Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Mehmet Bektaş; Mahmut Ergüt

Compact space-like submanifolds with parallel mean curvature vector of a pseudo-Riemannian space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 38 (1999), No. 1, 17--24

Persistent URL: http://dml.cz/dmlcz/120396

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1999
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Compact Space-Like Submanifolds with Parallel Mean Curvature Vector of a Pseudo-Riemannian Space

M. BEKTAṢ ${ }^{1}$, M. ERGÜT ${ }^{2}$
Department of Mathematics, Firat University, 23119 Elazig, Turkiye
${ }^{1}$ e-mail: mehmetbektas@hotmail.com
${ }^{2}$ e-mail: mergut@hotmail.com

(Received March 4, 1999)

Abstract

B. Y. Chen [2] and L. Huafei [5] have studied pseudo-umbilical submanifolds. In this paper, we have generalized the compact pseudo-umbilical space-like submanifolds with parallel mean curvature in a pseudoRiemannian space.

Key words: Pseudo-umblical submanifold, parallel mean curvature vector.

1991 Mathematics Subject Classification: 53B30

1 Introduction

In a pseudo-Riemannian space form, space-like submanifolds with parallel mean curvature have been studied by many mathematians. Q. M. Cheng and Choi [3] proved the A complete space-like submanifold with parallel mean curvature vector of an indefinite space form $M_{p}^{n+p}(c)$. If the one following conditions is satisfied:

1. $c \leq 0$,
2. $c>0$ and $n^{2} H^{2} \geq 4(n-1) c$, then $S \leq S+K(p)$ where $K(p)$
is a constant. Later, R. Aiyama [1] proved a space-like submanifold in a SemiRiemannian space form N with parallel non-null mean curvature vector H if M is neither minimal (i.e. maximal) nor pseudo-umbilical, then the normal connection of M in N is flat. L. Haizhong [4] discover a new theorem in the complete space-like subrnanifolds in de Sitter-Space with parallel mean curvature. B. Y. Chen [2] proved:
3. Let M be an n-dimensional compact pseudo-umbilical submanifold in $N^{n+p}(c)$. Then

$$
\int_{M}\left[n H \Delta H+n\left(c+H^{2}\right) S-\left(2-\frac{1}{p}\right) S^{2}-n^{2} H^{2} c\right] d v \leq 0
$$

where S, H and $d v$ denote the square of the length of h, the mean curvature of M and volume element of M, respectively.
2. Let M be an n-dimensional compact pseudo-umbilical submanifold in $N^{n+p}(c)$. If

$$
n H \Delta H+n\left(c+H^{2}\right) S-\left(2-\frac{1}{p}\right) S^{2}-n^{2} H^{2} c \leq 0
$$

then the second fundamental form is parallel and S constant.
Thus, we obtain the following generalizations of (1) and (2).
Theorem 1 Let M be an n-dimensional compact pseudo-umbilical space-like submanifold in N. Then

$$
\int_{M}\left[n\left(c-5 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}+n^{2} H^{4}\right] d v \leq 0, \quad \text { for } p>1
$$

and

$$
\int_{M}\left[n\left(c-2 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}-\frac{3}{2} n^{2} H^{4}\right] d v \leq 0, \quad \text { for } p>2
$$

Theorem 2 Let M be an n-dimensional compact pseudo-umbilical space-like submanifold in N. Then

$$
n H \Delta H+n\left(c-5 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}+n^{2} H^{4} \geq 0, \quad \text { for } p>1
$$

or

$$
n H \Delta H+n\left(c-2 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}-\frac{3}{2} n^{2} H^{4} \geq 0, \quad \text { for } p>2
$$

then the second fundamental form is parallel and S is constant.

2 Local formulas

Let N be an $(n+p)$-dimensional pseudo-Riemannian manifold of constant curvature c, whose index is p. Let M be an n-dimensional Riemannian manifold is isometrically immersed in N. As the pseudo-Riemannian metric of N induces the Riemannian metric of M, the immersioan is called space-like. We choose a local field of pseudo-Riemannian orthonormal frames $e_{1}, e_{2}, \ldots, e_{n+p}$ in N such that, at each point of $M e_{1}, e_{2}, \ldots, e_{n}$ spans the tangent space of M and forms an orthonormal frame there. We make use of the following convention on the ranges of indices:

$$
1 \leq A, B, C, D \leq n+p ; \quad 1 \leq i, j, k, l, m \leq n ; \quad n+1 \leq \alpha, \beta, \gamma \leq n+p
$$

