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Abstract

Concepiual lattices of disjoint unions of incidence structures are stud-
ied in this paper. It is showed that these lattices are disjoint unions of
their complete sublattices. An isomorphism between the ordered set of
all disjoint unions of an incidence structure and the ordered set of all
equivalence classes of disjoint unions of corresponding conceptual lattice
is described.
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Definition 1 Let G and M be sets and I C G x M. Then the triple (G, M, I)
is called an incidence structure. If A C G, B C M are non-empty sets, then we
denote

A'={me M|gIm Vge A}, B*={geG|gIm Vme B}.

For the empty set we put #T := M, 0¥ := G. And moreover, we denote
AN = (AN, BY = (BYT, gt = {g}!, mt = {mPfor ACG, BC M
andge G, me M.
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120 Frantisek MACHALA, Vladimir SLEZAK

Theorem 1 Let J = (G, M,I) be an incidence structure. If we put
G(J)={ACG|A=AN}
then L(J) = (G(J),C) = (G(J),A,V) is a complete lattice in which

/\Ai:ﬂAi and \/Ai:(mAlT)l

i€Q i€Q i€Q i€Q
for A; € G(J), i€ Q. (See[1, 3].)

Remark 1 If we denote M(J) = {B C M | B = B}, then !£(J) =
(M(J),C) is a complete lattice too. The lattices £(J) and '£(7) are du-
ally isomorphic. The lattices £(J) and ' £(J) are called conceptual lattices of
the incidence structure J.

Definition 2 An incidence structure J3 = (G1,M1,1;) is a substructure of
J = (G,M,I) 1fG1 - G,Afl - M and I = Iﬂ(Gl X Ml)

In what follows we suppose that the sets G and M are not empty and g' # 0,
m*t #@forallge G,me M.

Definition 3 Let J = (G,M,I) be an incidence structure. The sequence
(g0, m0,91,M1,-..,9r—1,Mr_1,9r) where g; € G fori € {0,...,r}, m; € M for
j €{0,...,r =1} and g;Im;j, gj41Im; for all j € {0,...,r — 1}, is called a join
of elements gg, g-. If a join of elements go, g € G exists, then these elements
are joinable.

In a similar way we can define a join of elements of M.
We say that an incidence structure J is irreducible if every two elements of
G are joinable.

If we define a relation ~ on G by setting g ~ h < g, h are joinable, then ~
is equivalence relation and it determines a decomposition G' of GG. In a similar
way we define an equivalence relation ~ on M assigning a decomposition M.

Definition 4 An incidence structure 7 = (G, M, I) is called a disjoint union of
its substructures J; = (Ge, My, ), t e THG={G |t €T}, M ={M,|teT}
and I = {I; | t € T} are decompositions of G,M,I. It will be denoted by

J = UteTJt'
Lemma 1 Let J = UteTjt and |T| > 1. We will write the operators 1 and
| on the right-hand side of the set symbol in J and on the left-hand side in
substructures J;. Then the following statements are valid:

1. IfACG and AZ G, for any t € T, then AT =0 and A™ = G.

2. Let A C Gy for certaint e T.

(a) If A # 0, then AY =1 A. Moreover, A™ = 1A if and only if AT # 0.
(b) If A =0, then A™ = 1A if and only if *M, = 0.
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Analogous statements are valid for B C M.

Theorem 2 Let J = (G, M,I) be an incidence structure, G = {G; | t € T}
a decomposition of G, {M; | t € T} a system of subsets of M and J; =
(Ge, My, It), t € T, substructures of J. The following conditions are equiva-
lent:

(i) J is a disjoint union of the substructures J;.

(ii) The decomposition Gisa refinement of G (C:' <G) and M, = Ugect g’
forallteT.

