# Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 

František Machala<br>Special incidence structures of type ( $p, n$ ). II.

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 40 (2001), No. 1, 161--178

Persistent URL: http://dml.cz/dmlcz/120428

## Terms of use:

© Palacký University Olomouc, Faculty of Science, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

# Special Incidence Structures of Type $(p, n)$ 

Part II

František MACHALA

Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic e-mail: machala@risc.upol.cz
(Received January 12, 2001)


#### Abstract

This paper is the second part of [5]. We examine special incidence structures of type $(p, n)$ in which the conditions $R^{i}=R^{i+1}$ and $a_{i}^{\prime} Y m_{i}^{\prime}$ are valid for a certain $i \in\{0, \ldots, n-1\}$.


Key words: Incidence structures, independent sets.
2000 Mathematics Subject Classification: 06B05, 08A35

This paper is a continuation of [5]. Thus we use the denotation, the numbering of propositions, theorems, figures and enclosures from [5]. We examine special incidence structures of type $(p, n)$ in which the conditions $R^{i}=R^{i+1}$ and $a_{i}^{\prime} \not \mathscr{\prime} m_{i}^{\prime}$ are valid for certain $i \in\{0, \ldots, n-1\}$. Such incidence structures satisfy the conditions either from Proposition 4 or from Proposition 5 of [5]. In [5] there are all special incidence structures of type $(p, n)$ of the first kind described. In what follows we consider special incidence structures $\mathcal{J}$ of type ( $p, n$ ) satisfying the conditions from Proposition 5. Hence, accepting the denotation from [5], we assume that $k=l, a_{i}^{\prime}, a_{i+2} I b$ and $B^{i+2}=\left\{b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$, $B^{i-1}=\left\{b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$.

[^0]Let $\mathcal{J}_{2}=\left(G_{2}, M_{2}, I_{2}\right)$ be a substructure of $\mathcal{J}$ where $G_{2}=G_{1}, M_{2}=M_{1} \cup\{b\}$. If we put $B_{j}=\left\{b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ for each $j \in\{1, \ldots, p-1\}-\{k\}$, then the graph of the incidence structure $\mathcal{J}_{2}^{p}$ has a form


Since $\mathcal{J}$ is of type $(p, n)$ there exist $A^{i+3}, A^{i-1} \in G^{p}$ such that $A^{i+3} I^{p} B^{i+2}$ and $A^{i-1} I^{p} B^{i-1}$. Furthermore, $A^{i+3}, A^{i-1} \notin G_{1}^{p}$ and there exist elements $d \in A^{i+3}, e \in A^{i-1}$ such that $d, e \in G-G_{1}$.

Proposition $6 A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right), A^{i-1}=\left\{e, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u^{\prime}}\right\}\right)$.
Proof From $A^{i+2}=\left\{a_{i+2}\right\} \cup R^{i}$ and $\left|A^{i+2} \cap A^{i+3}\right|=p-1$ we get either $A^{i+3}=\{d\} \cup R^{i}$ or $A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$ for a certain $u \in\{1, \ldots, p-1\}$. Similarly, from $A^{i}=\left\{a_{i}^{\prime}\right\} \cup R^{i}$ and $\left|A^{i-1} \cap A^{i}\right|=p-1$ we obtain either $A^{i-1}=$ $\{e\} \cup R^{i}$ or $A^{i-1}=\left\{e, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u^{\prime}}\right\}\right)$.

First let us suppose that $A^{i+3}=\{d\} \cup R^{i}$. Because of $A^{i+3} I^{p} B^{i+2}$ there exists a norming mapping $\alpha: A^{i+3} \rightarrow B^{i+2}$ in which $\alpha(d)=m_{i+1}, \alpha\left(g_{k}\right)=b$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k$. If $d I n_{k}$, then $A^{i+3} I^{p} B^{i+1}$ which is a contradiction. Thus $d \not X n_{k}$. If $d \not X m_{i}^{\prime}$, then $A^{i+3} I^{p} B^{i-1}$ which is a contradiction. If $d I m_{i}^{\prime}$, then $A^{\prime} I^{p} B^{i}$ where $A^{\prime}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$. This is a contradiction again.

In a similar way one can show that $A^{i-1}=\{e\} \cup R^{i}$ does not hold. Hence $A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right), A^{i-1}=\left\{e, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u^{\prime}}\right\}\right)$.

Proposition 7 Let $A^{i+3}$, $A^{i-1}$ be given according to Proposition 6. Then $u=k$ if and only if $u^{\prime}=k$. If $u=k$, then $d=e$ and for a substructure $\mathcal{J}_{3}=$ $\left(G_{3}, M_{3}, I_{3}\right)$ of $\mathcal{J}$ where $G_{3}=G_{1} \cup\{d\}, M_{3}=M_{1} \cup\{b\}$ the $\mathcal{J}_{3}^{p}$ has the following graph:


Furthermore, $E_{j}=\left\{d, a_{i}^{\prime}, a_{i+1}\right\} \cup\left(R^{i}-\left\{g_{k}, g_{j}\right\}\right)$ for all $j \neq k$.
Proof Let $u=k$. There exists a norming mapping $\beta: B^{i+2} \rightarrow A^{i+3}$ in which $\beta(b)=d, \beta\left(m_{i+1}\right)=a_{i+2}$ and $\beta\left(n_{j}\right)=g_{j}$ for $j \neq k$. If $d \not \subset n_{k}$, then $A^{i+3} I^{p} B^{i+1}$ which is a contradiction. Thus $d I n_{k}$. If $d \neq m_{i}^{\prime}$, then $A^{\prime} I^{p} B^{i}$
where $A^{\prime}=\{d\} \cup R^{i}$. This is a contradiction again. Hence $d I m_{i}^{\prime}$. It means that $A^{\prime} I^{p} B^{i-1}$ where $A^{\prime}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$. Since $A^{\prime} \neq A^{i}$ we get $A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)=\left\{e, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u^{\prime}}\right\}\right)$ and thus $u^{\prime}=k, d=e$. If we put $E_{j}=\left\{d, a_{i}^{\prime}, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{k}, g_{j}\right\}\right)$ for $j \neq k$, then $E_{j} I^{p} B_{j}$.

