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Abstract 

A list of four terms is given such that a subset of a Brouwerian semi-
lattice S containing 1 is a kernel (i.e. 1-class) of some congruence on S if 
and only if it is closed with respect to these four terms. 

Key words: Ideal term, ideal, congruence kernel, Brouwerian semi-
lattice. 
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Definition 1 By an algebra with 1 we mean an algebra with a distinguished 
element 1. By a variety with 1 we mean a variety with an equationally definable 
constant 1. Let V be a variety of type r with 1 and A = (A, F) £ V. A term 
r ( # i , . . . , xn) of type r is called an ideal term of V in xix,..., xik ( i i , . . . , ik E 
{ 1 , . . . , n}) if t(xi, • . . , xn) — 1 holds in V provided xi± ~ ... — xik = 1. I Q A 
is said to be closed under the ideal term t(xi,..., xn) of V in xiiy... ,xik if 

This paper is a result of the collaboration of the authors within the framework of the 
"Aktion Osterreich - Tschechische Republik" (grant No. 26p2 "Local and global congruence 
properties"). 
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t(a\,..., an) E I for all a i , . . . , an E A satisfying a ^ , . . . ,a(k El. A subset I 
of A is called an ideal of A if it is closed with respect to all ideal terms of V. 
(Observe that ideals are non-empty since 1 is an ideal term.) A set B of ideal 
terms of V is called a basis of ideal terms of V if a subset I of the base set 
of some algebra A belonging to V is an ideal of A if and only if it is closed 
with respect to all terms belonging to B. For every 0 E Con A, [1]0 is called 
the kernel of 0 . I C A is called a congruence kernel of A if there exists a 
congruence 8 E Con A with [1]6 = I. 

R e m a r k 1 Obviously, every congruence kernel is an ideal. The converse is true 
only in certain varieties. 

Definition 2 An algebra with 1 is called permutable at 1 if 

[i](eo$) = [i](*oe) 

for any two of its congruences 0 , $ . A class of algebras with 1 is called per
mutable at 1 if each of its members has this property. 

Permutable at 1 varieties can be characterized by the following Mal'cev 
condition: 

Proposit ion 1 (cf. [1] and [6]) A variety with 1 is permutable at 1 if and only 
if there exists a binary term s with s(x, 1) = x and s(x,x) = 1, 

Now we formulate the mentioned result: 

Proposit ion 2 (cf. [1] and [6]) In permutable at 1 varieties the notions of ideal 
and congruence kernel coincide. 

In some cases the congruences corresponding to congruence kernels are unique. 

Definition 3 An algebra with 1 is called weakly regular if any two of its con
gruences having the same 1-class, coincide. A class of algebras with 1 is called 
weakly regular if each of its members has this property. 

Also weakly regular varieties can be characterized by a Mal'cev condition as 
follows: 

Propos it ion 3 (cf. [5]) A variety with 1 is weakly regular if and only if there 
exist positive integers n and k, binary terms d i , . . . , dn and (n + 2)-ary terms 
£ i , . . . , tk satisfying the following identities: 

di(x,x) = . . . = dn(x,x) = 1, 
$ i ( l , . . . , l , a? ,y) = x, 
ti(d1(x,y),... ,dn(x,y),x,y) = * i+ i ( l , . . . , 1,x,y) for i = 1 , , . . , k - 1, 
tk(di(re,y),..., dn(x, y)%x, y) = y. 
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Definition 4 An algebra with 1 is called ideal determined if every of its ideals 
is the kernel of a unique one of its congruences. A class of algebras with 1 is 
called ideal determined if each of its members has this property 

Propos it ion 4 (cf. [6]) A variety with 1 is ideal determined if and only if it is 
weakly regular and permutable at 1. 

Propos it ion 5 (cf. [3]) Every ideal determined variety has a finite basis of ideal 
terms. 

In fact, in [3] an explicit construction of such a basis was given. 

Definition 5 A Brouwerian semilattice is an algebra (5, A, *) of type (2,2) such 
that (5, A) is a meet-semilattice and for any x,y € S, x*y is the greatest element 
z of S satisfying x A z < H, i.e. x * y is the so-called relative pseudocomplement 
of x with respect to y (where < denotes the induced partial ordering on 5) . 