Proof (i) = (ii) By Definition 4, M = {M; |t € T} and I = {I, | t € T} are
decompositions of sets M and I. Let m € M, for t € T. Since m* # 0, there
exists g € G such that gIm. Hence gI;m and g € G; which yields m € U,eq, 97
Conversely, if m € UgEG; g', then gI;m for certain g € G; and m € M;. Thus

]\/It, = UgEGz gT.

Let G’ € G and g € G'. Since G is a decomposition of G, there exists
precisely one t € T such that g € G;. Consider an arbitrary h € G'. Then g and
h are joinable elements and there exists a sequence (9,Mmo, 91, -, gr—1,Mr—1, h)
with the properties from Definition 3. Thus gImg and because of g € Gy we get.
mg € M,. Similarly, from g;Img and mg € M; we obtain g; € G; and so on.
At the end from hIm,_; and m,_; € M; we get h € G;. Hence G' C G; and
G<G.

(ii) = (i) a) M = {M, | t € T} is a decomposition of M: Consider m € M.
There exists g € G such that gIm, g € G; for precisely one t € T and m = g'.
Since M; = UgEG: g', we get m € My and M = Uier M:. Let us suppose that
m € My, NM, fort;,to € T. Thenm € gI,m € gg for certain g1 € Gy, , g2 € Gy,
and the elements g1, g2 are joinable. From G < G we get G, = G, and the
definition of the sets M, , M;, implies My, = M,,.

b) T = {I; | t € T} is a decomposition of I: Consider (g,m) € I. Then
g € Gy for certain t € T and m € g'. Hence m € M,. We obtain (g,m) € I,. If
(g,m) € I;, NI, then g € Gy,,9 € Gt,. Thus t; =ts and I, = I4,. O

Let X be a non-empty set and R(X) the set of all decompositions of X. We
can define an ordering on R(X) by setting A < B iff 4 is a refinement of B for
A, B € R(X). Then L(X) = (R(X),<) is a (complete) partition lattice with
the greatest element 4 = {X} and the least element A = {{z} | z € X}. (See
(2] (IV,4).)

Let us denote the set of all disjoint unions of an incidence structure J =
(G,M,I) by DS(J). We can define an ordering on DS(J) by the following
formula: . . .

U'z< U if G<G

teT kEK
= = .. . : : 2
where G, G are decompositions of G belonging to Utelet, Ukex ™ Tk-

From Theorem 2 we obtain:
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Theorem 3 The ordered set (DS(J),<) is isomorphic to the upper cone of
the element G € R(G) in the lattice L(G).

Remark 2 (DS(J), <) is a complete lattice. The greatest element is a trivial
disjoint union {J,c7Ji for |T| = 1, the least element is a disjoint union generated
by the decomposition G of G.

(DS(J), <) is a one-element lattice if and only if 7 is irreducible and it is
isomorphic to L(G) if and only if J is completely irreducible, i.e. |gt| = 1 for
all g € G.

Let us consider a complete lattice £ = (L,A,V) = (L, <) with the least
element 0 and the greatest element 1. We can assign an incidence structure
J(L) = (L,L,I) to £ where zIy <& x < y. Denote by L(J (L)) = (G(T (L)), C)
its conceptual lattice. Then A € G(J (L)) iff A = D(z) where D(z) is the lower
cone of certain element x € L.

Lemma 2 The mapping x — D(z), * € L, is an isomorphism of complete

lattices J and L(J(L)).

Lemma 3 Let £L = (L,<) be a complete lattice and consider the incidence
structure J(L). Let us put L' = L—{0,1} and consider a substructure J (L") =
(L', L', <" of T(L). The conceptual lattices L(T (L)) and L(T(L')) are isomor-
phic if and only if the ordered set (L',<') does not have the greatest element.

Remark 3 If (L', <) does not have the greatest element, then the mapping
assigning D(z) — D(z) — {0} forx #2 1 and D(1) = L — L’ is an isomorphism
of the lattices £(J(£)) and L(J(L')), and also z — D(z) — {0} for z # 1,
1+ L' is an isomorphism of the lattices £, £L(J(L")).