Enclosure 11 shows the described situation in the case of $p=5$ and $k=2$.

1. First assume that $u=k$. Thus $A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$ and $A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$. From $b \neq m_{i}^{\prime}, m_{i+1}$ we have $B^{i+2} \neq X^{j}$ and $B^{i-1} \neq X^{j}$ for all $j \in\{1, \ldots, p-1\}$. Since $\mathcal{J}$ is of type $(p, n)$ there exists either $B^{i+3}$ or $B^{i-2}$.

Proposition 8 If $B^{i+3}$ exists, then $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ where $x \in M-\left(M_{1} \cup\{b\}\right)$. Let $\mathcal{J}_{4}=\left(G_{4}, M_{4}, I_{4}\right)$ be a substructure of $\mathcal{J}$ with $G_{4}=$ $G_{1} \cup\{d\}, M_{4}=M_{1} \cup\{b, x\}$. Then $\mathcal{J}_{4}^{p}$ has a graph


Proof Let $B^{i+3}$ exist. Then $B^{i+3} \nsubseteq M_{1} \cup\{b\}$ and there exists $x \in B^{i+3}$, $x \notin M_{1} \cup\{b\}$. Since $B^{i+2}=\left\{b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ and $\left|B^{i+2} \cap B^{i+3}\right|=p-1$ we get either $B^{i+3}=\{x, b\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B^{i+3}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$. There exists a norming mapping $\alpha: A^{i+3} \rightarrow B^{i+3}$ because $A^{i+3} I^{p} B^{i+3}$.
a) Assume that $B^{i+3}=\{x, b\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Then $\alpha\left(a_{i+2}\right)=x, \alpha(d)=b$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k$. If $g_{k} I x$, then $A^{i+2} I^{p} B^{\prime}$ where $B^{\prime}=\{x\} \cup R^{i}$, a contradiction. Thus $g_{k} \not X x$. If at the same time $a_{i}^{\prime} \not X x$, then $A^{i-1} I^{p} B^{i+3}$ which is a contradiction. In the case $a_{i}^{\prime} I x$ we have $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=$ $\left\{x, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ and this is a contradiction again.
b) Assume that $B^{i+3}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Then $\alpha\left(a_{i+2}\right)=m_{i+1}$, $\alpha(d)=x$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k$. If $g_{k} \not X x$, then $A^{i+2} I^{p} B^{i+3}$ which is a contradiction. Thus $g_{k} I x$. If $a_{i}^{\prime} \not \not X x$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\{x\} \cup Q^{i}$ which is a contradiction. Thus $a_{i}^{\prime} I x$. If $a_{i+1} \not X^{\prime} x$, then $A^{i+1} I^{p} B^{\prime}$ where $B^{\prime}=\{x\} \cup Q^{i}$ and this is a contradiction. Let $a_{i+1} I x$. This implies $A^{i-1} I^{p}\left\{x, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\right.$ $\left.\left\{n_{k}\right\}\right)$ whence $B^{i-2}=\left\{x, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Therefore, $A^{\prime} I^{p} B^{i+3}, B^{i-2}$ for $A^{\prime}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$ which is a contradiction again.
c) According to a), b) we have $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$. Then $\alpha\left(a_{i+2}\right)=m_{i+1}, \alpha(d)=b, \alpha\left(g_{q}\right)=x$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k, q$. If $g_{k} I x$, then $A^{i+2} I^{p} B^{i+3}$ which is a contradiction. Thus $g_{k} \not X^{\prime} x$. Let $a_{i}^{\prime} I x$. Then $C^{q} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ which is a contradiction because $B^{\prime} \neq X^{q}, B_{q}$. Thus $a_{i}^{\prime} \not X^{\prime} x$. It means that $E_{q} I^{p} B^{i+3}$ and the incidence structure $\mathcal{J}_{4}^{p}$ has the graph presented in the proposition.

The validity of Proposition 8 does not depend on the incidence of elements $a_{i+1}$ and $x$.

Enclosures 12, 13 show the situation for $p=5, k=2$ and $q=1$. There are $a_{i+1} I x$ at Encl. 12 and $a_{i+1} \not X^{\prime} x$ at Encl. 13.

Proposition 9 If $B^{i-2}$ exists, then $B^{i-2}=\left\{y, b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q^{\prime}}\right\}\right)$ where $y \in M-\left(M_{1}-\{b\}\right)$. If $\mathcal{J}_{4}=\left(G_{4}, M_{4}, I_{4}\right)$ is a substructure of $\mathcal{J}$ with $G_{4}=$ $G_{1} \cup\{d\}$ and $M_{4}=M_{1} \cup\{b, y\}$, then $\mathcal{J}_{4}^{p}$ has a graph


The proof is similar to Proposition 8. In this case $g_{k} \not X^{\prime} y, a_{i+2} \not X^{\prime} y$.
Remark 4 If $B^{i+3}$ and $B^{i-2}$ exist, then $q \neq q^{\prime}$ and $x \neq y$.
Theorem 9 Let $\mathcal{J}_{5}=\left(G_{5}, M_{5}, I_{5}\right)$ be a substructure of $\mathcal{J}$ with $G_{5}=G_{1} \cup\{d\}$, $M_{5}=M_{1} \cup\{b, x, y\}$. If $E_{j} I^{p} B$ where $B \nsubseteq M_{5}$, then $E_{r} I^{p} B$ for a certain $r \neq q, q^{\prime}, j$ and $B_{j} \cap B=B \cap B_{r}$.