We shall agree that repeated indices are summed over the respective ranges. Let $\omega_{1}, \omega_{2}, \ldots, \omega_{n+p}$ be its dual frame field so that the pseudo-Riemannian metric of N is given by

$$
d s_{N}^{2}=\sum_{i} \omega_{i}^{2}-\sum_{\alpha} \omega_{\alpha}^{2}=\sum_{A} \epsilon_{A} \omega_{A}^{2}
$$

where $\epsilon_{i}=1$ for $1 \leq i \leq n$ and $\epsilon_{\alpha}=-1$ for $n+1 \leq \alpha \leq n+p$. Then the structure equations of N are given by

$$
\begin{gather*}
d \omega_{A}=\sum_{B} \epsilon_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \\
d \omega_{A B}=\sum_{C} \epsilon_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C D} \epsilon_{C} \epsilon_{D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.1}\\
K_{A B C D}=c\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)
\end{gather*}
$$

The restrict these forms to M. Then

$$
\begin{equation*}
\omega_{\alpha}=0, \quad \text { for } \quad n+1 \leq \alpha \leq n+p \tag{2.2}
\end{equation*}
$$

and the Riemannian metric of M is written as

$$
d s_{M}^{2}=\sum_{i} \omega_{i}^{2}
$$

We may put

$$
\begin{equation*}
\omega_{i \alpha}=\sum_{j} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} \tag{2.3}
\end{equation*}
$$

Then $h_{i j}^{\alpha}$ are the components of the second fundamental form of M. From (2.1), we obtain the structure equations of M

$$
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}
$$

$$
\begin{equation*}
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.4}
\end{equation*}
$$

and the Gauss formula

$$
\begin{gather*}
R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)^{-}-\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \\
R_{\alpha \beta i j}=\sum_{k}\left(h_{k i}^{\alpha} h_{k j}^{\beta}-h_{k j}^{\alpha} h_{k i}^{\beta}\right) \tag{2.5}
\end{gather*}
$$

We also have the structure equations of the normal bundle of M :

$$
\begin{gather*}
d \omega_{\alpha}=-\sum_{\beta} \omega_{\alpha \beta} \wedge \omega_{\beta} \\
d \omega_{\alpha \beta}=-\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}-\frac{1}{2} \sum_{i j} R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j} . \tag{2.6}
\end{gather*}
$$

Let $h_{i j k}^{\alpha}$ denote the covariant derivative of $h_{i j}^{\alpha}$ so that

$$
\begin{equation*}
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\sum_{k} h_{i k}^{\alpha} \omega_{k j}+\sum_{k} h_{k j}^{\alpha} \omega_{k i}-\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha} . \tag{2.7}
\end{equation*}
$$

Then we have $h_{i j k}^{\alpha}=h_{i k j}^{\alpha}$. Next take the exterior derivative of (2.7) and define the second covariant derivative of $h_{i j}^{\alpha}$ by

$$
\begin{equation*}
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}+\sum_{l} h_{i j l}^{\alpha} \omega_{l k}+\sum_{l} h_{i l k}^{\alpha} \omega_{l j}+\sum_{l} h_{l j k}^{\alpha} \omega_{l i}-\sum h_{i j k}^{\alpha} \omega_{\beta \alpha} . \tag{2.8}
\end{equation*}
$$

Then we have obtain the Ricci formula

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{i m}^{\alpha} R_{m j k l}+\sum_{m} h_{m j}^{\alpha} R_{m i k l}+\sum_{\beta} h_{i j}^{\beta} R_{\alpha \beta k l} . \tag{2.9}
\end{equation*}
$$

We call

$$
h=\sum_{i j \alpha} h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}
$$

the second fundamental form of the immersed manifold M.

$$
\zeta=\frac{1}{n} \sum_{\alpha} t r H_{\alpha} e_{\alpha}
$$

and

$$
H=\sqrt{\frac{1}{n} \sum_{\alpha}\left(\operatorname{tr} H_{\alpha}\right)^{2}}
$$

denote the mean curvature vector and the mean curvature of M, respectively. Here tr is trace of the matrix $H_{\alpha}=\left(h_{i j}^{\alpha}\right)$. The square of the length of the second fundamental form of M in N is given by

$$
S=\sum_{i j \alpha}\left(h_{i j}^{\alpha}\right)^{2}
$$

Now, let e_{n+p} be parallel to ζ. Then we get

$$
\begin{equation*}
\operatorname{tr} H_{n+p}=n H, \quad \operatorname{tr} H_{\alpha}=0, \quad \alpha \neq n+p \tag{2.10}
\end{equation*}
$$

