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Abstract 

B. Y. Chen [2] and L. Huafei [5] have studied pseudo-umbilical sub-
manifolds. In this paper, we have generalized the compact pseudo-um­
bilical space-like submanifolds with parallel mean curvature in a pseudo-
Riemannian space. 
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1 Introduction 
In a pseudo-Riemannian space form, space-like submanifolds with parallel mean 
curvature have been studied by many mathematians. Q. M. Cheng and Choi [3] 
proved the A complete space-like submanifold with parallel mean curvature 
vector of an indefinite space form M™+p (c). If the one following conditions is 
satisfied: 

1. c < 0 , 

2. c> 0 and n2H2 > 4 (n - 1) c, then S < S + K(p) where K(p) 

17 
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is a constant. Later, R. Aiyama [1] proved a space-like submanifold in a Semi-
Riemannian space form N with parallel non-null mean curvature vector H if 
M is neither minimal (i.e. maximal) nor pseudo-umbilical, then the normal 
connection of M in N is flat. L. Haizhong [4] discover a new theorem in the 
complete space-like subrnanifolds in de Sitter-Space with parallel mean curva­
ture. B. Y. Chen [2] proved: 

1. Let M be an n-dimensional compact pseudo-umbilical submanifold in 
Nn+P(c). Then 

/ nHAH + n (c + H2) S - (2 - - J S2 - n2H2c dv<0 

where 5, H and dv denote the square of the length of /i, the mean curvature 
of M and volume element of M, respectively. 

2. Let M be an n-dimensional compact pseudo-umbilical submanifold in 
Nn+P(c). If 

nHAH + n(c + H2) S - \2 - -J S 2 - n2H2c < 0 

then the second fundamental form is parallel and S constant. 

Thus, we obtain the following generalizations of (1) and (2). 

Theorem 1 Let M be an n-dimensional compact pseudo-umbilical space-like 
submanifold in N. Then 

J м fм 

and 

\n (c - 5H2) S + n2H2c + ±S2 + n2H4 

n(c- 2H2) S + n2H2c + l-S2 - ^n2H4 

dv < 0, for p > 1 

dv < 0, for p> 2 . 

Theorem 2 Let M be an n-dimensional compact pseudo-umbilical space-like 
submanifold in N. Then 

nHAH + n(c- 5H2) S + n2H2c + ^S2 + n2H4 > 0, for p > 1 

or 

nHAH + n(c- 2H2) S + n2H2c + ]-S2 - \n2H4 > 0, forp>2 
z z 

then the second fundamental form is parallel and S is constant. 
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2 Local formulas 

Let N be an (n +p)-dimensional pseudo-Riemannian manifold of constant cur­
vature c, whose index is p. Let M be an n-dimensional Riemannian manifold is 
isometrically immersed in iV. As the pseudo-Riemannian metric of N induces 
the Riemannian metric of M, the immersioan is called space-like. We choose a 
local field of pseudo-Riemannian orthonormal frames e\, e<2,..., en+p in N such 
that, at each point of M e\,e-2,... ,en spans the tangent space of M and forms 
an orthonormal frame there. We make use of the following convention on the 
ranges of indices: 

1 < A, B,C, D < n + p ; I <i,j,k,l,m <n\ n + 1 < o,/3,7 < n + p . 

We shall agree that repeated indices are summed over the respective ranges. 
Let cOi, cj2, • • •, tJn+p be its dual frame field so that the pseudo-Riemannian met­
ric of N is given by 

dsN = XX2 " X^« == l>2eAUJA 
i Q A 

where e; = 1 for 1 < i < n and eQ = - 1 for n + 1 < a < n + p. Then the 
structure equations of N are given by 

duA = ] P eBuAB A CUB, cOAB + cOBA = 0, 
B 

du^B = ^ cc^/ic A UJCB - 2 X^ ^C^DKABCD^C A WD- (2.1) 
C CD 

KABCD = c(O\4co"BD - ^AD^BC ) • 

The restrict these forms to M. Then 

cO a=0, for n + l < a < n + p (2.2) 

and the Riemannian metric of M is written as 

dsM = Ylui-
i 

We may put 

u7to = J>5W j-, /$ = /.£ (2.3) 
J 

Then /i? are the components of the second fundamental form of M. From (2.1), 
we obtain the structure equations of M 

du)i = 2_] uij A ujj , 
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duij = ^jT ujik A Ukj ~ 9 - ^ RiiklUk A ^ ' (2-4) 
* k/ 

and the Gauss formula 

Rijki = c(fofy - Si,Sjk) - Y, (h?kh°i ~ Kih%). 
a 

Ra0ij = E ( f t « < " ^ X ) • (2-5) 
A: 

