f f i c i e n t s i n p f ( e ) and f<p(e ),we f i n d f (e +e )=f (e )+f (e ) 
r i i i 1 2 i 1 i 2 

which proves the additivity of f. Hence f is an endomorphism 

of V commuting with all automorphisms of V. 

Now let veV be a non-zero vector. Choose a basis {e , . . . ,e } 
1 n 

in V with e =r, and define <peAut(V) by pe =e , ??e =i>e for i/*0,l, 

yeK, Jr*l. Since pffe )=f<p(e ) we have f (e )=0 for k>l. 

Thus there exists a unique function X:7-{0} >K such that 

f(v)=\(v).v for all rev, p^O. Let v , v ey be non-zero vectors, 

and «>*€iiutCfr>) sends v onto v . Then we obtain 
1 2 

X(v2)vz~f(v2)=f<p*(vi)=<p*f(vi)=\(vi).<p*(vi)=,\(vi).v2 

which proves that X is a constant function. Since ffO)=0 the 

equality f(v)=Xv is fullfilled for all veV, and the unicity of A 

is obvious. 

Consider a trivial double vector space C=AxBxC >AxB where 

A,B,V are finite-dimensional vector spaces over reals. 
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Any automorphism <peAut(C) can be identified with a quadruple 

(91*92f93f^) where <p ^Aut(A), f^Aut(B), <peAut(V) are the 

underlying linear morphisms, and a e Hom(AxB,V) is bilinear. It 

holds <p(afbtv) = (<pi(a)f<p2(b)ftj(afb)+<p3(v)) , [4]. A map f:C »C 

will be expressed by means of it components f tf tf . 

Proposition 1. Let f:C >C be a continuous map such that 

( 2 ) <pf=f<p for all <peAut(C). 

Then there are uniquely determined \,ue% satisfying 

f(a,b,v)=(\a,ub,\uv)=\. (u. (a,bfv)). 

Proof. 

Using components of f and <pt we rewrite (2) as follows: 

(3) <pi(fi(atbfv))=fi(<pi(a)f<p2(b)tcj(atb)+<p3(v))t 

(4) <p2(f2(atbtv))=f2{<pi(a)t<p2(b)fa(atb)+<p3(v)), 

(5) <p3(f3(atbfv))+a(fi(afbtv)ff2(atbfv))^ 

f3(<pi(a)t<p2(b)f<j(afb)+<p3(v)). 

In (3), let us fix the vectors b, v, and set <p =1R/ <p ~^-y tr=0. 

We obtain a map f (-,b,v):A >A satisfying the condition (1) of 

L.l. Hence there is \(b,v)e% such that 

f (afbtv)=\(bfv).a. 

This formula defines a continuous function \:BxV •>£. 

A substitution <p =1 , cr=0 in ( 3 ) shows that A is constant on 

a dense subset {(b,v)\b*Q, v*0) of BxV. Since \ is continuous, 

it is constant on the whole BxV.Thus f (a,b,v)=\a .The existence 

of u can be proved similarly. Further, a substitution <p = 1 */ 

<p = 1R , cr=0 in (5) yields a continuous function v.AxB »K 

satisfying f (a,b, v)=v(a,b)v. Using <p =1./ >̂ =1 R / <p =l y in (5) 

gives v(atb)=\u. The unicity of \ t u is obvious. 

The TT-soldered double vector space VxVxV. 

Let C, TT:C——>AxB be a double vector space with the kernel 

V, [4]. A rr-soldering on C is a couple of linear isomorphisms 

XxiV >A , X2:V >B. 

The space C with a TT-soldering will be called TT-soldered. 

A double linear morphism <p:C——» C of two TT-soldered DJE-spaces 
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with TT-solderings x , X , or x' , x' respectively will be called 

TT-soldered if the underlying linear maps f1, <p <p satisfy 

and 

From now on, V will denote an n-dimensional vector space 

over reals, with the usual topology and differentiable structure. 

Assume a trivial double vector space C°=VxVxV >VxV with a 

TT-soldering x =X -1y A double linear automorphism of C°, <p, is 

TT-soldered if and only if <p =<p =<p . A TT-soldered automorphism 

of C°, $=(<p, <p, <p,cr), will be called strongly soldered if the 

bilinear map a is symmetric . 

In this part, we shall investigate differentiable maps 

f:C° >C° commuting with all TT-soldered (or strongly 

TT-soldered, respectively) automorphisms of C°. 