Definition 5 Let £ = (L,<) be a complete lattice (0 is the least and 1 is
the greatest element in it) and £; = (L, <), t € T, be complete sublattices
of L. Weput L' = L —{0,1}, L} = L, — {0,1}, <' = < N(L' x L') and
<} = <N(L; x L}) for t € T. The complete lattice £ is called a disjoint union
of the complete sublattxces Liif I'={L}|teT}isa decomposition of L' and
Z7 = {<! |t € T} is a decomposition of <'. We will write £ = J,cpLs-

Remark 4 If £ = UtET‘Ct’ |T'| > 1, then the ordered set (L', <') does not have
the greatest element.

Remark 5 Let £ = J;crLe. Then (L, U {0},<"), (L, U {1},<") and (L, U
{0,1},<"), t € T, are also complete sublattices of L where <" denotes the
restriction of the relation < to the corresponding sets.

Definition 6 Disjoint unions UteT L; and UkeK Ly of a complete lattice £
where 1L, = (1L;,<}) for all t € T and 2Lx = (®Ly,<?) for all k € K are
equivalent if {'L} |t € T} = {?Liy | k € K}.
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Theorem 4 Let an incidence structure J = (G, M,I) be a disjoint union of
its substructures J; = (Gy, My, It) fort € T and |T| > 1. Let L(J) = (G(J), <)
and L(TJ;) = (G(Jt),C), t € T, be conceptual lattices of J and J;. Moreover,
let 0, 1, and 0;,1; be their least and greatest elements, respectively.

o If Gl,T # 0, then L(TJ;) is a complete sublattice in L(J).

o If G] =0, then L*(T) = (G(J) — {1}) U {1}),C) = (6*(J), Q) is
complete sublattice in L(J).

Moreover L(T) = UteTEE) where C(J;) = L(T) for GI # 0 and
L(T,) = L*(T:) for GT =0.

Proof Obviously 1 = G and 1; = G, for all t € T. Because of [T| > 1 we get
MY =0,G" =0 and O™ = 0. Thus @ = 0. If t € T, then we will write the
operators 1, | in J; to the left.

1. Consider A € G(J;) for t € T. It means that A = T A. First we suppose
that A # G;. f A=0, then A =0 and A € G(J). Assume A # @. According
to Lemma 1 we get AT =TA.

If A" =0, then A = Y'4A = 4 = G;. That is a contradiction. If AT # @,
then A = 74 = A™ (according to Lemma 1 again) and thus 4 € G(J).

Let A = G, and G} # 0. From G, # 0§ we obtain G, = ¥'G, = GI*. This
implies 1, = G; € G(J) and G(J) C G(J). If G} = 0, then GJ* = G. Hence
GI* # Gy and 1, ¢ G(J). Since 1 € G(J), we have obtained G*(J;) C G(J).

2. L(J;) and L*(J:) are sublattices in £(J):

a) Let G] # 0. Then G(7,) C G(.J). Consider subsets A; € G(J;), i € Q.
Since £(7;) is a conceptual lattice of J;, we get (by Theorem 1) [, icqAi €
G(J) € G(J). Hence A\, Ai € G(Th)-

Let G = 0. We put 'G(7;) = G(J;) — {1} € G(J). Consider A; € G*(T),
i € Q. If there exists j € Q such that A; € 'G(Jt), then (N, 4; € 'G(Jt) and
Aico Ai € 16(J) € G*(Jh). T Ay = G for all i € @, then Ayeq Ai =G = 1€
G* ().

b) Let A; € G(J ) i € Q. Then (by Theorem 1) V.o Ai = (Mg AD* I
we put B = ﬂl€Q , then B C M and V;cq Ai = B*.