It is well-known that Brouwerian semilattices form a variety. 
In the sequel we often use the statements of the following lemma holding in 

every Brouwerian semilattice (see e.g. [7]): 

Lemma 1 For elements a, b, c of a Brouwerian semilattice the following state
ments are true: 

в a * a = b*b=:l, 

(Ü; a<b=>a*c>b*c, 
(ÜІ; b<c=>a*b<a*c, 

(ІV; a < (a * b) * b, 

(v; ) a Л (a * b) = a Л b, 
(vť i a < b ^=> a*b = l, 

(vii i a * 1 = 1. 
(viii I 1 * a = a, 

(ix ) a * b > b. 

Theorem 1 In the variety V of Brouwerian semilattices (i)-(iii) hold: 
(a) The term s(x,y) := y * x satisfies the identities of Proposition 1. 
(b) The terms d\(x/y) := x * y, d2(x,y) := y * x, t i(x,y, z,u) := x A z and 

t2(x, y, 2, u) := (y * z) Au satisfy the identities of Proposition 3. 
(c) V is ideal determined. 

Proo f (a) follows from (viii) and (i) of Lemma 1, (b) follows from (i), (v), 
(viii) and (iv) of Lemma 1 and (c) follows from (i), (ii) and Propositions 1, 3 
and 4. • 

Though we could now construct a finite basis of ideal terms of Brouwerian 
semilattices using the method described in [3] this basis would be rather com
plicated. The aim of this paper is to provide a simple basis and to give a direct 
proof of the corresponding result. 
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Lemma 2 Let (5, A,*) be a Brouwerian semilattice and assume I C S to con
tain 1 and to be closed under the ideal term (2/1 * (2/2 * x)) * x (in 2/1,2/2/- I/ 
a £ I, b £ S and a * b G I £aen b G I. Especially, if a £ I, b G S and a < b then 
bel. 

Proo f If £(£,2/1,2/2) denotes the ideal term mentioned in the lemma then b = 
1 * b = ((a * b) * (a * b)) * b = £(b, a * b, a) € I by (viii) and (i) of Lemma 1. If 
a < b then a * b = l G I b y (vi) of Lemma 1. • 

Lemma 3 Let (S, A, *) be a Brouwerian semilattice, let q be a binary term and 
assume I C S to contain 1 and to be closed under the ideal terms 

(2/1 * (2/2 *x)) *x, 
(x\ * q((y * x2) A x3 , x4)) * (x\ * q(x2 A x3, z4)) , 
(zi * g(H A a;2, x3)) * (a?i * q(x2,x3)) 

(in 2/1,2/2 resp. y). I/a, 6, c G 5 and a*b,b* a e I then q(a,c) * g(b, c) G I. 

Proo f Let t(x,yi,y2)yt'(x\,x2,x3lx4,y) and r//(.Ti,.T2,^3,2/) denote the ideal 
terms just mentioned. Since 

g(a, c) * g(((a * b) * b) A a, c) = g(a, c) * g(a, c) = 1 G I 

by (iv) and (i) of Lemma 1 and 

(g(a, c) * g(((a * b) * b) A a, c)) * (g(a, c) * q(b A a, c)) = t'(q(a, c), b, a, c, a * b) G I, 

we have g(a, c) * g(b A a, c) G I according to Lemma 2. Since 

g(a, c) * g((b * a) A b, c) = g(a, c) * g(b A a, c) G I 

by (v) of Lemma 1 and 

(g(a, c) * g((b * a) A b, c)) * (g(a, c) * g(b, c)) = £"(g(a, c), 6, c,b*a) e I 

we have g(a, c) * g(b, c) G I according to Lemma 2. • 

Now we can prove our main theorem: 

Theorem 2 For a Brouwerian semilattice S = (5, A, *) and a subset I of S 
containig 1 £ne following are equivalent: 

(i) I is an ideal O/S. 
(ii) I is closed with respect to the following ideal terms (in 2/1,2/2 resp. y): 

£1(2,2/1,2/2) := (2/1 * (2/2 *x)) *x, 
t2(x\,x2,x3,y) := (x\ * ((2/ * x2) A x3)) * (2,1 * (x2 A rc3)), 
£3(a;i, 2 2 , £3, y) := (zi * ((y A x2) * £3)) * (x\ * (x2 * x3)) and 
£4(^1,^2,^3,^4,2/) : = («1* (x2 * ((2/*-C3) AX4)))* (^1 * (X2 * (1C3AX4))). 