The Laplacian $\Delta h_{i j}^{\alpha}$ of second fundamental form $h_{i j}^{\alpha}$ is defined by

$$
\Delta h_{i j}^{\alpha}=\sum_{k} h_{i j k k}^{\alpha} .
$$

Using the same method as in [6], we have

$$
\Delta h_{i j}^{\alpha}=\sum_{k} h_{k k i j}^{\alpha}+\sum_{m k} h_{i m}^{\alpha} R_{m k j k}+\sum_{m k} h_{m k}^{\alpha} R_{m i j k}+\sum_{\alpha \beta k} h_{i k}^{\beta} R_{\alpha \beta j k} .
$$

By a simple calculation we have

$$
\frac{1}{2} \Delta S=\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j \alpha}\left(h_{i j}^{\alpha}\right) \Delta h_{i j}^{\alpha}
$$

or

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i j k \alpha} h_{i j}^{\alpha} h_{k k i j}^{\alpha}+\sum_{i j k m \alpha} h_{i j}^{\alpha} h_{i m}^{\alpha} R_{m k j k} \\
& +\sum_{i j k m \alpha} h_{i j}^{\alpha} h_{m k}^{\alpha} R_{m i j k}+\sum_{i j k \alpha \beta} h_{i j}^{\alpha} h_{i k}^{\beta} R_{\alpha \beta j k} \\
= & \sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n H \Delta H+n\left(c-H^{2}\right) S+n^{2} H^{2} c \\
& +\sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}+\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{2.11}
\end{align*}
$$

Definition 1 A space-like submanifold M is said pseudc-umbilic, if it is umbilic with respect to direction of mean curvature vector h, that is

$$
\begin{equation*}
h_{i j}^{n+p}=H \delta_{i j} \tag{2.12}
\end{equation*}
$$

In order to prove our Theorems, we need following lemmas.

3 Proofs of Theorems

Lemma 1 [5] Let $H_{i}(i \geq 2)$ be symetric $(n \times n)$-matrices, $s_{i}=\operatorname{tr} H_{i}^{2}$ and $S=\sum_{i} s_{i}$. Then

$$
\begin{equation*}
\sum_{i j} \operatorname{tr}\left(H_{i} H_{j}-H_{j} H_{i}\right)^{2}-\sum_{i j}\left(\operatorname{tr} H_{i} H_{j}\right)^{2} \geq-\frac{3}{2} S^{2} \tag{3.1}
\end{equation*}
$$

and the equality holds if and only if all $H_{i}=0$ or there exist two of H_{i} different from zero. Morever, if $H_{1} \neq 0, H_{2} \neq 0, H_{i}=0,(i \neq 1,2)$ then $s_{1} \neq s_{2}$ and there exists on ortogonal $(n \times n)$-matrix T such that

$$
T H_{1}^{\prime} T=\sqrt{\frac{s_{1}}{2}}\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right), \quad T H_{2}^{\prime} T=\sqrt{\frac{s_{2}}{2}}\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

Lemma 2 [5] When $p>2$,

$$
\begin{equation*}
\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq-\frac{3}{2} S^{2}+3 n H^{2} S-\frac{5}{2} n^{2} H^{4} \tag{3.2}
\end{equation*}
$$

Lemma 3 When $p>1$,

$$
\begin{equation*}
\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}+\sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq-\frac{1}{2} S^{2}-4 n H^{2} S+n^{2} H^{4} \tag{3.3}
\end{equation*}
$$

Proof From (3.1), we have

$$
\begin{equation*}
\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}+\sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq-\frac{3}{2} S^{2}+2 \sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \tag{3.4}
\end{equation*}
$$

On the other hand, by a simple calculation we have

$$
\begin{equation*}
2 \sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq 2 S^{2}-4 n H^{2} S+n^{2} H^{4} \tag{3.5}
\end{equation*}
$$

Using (3.5) in (3.4), we obtain (3.3).
Lemma 4 When $p>2$,

$$
\begin{equation*}
\sum_{\alpha \beta} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}+\sum_{\alpha \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \geq+\frac{1}{2} S^{2}-n H^{2} S-\frac{3}{2} n^{2} H^{4} \tag{3.6}
\end{equation*}
$$

