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Abstract 

It is proved that six-dimensional Gl-submanifolds of the octave algebra 
are W\ © W$-manifolds. 
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1. 
The classification of the almost Hermitian structures on first order differen

tial-geometrical invariants can be rightfully attributed to the most significant 
results obtained by the outstanding American mathematician Alfred Gray in 
collaboration with his Spanish colleague Luis M. Hervella. According to this 
classification all the almost Hermitian structures are divided into 16 classes. 
Analytical criteria for every concrete structure to belong to one or another class 
have been received [1]. 

One of the least studied Gray-Hervella classes is the G l (or W\ ® W$ 0 W4) 
class. Almost the only significant work devoted to the Gl-manifolds is the 
original and interesting article by L. M. Hervella and E.Vidal [2]. This situation 
is at least strange because the Gl-manifolds class includes the Kahlerian (K), 
the nearly-Kahlerian (NK), the Hermitian (H), the special Hermitian (SH) and 
the locally conformal Kahlerian (LCK) manifolds as well as the Vaisman-Gray 
manifolds. And what is more, the Gl-manifolds class forms a minimal class that 
includes two of the most interesting classes of almost Hermitian manifolds—the 
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nearly-Kahlerian and Hermitian manifolds classes, to the study of which a great 
number of publications have been devoted. Without going into details on such 
an extensive subject, we can mark out the classical works [3]-[8]. 

In the present article we give some results obtained in this direction by using 
the Cartan structure equations of the octave algebra submanifold. 

2. 
Let O = R 8 be the Cayley algebra. As it is well-known [3], two non-

isomorphic 3-vector cross products are defined on it by 

Fi(X,y,z) = -x(Tz) + <X,Y>Z + <Y,Z>X - <Z,X>Y, 

P2(X,Y,Z) = -(XY)Z + <X,Y>Z + <Y,Z>X - <Z,X>Y, 

where X, Y, Z G O, <•, •> is the scalar product in O, X —> X is the operator 
of conjugation [9]. Moreover, any other 3-vector cross product in the octave 
algebra is isomorphic to one of the above-mentioned [3]. 

If M 6 C O is a six-dimensional oriented submanifold, then the induced 
almost Hermitian structure {Ja,g = <•,•>} is determined by the relation 

Ja(X) = P a (X , e 1 , e 2 ) , a - 1 , 2 , 

where {ei ,e2} is an arbitrary orthonormal basis of the normal space of M 6 at 
a point p, X G TP(M6). The submanifold M 6 C O is called Gl-submanifold if 
for arbitrary vector fields X, Y G H(M6) the following condition is fulfilled 

VX(F)(X,Y) - VJX(F)(JX,Y) = 0. (1) 

Here F(X,Y) = < X , J Y > is the fundamental (or Kahlerian [8]) form of M 6 , 
V is the Riemannian connection of the metric We note that A. Gray and 
L. M. Hervella have proved that the condition (1) is equivalent to the following 
relation imposed on the Nijenhuis tensor 5 [1]: 

<5(X ,y),x> = o. 

We recall that the point p G M 6 is called general [6], if 

e0 i TP(M6) and TP(M6) C L ( e 0 ) \ 

where eo is the unit of Cayley algebra and L(eo)± is its orthogonal supplement. 
A submanifold M 6 C O consisting only of general points is called a general-type 
submanifold. In what follows all the considered M 6 are meant as general-type 
submanifolds. 

3. 
We use the Cartan structure equations of an almost Hermitian M 6 C O 

obtained in [7]: 

dua =ujaAujb + -j=eah^bDh
c^b Auc + ^=eabhDhcujc A ujb; 
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doJa = ~wb
a A w6 + -±=eah[bD

h
c]u

b Auc+ ±=eabhD
hcwc A wb; 

«K = <Auc_ (i<oMfcJD^1 + _3T^6)a;fcA^. 

Here eabc = £all, eabc = £ab^ are components of the Kronecker tensor of the 
third order [10], 5ft = 5a5h - 5a5h, 

Dch=Deh, Dh
c = Dhc, Dh

c = Dhc, 

Dcj = ±T?j + iT7
cj, Dcj = ± 1 * - iT7

cj, 

where T^- are components of the configuration tensor (in A. Gray's notation [4], 
or the Euler curvature tensor [11]), i = yf-i. Here and further a,b,c,d,g,h = 
1,2,3; a = a + 3; y) = 7,8; fc, j = 1,2,3,4,5,6. 