Assume a fixed continuous map f-.V™ >V commuting with all 

<peAut(V). We shall need some of its properties: 

Lemma 2. Let v , . . . ,v be a set of linearly independent 
1 01 

vectors in V. Then there exist uniquely determined real<B 

f (v , ...,v ) , k-1, ...,m such that 
k 1 m 

f(v, ...,v)=Z fjr..\ . fv )v. 
1 w k 1 n. k 

k=l 

Proof. 

The unicity is obvious. To prove the existence, choose A*0, 

and consider <p=X. ly. By the above assumption, 

Xf(v, . . . ,v )=f(Xr ,...,\v ) . 
1 m 1 m 

Since f is continuous, this equality holds also for X=0 , i.e. 

f(0, . . . , 0J=0. Let us add n-m vectors so as {v,...,v,v ,..., 
1 m m+1 

v } would be a basis in V. We can write 
n 

ft>, v ;= Z f ( v . , v )v. 
1 m k 1 m k 

k = l 

Using <p*eAut(V), ,<p*(v )=\v with A*l for k~l, . . . ,m, <p*(v )=r 

for lc=m+l, . . . ,n, we get 

f (Xv , . . . ,Xv )=f (v,, . . . ,v ) for k=m+l, . . . ,n. 
k 1 » k 1 n 

Further, fjv,...,v )=lim f (Xv, , . . . , Xv )=f (0, , , . , 0)-=0 
k 1 m k 1 m k 

A->0 

for k-m+1,...,n which finishes the proof. 
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Lemma 3. There are uniquely determined functions 

gk:7-{0} •*, 

Jc-=1, . . . ,m such that for linearly independent v , . . . ,v eV, 

f(v ,v )= Lgjv)vy . 
1 m k k k 

k = l 

P r o o f . 

L e t i e { l , . . . , m } be f i x e d . L e t v , . . . , v and v' , . . . ,v' be 
1 n 1 m 

two independent sets of vectors from V with v =v' . 
By L.2., there are uniquely determined numbers f (v , . . . ,v ) , 

k 1 tr. 
f(v* ,...,v' ) ; k=l,. . .,m satisfying 

k 1 m 
m 

(6) f(v, ...,7)=E fjv, v )v , 
1 m k 1 m k 

k = l 

f(v' . . . ,v' )= E -TO' . . ,r' )r' 
1 m k 1 m k 

k = l 

A p p l y i n g s u i t a b l e a u t o m o r p h i s m s we g e t 

f ' ( v ' , . . . , v ' t v ,v' , . . . , v' )=f ( r , . . . , v , . . . , v ) = 
i l i i i + l . m i l i m 

= f i ( 0 , . . . , v i t . . . , 0 ) = 0 . 

Let veV-{0}. Choose a linearly independent set v , . . . , v in V 
I n 

with v =r . We can use (6) to define the function 
g (v)=f (v ,...,v ) , 

i i 1 m 

i = l , . . . , m h a v i n g t h e r e q u i r e d p r o p e r t i e s . 

P r o p o s i t i o n 2 . Let m-sdim V, and let f-.V™ >V satisfy 

( 7 ) <pf=f<p for,all <peAut(V) . 

Then there exist unique X , • . . , X eSt such that 
^ i' ' m 

m 

(8) f(v , . . . ,v )= E X v for any v , . . ,v €V\ 
1 m k k , 1 m 

k = l 

Proof. Choose veV*-{0} , and v^, . . . ,vj=v independent 

with v=v. By L.2. and (7) , gj<p(v))=gjv) for any <p&Aut(V). 

Therefore g :V-{0} >% is a constant function with a value 

denoted by X ,and the equality (8) holds for any independent set 

r t . . . , r . By continuity, this formula is true for any m-tuple 

from F". 

The above proposition does not involve some useful cases as 

dim 7=1, m=2, 3, or dim 7=2, m=3. So we shall slightly modify our 

assumptions. 
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Proposition 3. Let f :v* W satisfy (7), and has 

a differential at a point 0€K*. Then there exist uniquely 

determined reals \ , . . . , \ satisfying (8). 

Proof. Since f has a differential at 0, we can write 

f(v ,...tv )m(Tf) (v ....,v )+g(v... . ,v ) 
1 m u l m l m 

where 

li* rfFin=0' vm(ri \>-
and II II is any norm on V*. 