First we suppose that G] # §. Then G(J;) € G(J). Let A; € G(J), i € Q.
Because of 4; C G; we get GT C AT foralli € Q and G] C B. Thus B # 0. We
will assume that there exists j € Q such that A; # #. By Lemma 1 AT =TA4;
and Aj C M,. It means that B C M;. Since B # 0, we get B = Bl and
W(BY) = B = 1B = B*. This implies B* = V;cq 4i € G(J;). Let A; =0
for all i € Q. Then 0 € G(J;) and AI = M for all i € Q. From this B = M and
ViegAi = B4 = M¥ =0 = 0. Hence ;o 4; € G(J2)-

Let us assume that GT = 0. In this case G*(Jt) € G(J). Consider A; €

G(J:). If B =0, then VzeQ A; =G =1€'G(%)- Let B # 0. Then B* # G,
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because from BY = G; we get B C B*' = G] = § which is a contradiction.
From B* € G(J;) — {1:} we obtain \/,c, 4; € 'G(J)-

3. L(T) is a dlS_]Olnt union of the complete sublattlces E(Jt) teT:

a) Let us put G(J,) == G(J,) if G} # 0 and G(J,) := G*(J) if G| = 0. And,
moreover, we denote G’ (.7) G(J)-{0,1}, Q’(jt) = (J,) —{0,1}. We will
prove that G'(7) = {g'(]t) | t € T} is a decomposition of G'(J):

Take A € G'(J). Then A C G, A™ = A, A # G, A # 0. Assume that
A" = (. We get A = A™ = G and that is a contradiction. Thus AT # 0. If
A is not contained in any subset Gy for t € T, then A™ = G = A. This is a
contradiction again. Hence A C G, for certain ¢ € T'. Since A # § we obtain
A= AN =44 and A € G'(J;). Suppose that A € G'(J,) N G'(J,). Then
A C Gt, NGy, and because of A # () we obtain t; = t».

b) C" = {C} | t € T} is a decomposition of the set C' (Definition 5): Consider
A,B € G'(J) such that A C B. This implies A C' B. According to (a) there
exists t € T such that B € g@). Therefore B C G; and A C G;. Hence
A€G'(J) and A C, B. Obviously Cj, N Cl = 0 for distinct t,,t, € T. O

Example 1 Let J = (G, M,I) be an incidence structure given by its inci-
dence graph (Figure 1). Let us consider substructures 7, = (G1,M;,I;) =
({01,02,03},{m1,MQ},Il) and jz = (GQ,Mz,Iz) = ({a4,a5},{m3,m4},12) of
J. Then j = jlujg.

a) a2 as a4 as

Figure 1
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Figure 2 shows conceptual lattices £( ), £(J1) and L(J2).

G=1

Gi=1,

G2=1
{(14,(15}
{a17a2} {a'laafi}
{(14} {614} = 02
£(J) {az2} =0, L(T)
L(Th)
Figure 2

Since G = {ms}, £(J%) is a sublattice of £(J). Because of Gl =0,
L(T) = ((G(Jh) — {11}) U {1},C) is a sublattice of £(J) and L(J) is a
disjoint union of the sublattices £*(J1), L(J2)-

Theorem 5 Let a complete lattice £ = (L, <) be a disjoint union of comp:ete
sublattices Ly = (Ly, <;). We denote L' = L—{0,1}, L} = L;—{0,1} fort € T.
Then there exists an incidence structure J and a disjoint union J = UteT\7t
such that the complete lattices L, L(J) are isomorphic. Moreover, ordered sets

(L}, <), (g@), C}) are isomorphic for allt € T

Proof Consider incidence structures J = J(£') = (L', L', <"), Js = J(L}) =
(Li, Lt, <}) for t € T. Then J = ;e Ji- Let |T| > 1. Then, by Remark 4,
the set (L', <) does not have the greatest element. By Remark 3 the mapping
z+ D(z)—{0} for z # 1 and 1 — L' is an isomorphism of the lattices £, £(T).
That induces an isomorphism of the ordered sets (Lj,<') and (Q’@), Cy) for
all t € T. The proposition is obvious for |T| = 1. o