Proof It follows from $E_{q} I^{p} B^{i+3}, B_{q}$ and $E_{q^{\prime}} I^{p} B^{i-2}, B_{q^{\prime}}$ that $j \neq q, q^{\prime}$. Since $B \nsubseteq M_{5}$ there exists $z \in B, z \notin M_{5}$. It holds $E_{j} I^{p} B_{j}, B$ and thus $\left|B \cap B_{j}\right|=p-1$. From $B_{j}=\left\{b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ we get $B=$ $\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=\left\{z, b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=$ $\left\{z, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=\left\{z, b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}, n_{r}\right\}\right)$. There exists a norming mapping $\alpha: E_{j} \rightarrow B$ because $E_{j} I^{p} B$.
a) Let $B=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$. Then $\alpha(d)=z, \alpha\left(a_{i+2}\right)=$ $m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$ and $\alpha\left(g_{l}\right)=n_{l}$ for $l \neq k, j$. If $g_{k} \not X z$, then $C^{j} I^{p} B$ which is a contradiction. Hence $g_{k} I z$. If $g_{j} X z$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. This is a contradiction again. Finally, $g_{j} I z$ implies $A^{i+3} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ and this is a contradiction.
b) Let $B=\left\{z, b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$. Then $\alpha(d)=b, \alpha\left(a_{i+2}\right)=z$, $\alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$ and $\alpha\left(g_{l}\right)=n_{l}$ for $l \neq k, j$. If $g_{j} \not X z$, then $A^{i-1} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ which is a contradiction. Let $g_{k} \not X^{\prime} z$. Then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. This is a contradiction again. If $g_{k} I z$, then $A^{i+2} I^{p} B^{\prime}$ where $B^{\prime}=\{z\} \cup Q^{i}$ which is a contradiction.
c) Let $B=\left\{z, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$. Then $\alpha(d)=b, \alpha\left(a_{i+2}\right)=m_{i+1}$, $\alpha\left(a_{i}^{\prime}\right)=z$ and $\alpha\left(g_{l}\right)=n_{l}$ for $l \neq k, j$. If $g_{j} \not A^{\prime} z$, then $A^{i+3} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ which is a contradiction. Hence $g_{j} I z$. If $g_{k} X^{\prime} z$, then $A^{i+2} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ and this is a contradiction again. If $g_{k} I z$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\{z\} \cup Q^{i}$ which is a contradiction.
d) According to a)-c) we obtain $B=\left\{z, b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}, n_{r}\right\}\right)$. Then $\alpha(d)=b, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}, \alpha\left(g_{r}\right)=z$ and $\alpha\left(g_{l}\right)=n_{l}$ for $l \neq k, j, r$. Let $g_{k} I z$. Then $C^{j} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ which is a contradiction because $B^{\prime} \neq X^{j}, B_{j}$. Thus $g_{k} \not X z$. Let $g_{j} I z$. Then $A^{i+3} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{r}\right\}\right)$ which is a contradiction. Hence $g_{k}, g_{j} \not X z$ which yields $E_{r} I^{p} B$. If $r=q$, then from $B \neq B^{i+3}, B_{q}$ we obtain a contradiction. Thus $r \neq q$. Similarly $r \neq q^{\prime}$. It is easy to see that $B_{j} \cap B=\left\{b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}, n_{r}\right\}\right)=B \cap B_{r}$.

Theorem 10 If $C^{k} I^{p} B$, then $B=X^{k}$.
Proof Let us suppose that $C^{k} I^{p} B$ and $B \neq X^{k}$. Then $B \nsubseteq M_{1} \cup\{b, x, y\}$ and thus there exists $v \in B, v \notin M_{1} \cup\{b, x, y\}$. It follows from $C^{k} I^{p} X^{k}, B$ that $\left|B \cap X^{k}\right|=p-1$. Hence $B=\left\{v, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B=\left\{v, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B=\left\{v, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{r}\right\}\right)$. There exists a norming mapping $\alpha$ : $C^{k} \rightarrow B$.
a) Let $B=\left\{v, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Then $\alpha\left(a_{i+2}\right)=v, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k$. If $g_{k} \not Z^{\prime} v$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\left\{v, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ which is a contradiction because of $B^{\prime} \neq B^{i}, B^{i-1}$. If $g_{k} I v$, then $A^{i+2} I^{p} B^{\prime}$ where $B^{\prime}=\{v\} \cup Q^{i}$. This is a contradiction again.
b) If $B=\left\{v, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$, we obtain a contradiction similarly to the case a).
c) Let $B=\left\{v, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{r}\right\}\right)$. Then $\alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=$ $m_{i}^{\prime}, \alpha\left(g_{r}\right)=v$ and $\alpha\left(g_{j}\right)=n_{j}$ for $j \neq k, r$. If $g_{k} I v$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\left\{v, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{r}\right\}\right)$ which is a contradiction. If $g_{k} \not \subset v$, then $C^{r} I^{p} B^{\prime}$ which is a contradiction again.

It follows from a), b), c) that $B=X^{k}$.
Let us suppose that there does not exist the set $B^{i-2}$. Then the set $B^{i+3}$ exists and the incidence structure $\mathcal{J}_{4}^{p}$ has the graph from Proposition 8.

At the same time $A^{i-1}=A^{0}$, thus $i=1$. Let us put $L=\{1, \ldots, p-1\}$ again and let $L^{\prime}=L-\{k, q\}$. If $E_{j} \in G_{4}^{p}, j \neq q$, then there exists a set $B \subseteq M-M_{4}$ such that $E_{j} I^{p} B$. By Theorem 9 , there exists $E_{r} \subseteq G^{p}$ (where $r \in L^{\prime}, r \neq j$ ) such that $E_{r} I^{p} B$.

Let us put $Y_{j}:=B$ and $r=\xi(j)$. By this a bijective mapping $\xi$ of the set $L^{\prime}$ is assigned which is involutory. Let $\varphi: L \rightarrow L$ is the mapping from Theorem 7 . If we put $\varphi(q)=q_{2}$, then a set $A_{q} \in G^{p}$ exists such that $A_{q} I^{p} X^{q}, X^{q_{2}}$. If $q_{2} \neq k$, then $C^{q_{2}} I^{p} B_{q_{2}}$ and $E_{q_{2}} I^{p} B_{q_{2}}$. (See Figure 5 where the graph of the substructure $\mathcal{J}_{1}^{p}$ is emphasized.)