Proof From Lemma 2 and (3.5), it can seen easily (3.6).
Using (2.12) we can get

$$
\begin{equation*}
\sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2} \geq \sum_{i k}\left(h_{i i k}^{n+p}\right)^{2} \tag{3.7}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\frac{1}{2} n \Delta H^{2}=n H \Delta H+\sum_{i k}\left(h_{i i k}^{n+p}\right)^{2} \tag{3.8}
\end{equation*}
$$

Therefore, using Lemma 3 , (3.7) and (3.8) when $p>1$ by (2.11) we have

$$
\begin{align*}
\frac{1}{2} \Delta S \geq & \sum_{i j k}\left(h_{i j k}^{\alpha}\right)^{2}+n H \Delta H+n\left(c-H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2} \\
& -4 n H^{2} S+n^{2} H^{4} \\
\geq & \sum_{i k}\left(h_{i i k}^{n+p}\right)^{2}+n H \Delta H+n\left(c-5 H^{2}\right) S+\frac{1}{2} S^{2}+n^{2} H^{2} c+n^{2} H^{4} \\
= & \frac{1}{2} n \Delta H^{2}+n\left(c-5 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}+n^{2} H^{4} \tag{3.9}
\end{align*}
$$

Since M is compact, form (3.9) we have

$$
\int_{M}\left[n\left(c-5 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}+n^{2} H^{4}\right] d v \leq 0
$$

On the other hand, from the first inequality of (3.9), we have that if

$$
\begin{equation*}
n H \Delta H+n\left(c-5 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}+n^{2} H^{4} \geq 0 \tag{3.10}
\end{equation*}
$$

and M is compact, then the second fundamental from $h_{i j}^{\alpha}$ is parallel and S is constant.

On the other hand, when $p>2$ using Lemma 4, (3.7) and (3.8) from (2.11) we get

$$
\begin{align*}
\frac{1}{2} \Delta S \geq & \sum_{i j k \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+n H \Delta H+n\left(c-H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2} \\
& -n^{2} H^{2} S-\frac{3}{2} n^{2} H^{4} \\
\geq & \frac{1}{2} n \Delta H^{2}+n\left(c-2 H^{2}\right) S+n^{2} H^{2} S+\frac{1}{2} S^{2}-\frac{3}{2} n^{2} H^{4} \tag{3.11}
\end{align*}
$$

Thus, when M is compact by (3.11) we obtain

$$
\int_{M}\left[n\left(c-2 H^{2}\right) S+\frac{1}{2} S^{2}+n^{2} H^{2} c-\frac{3}{2} n^{2} H^{4}\right] d v \leq 0
$$

From the first inequality of (3.11), we see that if

$$
\begin{equation*}
n H \Delta H+n\left(c-2 H^{2}\right) S+n^{2} H^{2} c+\frac{1}{2} S^{2}-\frac{3}{2} n^{2} H^{4} \geq 0 \tag{3.12}
\end{equation*}
$$

then the second fundamental form $h_{i j}^{\alpha}$ is parallel and S is constant.

References

[1] Aiyama, R.: Compact Space-like m-submanifolds in a Pseudo-Riemannian Sphere $S_{p}^{m+p}(c)$. Tokyo J. Math. 18, 1 (1995), 81-90.
[2] Chen, B. Y.: Some Results of Chern do Carmo-Kobayashi type and the Length of Second Fundamental Form. Indiana University Math. J. 20 (1971). 1175-1185.
[3] Cheng, Q. M., Choi, S. M.: Complete Space-like Submanifolds with Parallel Mean Curvature Vector of an Indefinite Space Form. Tsukuba J. Math 17, 2 (1993), 497-512.
[4] Haizong, L.: Complete Space-like Submanijolds in de Sitter Space with Parallel Mean Curvature Vector Satisfying $H^{2}=4 \frac{(n-1)}{n^{2}}$. Annals of Global Analysis and Geometry 15 1997, 335-345.
[5] Huafei, S.: Pseudo-Umbilical Submanifolds of A Space Form $N^{n+p}(c)$. Tsukuba J. Math. 20, 1 (1996), 45-50.
[6] Ishihara, T.: Maximal Space-like Submanifolds of a Pseudo-Rieamannian Space of constant Curvature. Michigan Math. J. 35 1988, 345-352.