For A*0 , \f(v....,v)~\(Tf)(v.,..,v)+\g(v,...,v). On the 
1 m 0 1 m l m 

other hand, \f(v ,...,v )=f(\v ,...,\v )=(Tf) (Xv , . . . , \v ) 
1 m 1 m 0 1 m 

+g(\v , . . . ,\v )**\(Tf)Jv. . . . ,v )+g(\v , . . . , \v ) . 
1 ra 0 1 m l m 

Hence \g(v. . , . ,v )**g(\v, . . . , \v ) . Further, for any v*0, 
1 m 1 m 

n-nm gfXrJ _.,.._ Xg(v) g(v) 

°-i±n- n x F r r - 1 ^ mrFn = rTFrr 
which implies gO)=0 for any v*0. Since g has a differential at 

0, i t is continuous, and g(0)=0. Therefore f=(Tf) , f is linear, 
m and f(v....,v )= E g. O J where g :V >V are given by g (v)= 

1 m i l i i 
i =1 

ff 0, . . . ,r , . . . , 0), i-=l, . . . ,m. By (7), any g. commutes with all 

automorphisms of V, and by L.I., there exists X e% such that 

g(v)**\v for any v^V, i.e. (8) is satisfied. The unicity is 

obvious. 

Let us return to our problem. Among the maps f:C° >C° 

having differential at 0ec°=VxVxV, we shall distinguish such 

ones that commute with all soldered (or strongly soldered,resp.) 

automorphisms *=(¥>, f, ??, a) of C°. The equality $f=$f can be 

rewritten by means of components in the form (3),(4),(5) with 

<p = P̂/ i«-i,2,3. If we choose cr=0, Prop. 3. guarantees the 

existence of a set of real numbers \ ; i,j=l,2,3 satisfying (8) 

with jn=3. A substitution of (8) into (3) and (4) gives 
A 1 3 < r f F l ' i r 2 ^ 0 ' XK*<Tl'r2)m0 

for any bilinear (or symmetric bilinear, r e s p e c t i v e l y ) map 

cr:VxV vV; therefore A =0, \ =0. Similarly, substituing (8) 

into (5), we obtain 

(9) A u * M - 0 , 

(and ^nA22+Xi2X2i=A33, respectively). 

(9) Л Л =0, Л A =0, A A =A , Л A =0 
11 21 ' 12 22 11 22 ЗЗ' 12 21 
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Obviously, (9) can be funfilled in three (or four, r e s p . ) 

ways: 

I. If * * * "O, then f is of the form 

V V W - ° < ' V V F 2 ' F 3 ^ 2 l V * 2 2 V 
f3 rFl 'F2'F3^A31Fl + X 3 2 F 2 ' 

I I . I f A *A =0, then f (v ,v ,v )=A v , 
. 12 21 1* 1 2 3 11 1 

f J ^ ^ . ' ^ H / , / ^fr , r ,F )=A F +A F +A A F . 
,2 1 2 ' 3 22 2 ' 3 l ' 2 ' 3 31 1 32 2 11 22 3 

I I I . In the case A =A =0, we have f(v ,v ,v )=A v +A v , 
21 22 ' l ' 2' 3y U 1 12 2f 

f (V ,V ,V ) = 0 , f f F ,V ,V ) = A F +A F . 
2 l ' 2 3 3 l ' 2' 3 31 1 32 2 

(IV. If X
11

==^22=0, then f is of the form f fF^F ,F )=A F , 

f (r ,r ,K )=-A F . f fr ,v ,v )=A F +A F +A A v . ) 
2 l' 2' 3 21 l' 3 l' 2' 3 31 1 32 2 12 21 3 

On the set Z(C°) of all differentiable maps of the 

double linear space C°=VxVxV into itself, we can define usual 

composition, and addition in the following cases: 

f +1 9 ±f i^ f - i^g , f +2 g i f Tr2f=Tr2g , 

f+g if gfc°)cr, f,g€ZfC°) . 

Denote by Z(C°) (or Z fC°), respectively) the subset of all 

f^Z(C°) satisfying #f=ff» for any TT-soldered (or strongly 

TT-soldered) double linear automorphism $:C° > C°. Z(C°) as 

well as Z (C°) are closed with respect to the above operations. 

It can be verified the following: 

Proposition 4. By means of the aboi e operations, the set 

Z (C°) (or Z (C°), respectively) is generated by the following 

maps: 

(10) ( F
1 ' V F 3 ) * • /** • 2

f F l ' F 2 ' F 3 ; ; ' * / M € * 

(11) f v%, r2# r 3) ^ V V ° ' 0) 

(12) ( v v V — • f ^ V V ^ 
(13) ( V V V ^0 ,0 ,^+^) 

( and (14) ( V V V " " rfwr
3>

 j* 
The maps of the type (10) commute even with all 

Die-automorphisms. 
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Natural transformations of TT into itself. 