Figure 5

There exists $Y_{q_{2}} \in M^{p}$ such that $E_{q_{2}} I^{p} Y_{q_{2}}$ and, by Theorem 9, there exists $E_{q_{3}} \in M^{p}, E_{q_{3}} I^{p} Y_{q_{2}}$ where $\xi\left(q_{2}\right)=q_{3}$. Then $E_{q_{3}} I^{p} B_{q_{3}}, C^{q_{3}} I^{p} B_{q_{3}}, X^{q_{3}}$ and $A_{q_{3}} \in G^{p}$ exists with $A_{q_{3}} I^{p} X^{q_{3}}$ and $A_{q_{3}} I^{p} X^{q_{4}}$ where $\varphi\left(q_{3}\right)=q_{4}$. If $q_{4} \neq k$, then we proceed in the same way until we get $E_{q_{p-2}} I^{p} B_{q_{p-2}}, C^{q_{p-2}} I^{p} X^{q_{p-2}}$, $A_{q_{p-2}} I^{p} X^{q_{p-2}}, X^{q_{p-1}}$ and $C^{q_{p-1}} I^{p} X^{q_{p-1}}$ where $q_{p-1}=k$ and $C^{q_{p-1}}=A_{n}$ by Theorem 10.

If the set $B^{i-2}$ exists and $B^{i+3}$ does not, then $A^{i+3}=A^{n}$ and we proceed analogously to the previous case, using $q^{\prime}$ instead of $q$.

Let us assume that there exist both sets $B^{i-2}, B^{i+3}$. Then we put $L^{\prime \prime}=$ $L-\left\{k, q, q^{\prime}\right\}$. Consider mappings $\varphi: L \rightarrow L, \xi: L^{\prime \prime} \rightarrow L^{\prime \prime}$ described in the first case. Let us put

$$
\underbrace{\varphi \xi \varphi \ldots \xi \varphi}_{l}(q)=q_{l+1} \quad \text { and } \underbrace{\varphi \xi \varphi \ldots \xi \varphi}_{r}\left(q^{\prime}\right)=q_{r+1}^{\prime}
$$

for $l \in\{1, \ldots, u\}$ and $r \in\{1, \ldots, v\}$ where $u+v+2=p-1$. Then either $k=u+1$ or $k=v+1$. Suppose that $k=u+1$. Then, by Theorem 10, $C^{k}=A^{n}$.


Figure 6
According to Theorem 9 there does not exist $B \in M^{p}$ such that $E_{q_{v+1}^{\prime}} I^{p} B$ and $B \neq B_{q_{v+1}^{\prime}}$, thus $E_{q_{v+1}^{\prime}}=A^{0}$. Figure 6 shows the graph of $\mathcal{J}^{p}$ emphasizing the substructure $\mathcal{J}_{1}^{p}$. By assumption, $A^{i} \cap A^{i+1}=A^{i+1} \cap A^{i+2}$; from Theorem 6 we have $C^{q_{j}} \cap A_{q_{j}}=A_{q_{j}} \cap C^{q_{j+1}}$ if $q_{1}:=q$ and $j \in\{1, \ldots, u\}$. At the same time, $C^{q_{j}^{\prime}} \cap A_{q_{j}^{\prime}}=A_{q_{j}^{\prime}} \cap C^{q_{j+1}^{\prime}}$ if $q_{1}^{\prime}:=q^{\prime}$ and $j \in\{1, \ldots, v\}$. Furthermore, $B^{i+2} \cap$ $B^{i+3}=B^{i+3} \cap B_{q}=\left\{b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ and $B^{i-1} \cap B^{i-2}=B^{i-2} \cap B_{q^{\prime}}=$ $\left\{b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q^{\prime}}\right\}\right)$. It follows from Theorem 9 that $B_{q_{j}} \cap Y_{q_{j}}=Y_{q_{j}} \cap B_{q_{j+1}}$ for $j \in\{2, \ldots, u-1\}$ and $B_{q_{j}^{\prime}} \cap Y_{q_{j}^{\prime}}=Y_{q_{j}^{\prime}} \cap B_{q_{j+1}^{\prime}}$ for $j \in\{2, \ldots, v-1\}$. If $p=2 q+1$, then $n=5 q+3$.
2. Assume that $u \neq k$. Then, by Proposition 7 , also $u^{\prime} \neq k$ where $B^{i+2}=$ $\left\{b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right), B^{i-1}=\left\{b, m_{i}^{\prime}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right), A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\right.$ $\left.\left\{g_{u}\right\}\right), A^{i-1}=\left\{e, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u^{\prime}}\right\}\right)$. Since $\mathcal{J}$ is of type $(p, n)$ there exist norming mappings $\alpha_{1}: A^{i+3} \rightarrow B^{i+2}, \alpha_{2}: A^{i-1} \rightarrow B^{i-1}$.

Proposition 10 The following statements hold:
(i) $d \not \subset n_{u}, n_{k} ; d \not \subset m_{i}^{\prime} \Leftrightarrow A^{i+3} I^{p} B_{u}, d I m_{i}^{\prime} \Leftrightarrow A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$,
(ii) e $\not \subset n_{u^{\prime}}, n_{k}$; e $\not{ }^{\prime} m_{i+1} \Leftrightarrow A^{i-1} I^{p} B_{u^{\prime}}$, e $I m_{i+1} \Leftrightarrow A^{i+3}=\left\{e, a_{i+2}\right\} \cup$ ( $\left.R^{i}-\left\{g_{u^{\prime}}\right\}\right)$.

Proof (i) It follows from $u \neq k$ that $\alpha_{1}(d)=n_{u}$, thus $d \not \subset n_{u}, \alpha_{1}\left(a_{i+2}\right)=m_{i+1}$, $\alpha_{1}\left(g_{k}\right)=b$ and $\alpha_{1}\left(g_{r}\right)=n_{r}$ for $r \neq k, u$. If $d I n_{k}$, then $A^{i+3} I^{p} B^{i+1}$ which is a contradiction and hence $d \not X n_{k}$.