Let us denote the set of all disjoint unions of a complete lattice £ by D.S(L).
Consider a relation = on DS(L) assigned by the formula

Ulﬁf, = U 2L iff Ulﬁt and U 2 are equivalent.

teT keEK teT keEK

Then = is equivalence relation and it determines a decomposition DS(L)/ =
on DS(L). _ '

We define an ordering on the set DS(L)/ = : Let Ujer Lt » Urex Lk €
DS(L), the corresponding decompositions of L' we denote by L' = {*L} | t € T'}
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and T’ = {?L} | k € K}. For |J1£, and U 2£Li € DS(L)/ = we define
teT kEK

Ulﬁt < U 2L, iff I’ is a refinement of T (' < f)
teT keEK h

Theorem 6 If 7 is a reducible incidence structure, then the ordered sets DS(.7)
and DS(L(J))/ = are isomorphic.

Proof A conceptual lattice £(J) of a disjoint union J = UteTjt is a disjoint

— — —C

union J,crL(J:) where £(J;) = L(J) for Gf # 0 and L(T,) = L£*(J;) for

Gl = 0. Let us consider a mapping

¢ : DS(J) - DS/ =: | J I » UL

teT teT

1. The mapping ¢ is injective: Take Uteleh Uk€K2jk € DS(J) and
assume that

SO(UIJt) = ¢( U *Te) e UC(/ITZ) = U LTk)

teT keK teT keEK

Hence {g’(/1T7¢) |t e T} ={G'((Jk) | k € K} by Definition 6. There exists
a bijection £ : T — K such that G'(?J¢)) = G'(*Jt) for all t € T. Let us put
YT = (1Gy, ' My, I) and 2Je(r) = (PGeey, *Me(ey, *Le(r))-

Take g € !G;. Then g' # 0 and g™ = +'g by Lemma 1. Obviously g™ #
0,G. Let 'G] = 0. If g™ =!G, then g" = !G] # 0. That is a contradiction.
Thus g™ € g'(l/it) and g™ € G'(*Je(1))- From this g™ C 2Ge() and g € *G(y).
Therefore !G; C *G¢(y). In a similar way we show that 2Gey € 'Gy and thus
*G¢(ty = 'Gy. Obviously 'M; = 2M¢ ) and since Jt, 1 7, are substructures in

J, we obtain 17; = 2J¢(i) and U,er' Tt = User?Jery = Ukex > Tr-

2. ¢ is surjective: Consider a disjoint union UteT‘Ct € DS(L(T)). We
denote £(J) = (G(J),C), G'(J) = G(J) - {0,1}, Lt = (G, C), G; = Gt —
{0,1}. We prove that there exists a disjoint union Uier Tt € DS(J) such that
‘P(UteTJt) = UteTﬁt' Let us put Gy = UAeg; A for all t € T. We show that
G = {G; |t € T} is a decomposition of G:

Take g € G. Then g™ € G(J), g € g™ and g™ # 0. Since J is reducible,
we get 0 = § and g™ # 0. At the same time G' = 0, thus g™ # 1. We
obtain g™ € G'(7). There exists precisely one t € T such that g™ € G} because
{G! | t € T} is a decomposition of G'(J). This yields g™ €G and g € Gy. If
g € Gy, NGy, then g € G; NG, and because of g™ # 0 we get t; = t,.

Let us put M; = U,cq, 9" for any t € T. Then {M; | t € T} is a decompo-
sition of M:
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Consider m € M. Then m* # 0,G and m* € G| for a unique t € T, thus
mt C Gy. We get (m*)T = gemt g™ C M, therefore m € M,.