The second order lifting functor TT will be here regarded 

as a covariant functor from the category of n-dimensional 

differentiable manifolds and their diffeomorphisms to the 

category of fibred manifolds and morphisms. TT assigns a double 

linear fibration TTM to a differentiable manifold M, and for any 

diffeomorphism <p:M >N, the assigned map TTy.TTM >TTN is a 

double linear morphism. All three underlying vector fibrations 

are identified with TM. • 

Consider a natural transformation \JJ:TT—->TT. Let a:Kn >Kn 

be a diffeomorphism with a(0)=0. The space TTQ$.n is canonically 

^-isomorphic with the trivial Die-space %nx%nx%n. The map TT a 

regarded as a double linear automorphism has the components 

(15) TT a=(T a,T a,T a,a ) 
0 0 0 0 a 

where T a is a differential of a at 0eKn , and a is its secoud 
0 a 

d i f f e r e n t i a l a t 0. C l e a r l y , (15) i s a s t r o n g l y s o l d e r e d 
Die-automorphism of the t r i v i a l Die-space &nxKnjr£n , and i t depends 
only on the 2 - j e t of a a t 0. This f a c t enab le s us t o de f ine a 
map v:L2 >Aut (5tnxKnxKn) by v( j2a)=(T a, T a, T a,a ) where L2 

r n o •* -* 0 0 0 O a n 

denotes the group of all invertible 2-jets (2-jets of local 

diffeomorphisms) on Kn with source and target 0, and Aut is the 
o 

group of all strongly soldered D£-automorphisms. It can be 

verified that L2 is a semidirect product of L1 and the Abelian 
n n 

group Horn (Kn.jfKn,&n) of all symmetric bilinear maps; j a 

corresponds to the couple (Ta,cr ). Expressing L2 via this 

semidirect product, we find that v is a group isomorphism. 
The following diagram is commutative : 

TT a 
o 

TT 5tn > TT Jtn 

o o 
if/ K n | | * 5tn 

*o y y^o 
TT a 

o 
TT Kn > TT 5tn. 

o o 
Therefore if/ Jtn commutes with all strongly soldered 
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^-automorphisms of the Die-space TT Sn , i . e . $ Kn€Z (TT%n). 
* F 0 0 ss 0 

Further, any natural transformation \j) is fully determined by $ %". 

In fact, choose a map <p:U »Kn in a neighborhood U of xeM with 

<p(x)=0. Then the diagram 
TT <p 

X 

TT M — > TT £ n 

x 0 

Hi M I 1 0 Kn 

x V V ° 
TT f 

X 

TT M > TT £ n 

x 0 

commutes which proves our assertion. 

Finally, if feZ (TT %n) there exists a natural 
- ss 0 

transformation #: TT > TT such that i/j 9vn = f. We define 

\pM=(TT<p)~ .f.(TTip) where p is a map chosen as above. The map 

iftM: : TTM > TTM coinciding with i/f M on the fibre over xeM is 

differentiable, independent of the choice of <p, and satisfies 

ip £n=f. So we have proved: 

Proposition 5. There exists a bijective correspondence 

between all natural transformations of the functor TT into TT 

and the set Z (TT Kn). 
ss 0 

Proposition 6. Using the operation of composition and the 

operation + (the action of the vector fibration V=TM on the 

affine fibration TTM,[5]),the set of all natural transformations 

of TT into itself is generated by the following natural 

transformations: 

( 1 6 ) JT€T (TM) >A. ( A ' . XjeT (TM), A, A'eft , 
y 1 2 A . 2 y 

( 1 7 ) XeT (TM) >0€T „ , (TM) where 0 is a zero vector, 

y y+Tp(X) 

Tp:TTM =>TW is a tangent map of the natural projection 

p:TM >W, 

(18) XeT (TM) >(ToH)Jy+Tp(X)) where x=p(y), and o^ denotes 

a zero section of the vector fibration TM , 

(19) X€T (TM) >e (y+Tp(X))*T (T M) where xep(y), and 
y M •* ' O x r * 
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e-TM •T (T M) is a canonical isomorphism, 
M x 0 x r 

(20) X€T (TM) >i XeT (TJfJ vhere i denotes a canonical 

involution on TTM. 

Proof. By Prop. 5., the set of all natural transformations 

of TT into itself is generated by the natural transformations 

corresponding to the generators of Z (TT £n) described in 

Prop. 4. An evaluation in local coordinates shows that the 

transformations from (16)-(20) correspond respectively to the 

maps given by the formulas (10)-(14). 
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