If $d \not X m_{i}^{\prime}$, then $A^{i+3} I^{p} B_{u}$. Conversely, $A^{i+3} I^{p} B_{u}$ implies the existence of just one norming mapping $\alpha: A^{i+3} \rightarrow B_{u}$ with $\alpha(d)=m_{i}^{\prime}$ and thus $d \not X m_{i}^{\prime}$. If $d I m_{i}^{\prime}$, then $A^{\prime} I^{p} B^{i-1}$ where $A^{\prime}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$. Thus $A^{\prime}=A^{i-1}$ because $A^{\prime} \neq A^{i}$. Let $A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$. Then just one norming mapping $\alpha: A^{i-1} \rightarrow B^{i-1}$ exists with $\alpha(d)=n_{u}$ and $\alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$. This yields $d I m_{i}^{\prime}$.
(ii) The proof is similar to (i).

Proposition 11 The following equivalences hold:

$$
u=u^{\prime} \Longleftrightarrow d I m_{i}^{\prime} \Longleftrightarrow e I m_{i+1} \Longleftrightarrow d=e
$$

Proof Let us suppose that $u=u^{\prime}$. Moreover, assume that $d \not X^{\prime} m_{i}^{\prime}$. Then $A^{i+3} I^{p} B_{u}$ by Proposition 10. If $e \not \subset m_{i+1}$, then $A^{i-1} I^{p} B_{u}$ which contradicts $C^{u} I^{p} B_{u}$. If e I $m_{i+1}$, then $A^{i+3}=\left\{e, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\right.$ $\left.\left\{g_{u}\right\}\right)$ which yields $e=d$; thus $e \not Z^{\prime} m_{i+1}$, a contradiction. Hence $d I m_{i}^{\prime}$.

Consider $d I m_{i}^{\prime}$. It means that $A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)=\left\{e, a_{i}^{\prime}\right\} \cup$ ( $R^{i}-\left\{g_{u^{\prime}}\right\}$ ). Since $d, e \notin R^{i}$ we have $d=e$ and $u=u^{\prime}$. From $\alpha_{1}(d)=n_{u}$ we obtain $d I m_{i+1}$ and thus e $I m_{i+1}$. Similarly, e $I m_{i+1}$ yields $d=e, u=u^{\prime}$ and $d I m_{i}^{\prime}$.

If $d=e$, then $\alpha_{1}(d)=n_{u}, \alpha_{1}(e)=n_{u^{\prime}}$. Hence $n_{u}=n_{u^{\prime}}$ and $u=u^{\prime}$.
a) Let us assume that $u \neq u^{\prime}$. Then $d \neq e, d \not \not \not \subset n_{u}, n_{k}, m_{i}^{\prime}, A^{i+3} I^{p} B_{u}$ and $e \not \subset n_{u^{\prime}}, n_{k}, m_{i+1}, A^{i-1} I^{p} B_{u^{\prime}}$.

Let $\mathcal{J}_{3}=\left(G_{3}, M_{3}, I_{3}\right)$ be a substructure of $\mathcal{J}$ with $G_{3}=G_{1} \cup\{d, e\}$ and $M_{3}=M_{1} \cup\{b\}$. The graph of $\mathcal{J}_{3}^{p}$ has the following form:


See incidence structures $\mathcal{J}_{3}, \mathcal{J}_{3}^{p}$ for $p=5, k=2, u=1, u^{\prime}=3$ at Enclosure 14.

Theorem 11 If $A I^{p} B_{j}, A \neq C^{j}$, then also $A I^{p} B_{j^{\prime}}$ for $j^{\prime} \neq k, u, u^{\prime}, j$.
Proof Let $A I^{p} B_{j}$ and $A \neq C^{j}$. Then $A \subseteq G-G_{3}$ and there exists $a \in A$, $a \in G-G_{3}$. Now, from $\left|A \cap C^{j}\right|=p-1$ and $C^{j}=\left\{a_{i}^{\prime}, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{j}\right\}\right)$ we obtain $A=\left\{a, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{j}\right\}\right)$ or $A=\left\{a, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{j}\right\}\right)$ or $A=$
$\left\{a, a_{i}^{\prime}, a_{i+1}\right\} \cup\left(R^{i}-\left\{g_{j}, g_{j^{\prime}}\right\}\right)$. Since $A I^{p} B_{j}$ there exists a norming mapping $\alpha: A \rightarrow B_{j}$.
(i) First assume that $A=\left\{a, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{j}\right\}\right)$. Then $\alpha(a)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=$ $m_{i}^{\prime}$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, j$. If $a I n_{k}$, then $A I^{p} X^{j}$ which is a contradiction. Thus $a \not X^{\prime} n_{k}$. If $a I n_{j}$, then $A^{\prime} I^{p} B^{i}$ where $A^{\prime}=\left\{a, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$. This is a contradiction. In the case $a \not \not X n_{j}$ we get $A I^{p} B^{i-1}$ which also contradicts our assumption.
(ii) If $A=\left\{a, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{j}\right\}\right)$, then one can get a contradiction similarly to (i).
(iii) According to (i), (ii) we have $A=\left\{a, a_{i}^{\prime}, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{j}, g_{j^{\prime}}\right\}\right)$. Let $j^{\prime}=k$. Then $\alpha(a)=b, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, j$. If $a I n_{j}$, then $A^{\prime} I^{p} B^{i+2}$ for $A^{\prime}=\left\{a, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{k}\right\}\right)$ which is a contradiction. In the case $a \not \neq n_{j}$ we obtain $A I^{p} X^{k}$. It follows from Theorems 6, 7 that $A I^{p} X^{\varphi(k)}$ and because of $B_{j} \neq X^{\varphi(k)}$ we have a contradiction.

Let $j^{\prime}=u$. Then $\alpha(a)=n_{u}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}, \alpha\left(a_{i+2}\right)=m_{i+2}, \alpha\left(g_{k}\right)=b$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, k, j$. If $a \not \not Z_{j}$, then $A I^{p} B_{u}$ which is a contradiction. In the case $a I n_{j}$ we obtain $A^{\prime} I^{p} B^{i+2}$ where $A^{\prime}=\left\{a, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$. This is a contradiction again. We proceed in a similar way in the case $j^{\prime}=u^{\prime}$. Hence $j^{\prime} \neq k, u, u^{\prime}, j$.