(iii) T/iere exists a congruence 0 G COnS with [1]6 = I. 
(iv) T/iere exis£s exactly one congruence G G COnS uji£/i [1]0 = I. 
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Proof (i) =-> (ii): This is trivial, 
(ii) ==> (iii): Put 

6 := {(a, 6) G S2 | a * 6 and 6 * a G J} . 

(1) G is reflexive. This follows from (i) of Lemma 1 and from 1 G J. 
(2) © is symmetric. This is obvious. 
(3) © is transitive. Assume a, 6, c G S and a 0 6 0 c. Then a*6, 6*a, 6*c c^ ^ j 
Now 

c * (((6 * a ) * a ) A 6 ) = c * 6 G J 

by (iv) of Lemma 1 and since 

(c * (((6 * a) * a) A 6)) * (c * (a A 6)) = t2(c, a, 6,6 * a) G J 

we have c * (a A 6) ^ I according to Lemma 2. Since c * a > c * (a A b) by (iii) 
of Lemma 1 it follows c^ a E I again by Lemma 2. By a symmetry argument it 
follows a * c G J. This shows a& c. 
(4) a © 6 => a A c © 6 A c. Let a, 6, c G 5 and i G J. Then 

(a * ((i * 6) A c)) * (a * (6 A c)) = ^ ( a , 6, c, i) G J. 

Moreover, i A 6 < 6 implies a * (i A 6) < a * 6 by (iii) of Lemma 1 and hence 

(a* (i A 6)) * (a * 6) = 1 G J 

by (vi) of Lemma 1. The rest follows from Lemma 3 with q(x\, X2) :=-r xi A X2-
(5) a © 6 = ^ a * c © 6 * c . Let a, 6, c, d G S and i G J. Then i * 6 > 6 by (ix) of 
Lemma 1 and hence 

a * (((i * 6) A c) * d) < a * ((6 A c) * d) 

by (ii) and (iii) of Lemma 1 whence 

(a * (((i * 6) A c) * d)) * (a * ((6 A c) * d)) = 1 G J 

by (vi) of Lemma 1. Moreover, 

(a * ((i A 6) * c)) * (a * (6 * c)) = ^ (a , 6, c, i) G J. 

The rest follows from Lemma 3 with q(x\,X2) := £1 * #2-
(6) a © 6 = > c * a © c * 6 . Let a,b,c,d e S and i G J . Then 

(a^ (d^ ((i * 6) A c))) * (a * (d * (6 A c))) = t4(a, d, 6, c, i) G J. 

Moreover, i A 6 < 6 implies a * (c * (i A 6)) < a * (c * 6) by (iii) of Lemma 1 and 
hence 

(a * (c * (i A 6))) * (a * (c * 6)) = 1 G J 

by (vi) of Lemma 1. The rest follows from Lemma 3 with q(x\,X2) := X2 * x\. 
Hence © G ConS. Obviously, [1]6 = J. 

(iii) => (iv): This follows from Remark 1 and Theorem 1. 
(iv) =4> (i): This follows from Remark 1. • 

Finally, we characterize congruence classes in Brouwerian semilattices: 
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T h e o r e m 3 A non-empty subset C of a Brouwerian semilattice S = (5, A, *) 
is a class of some congruence on S if and only if there exists an ideal I of S 
with 

C — {a €. S\a* c and c * a £ 7 for some c £ C}. 

Proof First assume C to be a class of some 6 £ ConS. Then 7 := [1]0 is an 
ideal of S. Let c £ C. If a £ C then a* c,c* a £ [a* a)Q = [1]0 = 7 by (i) of 
Lemma 1. If, conversely, a £ S and a * c , c * a £ 7 then 

a = ((a* c) * c) AaQ (I * c) Aa — c Aa = c A (c* a)Qc Al = c 

by (iv), (viii) and (v) of Lemma 1 and hence a £ C. 
If, conversely, 7 is an ideal of S and 

C = {a £ 5 | a * c, c * a £ 7 for some c £ (7} 

then 
$ := {(a, b) £ S2 | a * b and b * a £ 7} £ Con S 

according to the proof of Theorem 2 and obviously C = [c]<£>. • 
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