We also have the structure equations of the normal bundle of M: 

dujQ = - 5 ^ uap A o;/3 
13 

dUa{3 = - ^ ^ a 7 A CJ7/J - - ^ RaPijVi A COj . (2 .6) 

7 ij 

Let /i?.fc denote the covariant derivative of hf- so that 

£ fc?.fcWfc = d/x". + X; *&"** + E h>ki - E hijO>0° • (2.7) 
/k k k (3 

Then we have hf-k — hfk-. Next take the exterior derivative of (2.7) and define 
the second covariant derivative of hf, by 

]T h?jklui = dhfjk + J2 h%iu^ + H h8*"-j + Y, hijh^u - Y, h%kU$a . (2.8) 
/ / / / 

Then we have obtain the Ricci formula 

h?jkl ~ h?jlk = Y h?mRrnjkl + ] P h
mjRmikl + X ! h^jR^0kl • (2.9) 

m m /3 

We call 

h = 22 h?jUiUJjea 

ija 

the second fundamental form of the immersed manifold M. 

C = -Y]trHaea 

and 

n 
a 

я = d^E( t r Я «) 
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denote the mean curvature vector and the mean curvature of M, respectively. 
Here tr is trace of the matrix Ha = (hfj). The square of the length of the 
second fundamental form of M in N is given by 

s = I>S)a-lfto\ 
ija 

Now, let e n + p be parallel to (• Then we get 

tr Hn+p = nH, t r i I Q = 0 , a / n + p . (2.10) 

The Laplacian Ahfj of second fundamental form hfj is defined by 

Using the same method as in [6], we have 

^h% ~ Z2 h^iJ + 2 ^ h<irnRrnkjk + /^ flmkRmijk + ^2 hikRapjk . 
k mk mk afik 

By a simple calculation we have 

iA5 = E f e ) 2 + E ( ^ ) A / i S 
ijka ija 

OГ 

±AS = E (h?jk)
2 + E ft«ft*«J + E h%h"mRmk]k 

ijka ijka ijkma 

+ E h?JhmkRmi)k + E h%h1k

R«W 
ijkma ijka 0 

= E fe)2+n#A#+n (c - # 2 ) 5 + n 2 / f 2 c 

+ ]T (tr HaH$f + Y, tr (HaH$ - H0Haf . (2.11) 
a(3 a/3 

Definition 1 A space-like submanifold M is said pseudo-umbilic, if it is umbilic 
with respect to direction of mean curvature vector /i, that is 

hl+p = HSij (2.12) 

In order to prove our Theorems, we need following lemmas. 
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3 Proofs of Theorems 

Lemma 1 [5] Let H{ (i > 2) be symetric (n x n)-matrices, si — tr Hf and 

Y^triHiHj-HjHi)2 -Y,(trHiH3f > --S2 
(3.1) 

and the equality holds if and only if all Hi = 0 or there exist two of Hi different 
from zero. Morever, if Hi / 0. II2 ^ 0, Hi = 0. (i ^ 1,2) then s\ / 52 and 
there exists on ortogonal (n x n)-matrix T such that 

™;г=jf 
/ l 0 .. 

0 - 1 .. 
• °\ . 0 

Vo 0 .. . o) 
mma 2 [5] Wh en p > 2, 

TH2T 

/O 1 . . . o\ 
1 o ... o 

Vo 0 ... 0/ 

Y^tv(HaH0 - HaHa)
2 - ]T (tvHaHp)2 > -^S2 + 3nH2S - \n2H\ (3.2) 

a(3 a/3 

Lemma 3 When p > 1. 