We have $\alpha(a)=n_{j^{\prime}}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(g_{u}\right)=b$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, j, j^{\prime}$. If $a I n_{k}$, then $A I^{p} X^{j}$ which is a contradiction. Thus $a \not X^{\prime} n_{k}$. If $a I n_{j}$, then $A^{\prime} I^{p} B^{i+2}$ where $A^{\prime}=\left\{a, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{j^{\prime}}\right\}\right)$. This is a contradiction again. Thus $a \not \not{ }^{\prime \prime} n_{j}$ an in this case $A I^{p} B_{j^{\prime}}$.

Let us put $L=\{1, \ldots, p-1\}$ and $L^{\prime}=L-\left\{k, u, u^{\prime}\right\}$. To every $j \in L^{\prime}$ there exists $A \in G^{p}$ such that $A I^{p} B_{j}$. Then, by Theorem 11, there exists $j^{\prime} \in L^{\prime}$, $j^{\prime} \neq j$ such that $A I^{p} B_{j^{\prime}}$. In this way we get a mapping $\xi: L^{\prime} \rightarrow L^{\prime}$ which is involutory. However, this contradicts the fact that the positive integer $\left|L^{\prime}\right|$ is odd. Hence, an incidence structure of type $(p, n)$ satisfying the requirements 2 , a) does not exist.
b) Let us assume that $u=u^{\prime}$. Then, by Propositions 10,11 , we have $d=e$, thus $A^{i+3}=\left\{d, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right), A^{i-1}=\left\{d, a_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{g_{u}\right\}\right)$ and $d \not X^{\prime} n_{u}, n_{k}$, $d I m_{i}^{\prime}, m_{i+1}$.

Proposition 12 If $\mathcal{J}_{3}=\left(G_{3}, M_{3}, I_{3}\right)$ is a substructure of $\mathcal{J}$ with $G_{3}=G_{1} \cup\{d\}$ and $M_{3}=M_{1} \cup\{b\}$, then a graph of $\mathcal{J}_{3}^{p}$ has a form

where $F_{j}=\left\{d, a_{i}^{\prime}, a_{i+2}\right\} \cup\left(R^{i}-\left\{g_{u}, g_{j}\right\}\right)$ for $j \neq u$.

Enclosure 15 shows the incidence structures $\mathcal{J}_{3}$ and $\mathcal{J}_{3}^{5}$ for $k=2$ and $u=1$.
Since the incidence structure $\mathcal{J}$ is of type $(p, n)$ there exists either a set $B^{i+3} \in M^{p}$ where $A^{i+3} I^{p} B^{i+3}$ or a set $B^{i-2} \in M^{p}$ where $A^{i-1} I^{p} B^{i-2}$.

Proposition 13 Let a set $B^{i+3} \in M^{p}$ exist. Then $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\right.$ $\left.\left\{n_{k}, n_{q}\right\}\right)$ where $x \notin M_{3}$. If $\mathcal{J}_{4}=\left(G_{4}, M_{4}, I_{4}\right)$ is a substructure of $\mathcal{J}$ with $G_{4}=G_{1} \cup\{d\}$ and $M_{4}=M_{1} \cup\{b, x\}$, then a graph of $\mathcal{J}_{4}^{p}$ has a form

$G_{4}^{p}:$



Proof Since $B^{i+2}=\left\{b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ and $\left|B^{i+2} \cap B^{i+3}\right|=p-1$ we have $B^{i+3}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B^{i+3}=\{x, b\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$ or $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$ where $x \notin M_{3}$. There exists a norming mapping $\alpha: A^{i+3} \rightarrow B^{i+3}$ because $A^{i+3} I^{p} B^{i+3}$.
a) First suppose that $B^{i+3}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Then $\alpha(d)=n_{u}$, $\alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(g_{k}\right)=x$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, k$. Let $g_{u} I x$. Then $A^{i+2} I^{p} B^{i+3}$ which is a contradiction. Hence $g_{u} \not X x$. If $a_{i}^{\prime} I x$, then $C^{u} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{u}\right\}\right)$ which is a contradiction. If $a_{i}^{\prime} \not X^{\prime} x$, then $F_{k} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. This is also a contradiction.
b) Let $B^{i+3}=\{x, b\} \cup\left(Q^{i}-\left\{n_{k}\right\}\right)$. Then $\alpha(d)=n_{u}, \alpha\left(a_{i+2}\right)=x, \alpha\left(g_{k}\right)=b$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, k$. Let $g_{u} I x$. Then $A^{i+2} I^{p} B^{\prime}$ where $B^{\prime}=$ $\{x\} \cup Q^{i}$. This is a contradiction. Hence $g_{u} \not \not X x$. If $a_{i}^{\prime} I x$, then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i}^{\prime}\right\} \cup\left(R^{i}-\left\{n_{u}\right\}\right)$ which is a contradiction. Finally, if $a_{i}^{\prime} \not X^{\prime} x$, then $A^{i-1} I^{p} B^{i+3}$ which is also a contradiction.
c) Now it is clear that $B^{i+3}=\left\{x, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{q}\right\}\right)$. First assume that $q=u$. Then $\alpha(d)=x, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha^{\prime}\left(g_{k}\right)=b$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, k$. Let $g_{u} l x$. Then $A^{i} I^{p} B^{\prime}$ where $B^{\prime}=\{x\} \cup Q^{i}$. This is a contradiction. Hence $g_{u} \not \subset x$.

Let $a_{i}^{\prime} I x$. Then for an arbitrary $j \neq u$ we have $C^{j} I^{p} B^{\prime}$ where $B^{\prime}=$ $\left\{x, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{u}\right\}\right)$ which is a contradiction. If $a_{i}^{\prime} \not \not X x$, then $C^{u} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{u}\right)\right.$ which is also a contradiction. Thus $q \neq u$. Then $\alpha(d)=n_{u}, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(g_{k}\right)=b, \alpha\left(g_{q}\right)=x$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, u, q$. Let $g_{u} I x$. Then $A^{i+1} I^{p} B^{i+3}$ which is a contradiction.