The Gray-Hervella condition (1) on almost Hermitian structures belonging 
to the Gl (= W\ © VV3 0 W4) class is equivalent to the skew-symmetry of the 
Kirichenko structure tensor on the first pair of indexes [12]: 

r>abc r>bac r> r> 
J=> — ~L> 5 L>a6c — ~L>6ac-

We use the Kirichenko tensor relations for six-dimensional almost Hermitian 
submanifolds of Cayley algebra [12], [13]: 

B* ° = ~ = £ a A i , #a6c = —^^a/ifbÎ  c]-

Hence, the following equalities are a criterion for an arbitrary six-dimensional 
submanifold of Cayley algebra to belong to the Gl-class. 

£ah[bDhc] = ebh[aD)c] t £ah[bD
h
c] = ebh[aD

h
c]. (2) 

L e m m a The condition (2) is equivalent to the fact that the matrix (Dda) is 
scalar, i.e. 

Dda = -5%tTDda. 

Proof First we note that every equality from (2) can be obtained by the com
plex conjugation of another one. It is enough to adduce the following arguments. 

1. Let (2) be fulfilled: 

£ah[bDhc) __ £bh[aDhc) ^ 

£ah[bDhc] __ £bh[aDhc) __ Q ^ 

£ahbDhc _ £ahcDhb + £bhaDhC _ ^hc^a _ Q ^ 

eahcDhh + ebhcDha = 0. 
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We reduce this equality (ecfd)' 

5afhdDh-b + 6bh
dDha = 0 ^ 

(5a
f5

h - 5a
d5

h)Dhi + (5b5h - 5b
d5

h
f)Dha = 0 <-> 

5a
fDdh ~ 5a

dDfb + 5bDd& - 5b
dDfa = 0, 

(bf) : Dda - 5a
d tr oda + 3oda - oda = 0 <=> 

D d a =i<5 a t rD d a . 

Thus, (2) =» D d a = i < 5 a t r D d a . 

2. We prove the inverse statement. Let Dd& = A 5atrZ?<ia- Then 

eah[bDfc] _ £bh[aDhc] = eahcDhi + £6'»=£)fta 

= i ( £
a , l c 5b

htrDd& +ebhc 6a
htiDd&) = l-(sab<tvDd& + e 6 a c t r D d a ) 

- i tr A . a ( e a 6 c + e6ac) = \ tvDd&(eabc - eabc) = 0. 

Taking into account the remark at the beginning of the proof, we come to the 
conclusion 

Dd& = ~SZtiDd& =>(2). 

As a result we have that the conditions (2) and Dd& = | Sd tr D d a are equivalent. 
D 

It is interesting to note that the condition for the matrix (Dda) to be scalar 
is a criterion for an almost Hermitian submanifold of Cayley algebra to belong 
to the TVi 0 TV3-manifolds class [12], [13]. 

Thus is proved 

Theorem Every six-dimensional Gl-submanifold of Cayley algebra is a man
ifold of the TVi 0 VV3-class. 

As the almost Hermitian structures of the W\ 0 VV3-class are semi-Kahlerian 
(5-TY-structures) [1], [12] we get an important 

Corollary 1 Every six-dimensional Gl-submanifold of Cayley algebra is a semi-
Kahlerian manifold. 

We remark that the Hermitian (H, or TV3 0 TV4) structures on the six-
dimensional submanifolds of Cayley algebra can be represented only by the 
structures belonging to the H D SK-class: 

H = TV3 0 W4, SK = IVx 0 TV2 0 KV3, 

HC\SK = Wto 
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Corollary 2 Every six-dimensional Hermitian submanifold of Cayley algebra 
is a special Hermitian (VV3) manifold. 

Similar considerations will lead us to the correctness of two other statements. 

Corollary 3 Every six-dimensional Vaisman-Gray submanifold of Cayley alge
bra is a nearly-Kahlerian manifold. 

Corollary 4 Every six-dimensional locally conformal Kahlerian submanifold 
of Cayley algebra is a Kahlerian manifold. 
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