^ t r (HQH{3 - i/^IIa) 2 4- ] T (tr HaH0)
2 > -]-S2 - 4nH2S + n2H\ (3.3) 

a/3 a/3 

Proof From (3.1), we have 

£ t r (I/QIz> - tf^)2 + J2 (trffatf/i)2 > - | s 2 + 2 ] T (tr HaH0)
2 . (3.4) 

On the other hand, by a simple calculation we have 

2 ] £ (tr HaHp? > 252 - 4nH2S + n2H4. 
a(3 

(3.5) 

D Using (3.5) in (3.4), we obtain (3.3). 

Lemma 4 When p > 2, 

J^tr (HaH0 - H0Haf + 5 ] (trHaH0f > +±S2 - nH2S - \n2H4. (3.6) 
a/3 a (3 

Proof From Lemma 2 and (3.5), it can seen easily (3.6). 

Using (2.12) we can get 

* 2 > ^ — 2 

ik 

D 

ij/ca 

(3.7) 
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It is obvious that 
1-nAH2 = nHAH + Y/(Kit

P)2- (3-8) 
ik 

Therefore, using Lemma 3, (3.7) and (3.8) when p > 1 by (2.11) we have 

\AS > Y, {h?jk)2 + nHAH + n (c - H2) S + n2H2c + ]-S2 

ijk 

- 4nH2S + n2H4 

> J2 {Kit")2 + n H A H + n{c- 5tf2) 5 + l-S2 + n2H2c + n2H4 

ik 

= ^nAH2 +n(c- 5H2) S + n2H2c + ^S2 + n2H4. (3.9) 

Since M is compact, form (3.9) we have 

/ 
Jм 

(c - ЪH2) S + n2H2c + Џ2 + n2H4 
dv < 0. 

'M 

On the other hand, from the first inequality of (3.9), we have that if 

nHAH + n(c- 5H2) 5 + n2H2c + ]-S2 + n2H4 > 0 (3.10) 

and M is compact, then the second fundamental from hfj is parallel and 5 is 
constant. 

On the other hand, when p > 2 using Lemma 4, (3.7) and (3.8) from (2.11) 
we get 

X-AS > ] T {hfjk)
2 + nHAH + n(c- H2) S + n2H2c + ^S2 

ijka 

- n2H2S - \n2H4 

> ^nAH2 +n(c- 2H2) S + n2H2S + ]-S2 - \n2H4. (3.11) 

Thus, when M is compact by (3.11) we obtain 

<fo<0. / \n(c-2H2)S+ \s2+n2H2c-\n2H 
JM L 2 2 

Prom the first inequality of (3.11), we see that if 

nHAH + n(c- 2H2) S + n2H2c + )-S2 - \ri2H* > 0 (3.12) 

then the second fundamental form hf, is parallel and S is constant. 



24 M. BEKTAS, M. ERGUT 

References 
[1] Aiyama, R.: Compact Space-like m-submanifolds in a Pseudo-Riemannian Sphere 

5ҷ + p (c) . Tokyo J. Math. 18, 1 (1995), 81-90. 

[2] Chen, B. Y.: Some Results of Chern do Carmo-Kobayashi type and the Length of Second 
Fundamental Form. Indiana University Math. J. 20 (1971), 1175-1185. 

[3] Cheng, Q. M., Choi, S. M.: Complete Space-like Submanifolds with Parallel Mean Cur-
vature Vector of an Indefinite Space Form. Tsukuba J. Math 17, 2 (1993), 497-512. 

[4] Haizong, L.: Complete Space-like Submanifolds in de Sitter Space with Parallel Mean 
Curvature Vector Satisfying H'2 = 4^-^-. Annals of Global Analуsis and Geometry 15 
1997, 335-345. 

[5] Huafei, S.: Pseudo-Umbilical Submanifolds of Л Space Form Nn+*Ҷc). Tsukuba J. 
Math. 20, 1 (1996), 45-50. 

[6] Ishihara, T.: Maximal Space-like Submanifolds of a Pseudo-Rieamannian Space of con-
stant Curvature. Michigan Math. J. 35 1988, 345-352. 


		webmaster@dml.cz
	2012-05-03T23:05:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