Hence $g_{u} \not X^{\prime} x$. If $a_{i}^{\prime} I x$, then $C^{u} I^{p} B^{\prime}$ where $B^{\prime}=\left\{x, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\right.$ $\left.\left\{g_{u}, g_{q}\right\}\right)$ which is also a contradiction. Hence $a_{i}^{\prime} \not \neq x$. However, then $F_{q} I^{p} B^{i+3}$ and $\mathcal{J}_{4}^{p}$ has a graph presented in the proposition.

Enclosure 16 shows $\mathcal{J}_{4}$ and $\mathcal{J}_{4}^{5}$ for $k=2, u=1, q=3$.
In a similar way we can prove the following proposition:

Proposition 14 If there exists a set $B^{i-2} \in M^{p}$, then $B^{i-2}=\left\{y, b, m_{i}^{\prime}\right\} \cup$ $\left(Q^{i}-\left\{n_{k}, n_{q^{\prime}}\right\}\right)$ where $y \notin M_{3}$. If $\mathcal{J}_{4}=\left(G_{4}, M_{4}, I_{4}\right)$ is a substructure of $\mathcal{J}$ with $G_{4}=G_{1} \cup\{d\}$ and $M_{4}=M_{3} \cup\{b, y\}$, then the graph of $\mathcal{J}_{4}^{p}$ has a form


Remark 5 If both sets $B^{i+3}, B^{i-2}$ exist, then $q \neq q^{\prime}$. Indeed, in the contrary case we have $F_{q} I^{p} B^{i+3}, B^{i-2}$ which is a contradiction.

Theorem 12 Let us put $L=\{1, \ldots, p-1\}$ and $L^{\prime}=L-\left\{k, u, q, q^{\prime}\right\}$. If $F_{j} I^{p} B$ for $j \in L^{\prime}$ where $B \neq B_{j}$, then also $F_{j^{\prime}} I^{p} B$ for $j^{\prime} \in L^{\prime}, j^{\prime} \neq j$.

Proof Let $F_{j} I^{p} B, j \in L^{\prime}$ and $B \neq B_{j}$. If $\mathcal{J}_{5}=\left(G_{5}, M_{5}, I_{5}\right)$ is a substructure of $\mathcal{J}$ with $G_{5}=G_{1} \cup\{d\}$ and $M_{5}=M_{1} \cup\{b, x, y\}(x, y$ are from Propositions $13,14)$, then $B \in M_{5}^{p}$ and there exists $z \in B, z \in M-M_{5}$. With respect to $\left|B \cap B_{j}\right|=p-1$ we have $B=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=\left\{z, b, m_{i}^{\prime}\right\} \cup$ $\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=\left\{z, b, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$ or $B=\left\{z, b, m_{i}^{\prime}, m_{i+1}\right\} \cup$ ( $Q^{i}-\left\{n_{k}, n_{j}, n_{j^{\prime}}\right\}$ ). Moreover, there exists a norming mapping $\alpha: F_{j} \rightarrow B$.

Assume that $B=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}\right\}\right)$. Then $\alpha(d)=n_{u}, \alpha\left(a_{i}^{\prime}\right)=$ $m_{i}^{\prime}, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(g_{k}\right)=z$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, u, j$. If $g_{u} I z$, then $C^{j} I^{p} B$ which is a contradiction. Thus $g_{u} \not{ }^{\prime} z$. Let $g_{j} I z$. This yields $C^{u} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{u}\right\}\right)$. This is a contradiction. From $g_{j} \not X^{\prime} z$ we obtain $F_{k} I^{p} B$ which is a contradiction again. In a similar way we can prove that also the two following cases are impossible.

Hence, $B=\left\{z, b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{j}, n_{j^{\prime}}\right\}\right)$. Assume that $j^{\prime}=u$. Then $\alpha(d)=z, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}, \alpha\left(g_{k}\right)=b$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq k, u, j$. If $g_{j} \not B^{\prime} z$, then $C^{u} I^{p} B$ which is a contradiction. If $g_{j} I z$, then $F_{k} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{u}, n_{k}\right\}\right)$. This is a contradiction again. Thus $j^{\prime} \neq u$.

Assume that $j=q$. Then $\alpha(d)=n_{u}, \alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}, \alpha\left(g_{k}\right)=$ $b, \alpha\left(g_{q}\right)=z$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, j, k, q$. If $g_{j} \not \subset z$, then $F_{q} I^{p} B$ which is a contradiction. If $g_{j} I z$, then $F_{k} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\right.$ $\left.\left\{n_{q}, n_{k}\right\}\right)$. This is also a contradiction. Therefore, $j^{\prime} \neq q$. Similarly we prove that $j^{\prime} \neq q^{\prime}$. We have obtained that $j^{\prime} \in L^{\prime}$ and $\alpha(d)=n_{u}, \alpha\left(a_{i}^{\prime}\right)=m_{i}^{\prime}$, $\alpha\left(a_{i+2}\right)=m_{i+1}, \alpha\left(g_{k}\right)=b, \alpha\left(g_{j^{\prime}}\right)=z$ and $\alpha\left(g_{r}\right)=n_{r}$ for $r \neq u, j, k, j^{\prime}$. If $g_{u} I z$, then $C^{j} I^{p} B$ which is a contradiction. Thus $g_{u} \not X z$. If $g_{j} I z$, then $C^{u} I^{p} B^{\prime}$ where $B^{\prime}=\left\{z, b, m_{i}^{\prime}, m_{i+1}\right\} \cup\left(Q^{i}-\left\{n_{k}, n_{u}, n_{j^{\prime}}\right\}\right)$. This is also a contradiction. Hence $g_{j} \not X^{\prime} z$ which yields $F_{j^{\prime}} I^{p} B$.