Letm € MtlﬂMto. Then there exist g1 € G¢,,92 € Gy, such that m € g; ﬂgz
This yields g!¥, gJ* C m* and g, g € m*. However, m* € G, for a unique t € T.
Hence th = Gt2 = Gt and tl = tz

Consider substructures J; = (Gy, My, I;), t € T, in J. The system {I; | t €
T} is a decomposition of I:

Take g I m. Then g € Gy for certain t € T and m € g', thus m € M. Since
J: is a substructure in 7, we get gI;m. Obviously I, N I, = 0 for ¢, # t5 and

therefore J = UteTjt'

Now we show that G'(J;) = G; forallt € T

Consider A € G) C G(J). Then A = A™, A#0,G and A C G;. If AT = ¢,
then A™ = G. That is a contradiction. Hence AT # 0 and A = A™ =474 by
Lemma 1. Thus A € G'(J;) and G; C G'(J;).

Conversely, let A € G'(J;). Then A = 'A. Once again A" # 0 and
A =114 = AN, This yields A € G'(J) and A € G; by definition of the set G,.
Hence G'(J:) C G;. We have obtained

Uﬁc Uz:(.y, and (| J7) = J L
teT teT teT teT
3. Ordered sets DS(J) and DS(L(J))/ = are isomorphic: Consider disjoint
unions Uyer! T, Ure®Jk € DS(J). Let G = {1G, |t € T}, G = {*Gx | k €
K} be corresponding decompositions of G. Assume that UtET Ji < Uke Tk
Then G < G and to every to € T there exists ko € K such that !Gy, C 2Gy,.

According to Theorem 4 we consider disjoint unions UleTL'(/‘}t) and
Ukex £CTx) of DS(L(J)). Then G'(7) = {G'(F) | t € T}, G'(J) =
{G'(2Jx) | k € K} are decompositions of Q’(j).

We will write the operators 1,] to the right in 7, to the left in 7. In
2Jx we use symbols T, L instead. Then G(17;) = {4 C 'G, | A = T4},
GCT) ={AC?Gr | A=AT+).

Take to € T. By assumption there exists kg € K such that !G¢, C G-

Let A € G'(1J;,). Then A, AT # 0: For A = () we get A = 0 (because § = 0).
That is a contradiction. We know that TA = AT. Let A" = 0. Then A =
”A =) = 1Gf and A? = 0 = !G] . However, in case of IGIO = 0 we get

=Gy, ¢ ¢ (1.7,0) That is a contradiction too.
Bv Lemma 1 we obtain ¥TA = AT+ and 4 € Q'(QJLO) From this G’ (1$0) c
g’ (2Jk0) follows. Hence G'(J) < G'(J) and

Ueta = olU ) < U £870 = o250

teT teT keEK kek
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Conversely, consider ,cr£(07), Urex CCTe) € DS(L(T)). Let G'(T) =
(GI(7) |t €T}, G = {G'CT) | k € K}. Assume that

Uﬁ(/l~\7t) < U LETY).

teT keK

Thus G'(J) < 9'(J)-

Take UteTl‘Z’UkEK?jk € DS(j) where a’. = {IGt I t e T}7 .5 = {2Gk I
k € K}. Let us consider an incidence structure ' J;, = (*G,, " My,, ' Iy,) where

Gy, = U A forto € T.
Aeg'(/lzo)

There exists kg € K such that Q'(T\J,,O) - g'@ko). We obtain

Gr,= |J A4

A€G' (2 T4y

for the incidence structure 2Jx, = (*Gio,2My,,2It,). Thus 'Gy, C %Gy, and
G < G. Hence U,er' Tt < Urex >k a

Remark 6 The ordered set (DS(L(J))/ =,<) is a complete lattice with the

least element ‘P(UzeTjt) where (J;c7Jt is a disjoint union of 7 with a decom-
position G of G.

Remark 7 Theorem 6 is not valid for irreducible incidence structures: Con-
sider an incidence structure [J given by its incidence graph (Figure 3 (a)). The
structure J is irreducible and thus DS(J) has only one element. See Fig-
ure 3 (b) for the conceptual lattice £(J) and Figure 3 (c) for the ordered set

(DS(L(T))] =,2)-
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(b) (c)
Figure 3
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