Remark 6 Enclosure 17 shows the situation described in Theorem 12 for $p=7$, $k=2, q=3, q^{\prime}=4, j=6, j^{\prime}=5$. In Theorem 12 there is supposed that both
sets $B^{i+3}, B^{i-2}$ exist. However, this theorem also holds if one of those sets does not exist. Then $L^{\prime}=L-\{k, u, q\}$ resp. $L^{\prime}=L-\left\{k, u, q^{\prime}\right\}$.

First let us assume that both sets $B^{i+3}, B^{i-2}$ exist and consider the sets $L, L^{\prime}$ from Theorem 12 where $\left|L^{\prime}\right|=p-5$. If $F_{j} \in G^{p}$ for $j \in L^{\prime}$, then there exists a set $Y_{j} \in M^{p}, Y_{j} \neq B_{j}$, such that $F_{j} I^{p} Y_{j}$. Moreover, by Theorem $12, F_{j^{\prime}} I^{p} Y_{j}$ for a certain $j^{\prime} \in L^{\prime}$ distinct from $j$. If we put $\xi(j)=j^{\prime}$ for an arbitrary $j \in L^{\prime}$, then $\xi$ is involutory mapping of the set $L^{\prime}$. For every $j \in L^{\prime}$ let us consider a substructure $\mathcal{J}_{j}=\left(G_{j}, M_{j}, I_{j}\right)$ of $\mathcal{J}$ where $G_{j}=\left\{C^{j}, F_{j}, F_{j^{\prime}}, C^{j^{\prime}}\right\}$, $M_{j}=\left\{X^{j}, B_{j}, Y_{j}, B_{j^{\prime}}, X^{j^{\prime}}\right\}$. It is obvious that $\mathcal{J}_{j}=\mathcal{J}_{\xi(j)}$.


Figure 7
Let us consider an involutory mapping $\varphi$ of the set $L$ described in Theorem 7 . Then $\varphi(u)=k$ and $\varphi$ induces an involutory mapping of a set $L^{\prime \prime}=L-\{u, k\}$ where $\left|L^{\prime \prime}\right|=p-3$.

Let $\mathcal{J}_{5}=\left(G_{5}, M_{5}, I_{5}\right)$ be a substructure of $\mathcal{J}$ where $G_{5}=G_{1} \cup\{d\}$ and $M_{5}=$ $M_{1} \cup\{b, x, y\}$. We assign a graph of this structure by means of Propositions 13, 14. If we put $\varphi(q)=q_{1}$, then $q_{1} \in L^{\prime}$ and there exists a set $A_{q_{1}} \in G^{p}$ such that $A_{q_{1}} I^{p} X^{q}, X^{q_{1}}$ (see Figure 7). Furthermore, let $\xi\left(q_{1}\right)=\xi \varphi(q)=q_{2}$ where $q_{2} \in L^{\prime \prime}$. Consider a substructure $\mathcal{J}_{q_{1}}$ where $X^{q_{2}} \in M_{q_{1}}$; let us put $\varphi\left(q_{2}\right)=\varphi \xi \varphi(q)=q_{3}$ and $\xi\left(q_{3}\right)=q_{4}$, consider $\mathcal{J}_{q_{3}}$ where $X^{q_{4}} \in M_{q_{3}}$ etc.

Similarly, let $\varphi\left(q^{\prime}\right)=q_{1}^{\prime}, \xi \varphi\left(q^{\prime}\right)=\xi\left(q_{1}^{\prime}\right)=q_{2}^{\prime}$ etc. There exist positive integers $v, w$ where

$$
\underbrace{\xi \varphi \ldots \xi \varphi}_{v}(q)=q_{v} \text { and } \underbrace{\xi \varphi \ldots \xi \varphi}_{w}\left(q^{\prime}\right)=q_{w}^{\prime}
$$

such that $v+w=p-5$ (Figure 7). With respect to $\left|L^{\prime \prime}\right|=p-3$ we obtain $\varphi\left(q_{v}\right)=q_{w}$. Hence, there exists a set $A \in G^{p}$ such that $A I^{p} X^{q_{v}}, X^{q_{w}}$ which is a contradiction. Thus, any incidence structure described above does not exist.

Let us suppose that $B^{i+2}$ exists and $B^{i-1}$ does not, i. e. $i=1$. Then there also exists an involutory mapping $\xi$ of the set $L^{\prime}=L-\{k, u, q\}$ which contradicts the fact that $L^{\prime}$ has an odd number of elements. Similarly we obtain a contradiction if $B^{i-1}$ exists and $B^{i+2}$ does not.

Thus, any incidence structure of type ( $p, n$ ) satisfying the requirements 2 , b) does not exist.

Main Theorem Let $\mathcal{J}=(G, M, I)$ be an incidence structure of type $(p, n)$ where $p, n>2$. Let $R^{i}=R^{i+1}$ for a certain $i, 0 \leq i \leq n-2$ and $a_{i}^{\prime} \not$ ユ̛ m $_{i}^{\prime}$. Then $p$ is odd, thus $p=2 q+1$ and a graph of the incidence structure $\mathcal{J}^{p}$ is either (*) from [5] where $n=3 q+2$ or ( $* *$ ) where $n=5 q+3$.

## References

[1] Ganter, B., Wille, R.: Formale Begriffsanalyse. Mathematische Grundlagen, SpringerVerlag, 1996.
[2] Handbook of Incidence Geometry. Buildings and Foundations, North-Holland, 1995, (chap. 6).
[3] Machala, F.: Incidence structures of independent sets. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 38 (1999), 113-118.
[4] Machala, F.: Incidence structures of type ( $p, n$ ). Czech. Math. Journal (to appear).
[5] Machala, F.: Special incidence structures of type ( $p, n$ ). Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39 (2000), 123-134.

## Enclosures





B:


Enclosure 12


B:

A:


Enclosure 13


Enclosure 14


Enclosure 15


B:


Enclosure 16


Enclosure 17


[^0]:    *Supported by the Council of Czech Government J14/98: 153100011.

