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Abstract 
The goal of this note is two-fold: to give a slight improvement of the ex

ample due to J. Andres in [1], [2], concerning the application of the Nielsen 
number to differential equations, and a reprovement of the method, al
lowing us to avoid one condition (a connectedness of ANR-spaces). 
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1 Introduction 

As pointed out in [1], the main advantage of the so called Nielsen fixed point 
theory, first presented by a Danish mathematician Jakob Nielsen in 1927, is 
that unlike other fixed point theories this one gives us a lower bound of fixed 
points. The original Nielsen theory was formulated with respect to selfmaps of 
compact surfaces, i.e. in the form not suitable for analytic applications. But 
although since that time it has been systematically developed and is rather 
advanced today (see [3], [4], [8], [10] for a nice survey of this development and 
for exhaustive list of references) there are only several applications to differential 
equations (see again [3], [4], [8], [10]). 
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2 Method 

At first let us recall some basic notions. 
The nonempty subset A of a metric space X is called a retract of X if there 

is a retraction of X onto A, that is, a continuous map r : X —> A such that 
r(x) = x for all x G A. 

We say that a nonempty subset A of X is a neighbourhood retract of X if 
there exists an open subset U of X containing A., i.e. A C U C X, such that Al 
is retract of U. 

The metric space X is called an absolute neighbourhood retract (ANR) space 
if for any metric space Y, for any closed subset B of y and any continuous map 
/ : B —> X there exists an open neighbourhood U of B in y (i.e. open subset 
U such that B C U C Y) and an extension / : U —> X of / . 

We say that a continuous map / : X —> Y is compact if / ( X ) is relatively 
compact, i.e. / ( X ) is compact, in Y. We call a compact map H : X x [0,1] -> Y 
a compact homotopy. For each £ G [0,1] define /^(a;) = H(t,x). When H : 
X x [0,1] —> y is a compact homotopy, we say that bo and h\ are compactly 
homotopic. 

In the following we will give the definition of the Nielsen number based on [6]. 

Definition 1 Given X, a metric ANR, and a compact map / : X -> X, two 
fixed-points # and u are called f-equivalent if there is a path C : [0,1] —> X 
homotopic to / ( C ) with the property that C(0) = / (C(0)) = x and C(l ) = 
/ (C( l ) ) = y stayed fixed throughout the homotopy. 

For a given map / : X —> X, we denote the set of all fixed points of / , i.e. 
the set {x G X : f(x) — x}, as Fix(f). It is easy to see that the relation given 
in Definition 1 is an equivalence on Fix(f), so the next definition is correct. 

Definition 2 The equivalence classes oiFix(f), under /-equivalence, are called 
fixed-point classes of / . 

It is known that / has a finite number of fixed-point classes (see [6]). There
fore we can give 

Definition 3 Let / : X -> X be a compact map on a metric ANR and let F 
be a fixed-point class of / . We call F to be essential if i(F) ^ 0, where i(F) is 
the associated fixed-point index (see [11]). The Nielsen number, N(f), of the 
map / is defined to be the number of essential fixed-point classes of / . 

Theorem 1 ([6]) Let X be a metric ANR and f : X —> X be a compact map, 
then one can associate to f a non-negative integer N(f) with the property that 
every map g : X —> X which is compactly homotopic to f has at least N(f) 
fixed-points. 

Theorem 2 ([9]) Let J be a real interval, S a subset of C(J, 5rcn) and g : 
J x 5rcn x 3tn —> Sftn a Caratheodory function. Assume that, for a subset Q 
O/C(J, 5Rn). the following conditions are satisfied: 
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(a) for any q G Q, the boundary value problem 

x'(t) = g(t,x(t),q(t)), for a.a. t G J, 

xeS 

admits a unique solution x = T(q), 

(b) T(Q) is bounded in C(J,3t:n), 

(c) there exists a locally integrable function a : J -» 5ft such that 

\g(t,x(t),q(t))\ < a(t), a.e. in J, 

for any pair (q,x) in the graph ofT. 

Then T(Q) is a relatively compact subset of C(J, 5ftn). Moreover, under the 
above assumptions, the operator T : Q —» S is continuous if and only if the 
following condition is verified: 

(d) given a sequence (qk,Xk) in the graph ofT, if(qk,%k) —> {q,%) with q E Q, 
then x G S. 

In particular (d) is satisfied if the closure T(Q) ofT(Q) is contained in S. 

Definition 4 ([8], [1]) We say that a mapping T : Q —> 5 is retractible onto 
Q if there is a retraction r : P —> Q, where P is an open subset of C(J, 5Rn) 
containing Q [j S and p G F\Q, r(p) = g implies that p ^ T(q). 

It is easy to see from the definition above, that if T : Q —> 5 is retractible 
onto Q then g G Q is fixed-point of r oT : Q -» Q if and only if it is a fixed-point 
ofT. Really, if g is a fixed-point ofT, i.e. g = T(g), then (roT)(g) = r(T(g)) = 
r(g) = g, because r is a retraction. On the other hand, let (r o T)(g) = g and 
suppose that T(g) ^ g. Then T(g) = p, p G P \ Q. So we have p e P\Q, 
r(p) = q and T(g) = p, but it is contradiction with our assumption that T is 
retractible onto Q. Therefore T(g) = g. 

Although the following theorem has been derived in [1] from a more general 
(multivalued) result in [4], we shall reprove it here alternatively, because the 
additional restriction imposed on Q to be connected can be avoided. 

Theorem 3 (cf. [1]) Let g : J x 5ftn x Kn -» 5ftn be a Caratheodory mapping, 
where J is an arbitrary real interval. Assume, furthermore, that there exists 
a nonempty closed subset Q of C(J, 5ftn) such that the problem 

x' =g(t,x(t),q(t)), xeS 

has, for every q G Q, a unique solution x = T(q) with the property T(Q) C S, 
where S is a nonempty bounded subset of C(J, 3?n). and T : Q —> S is retractible 
onto Q with a retraction r in the sense of Definition 4-
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At last, let there exist a locally Lebesgue-integrable function a : J —.> 5R such 
that 

\g(t,x(t),q(t))\<a(t) 

a.e. in J, for any pair (q,x) in the graph ofT. 
Then the Caratheodory system x' = f(t,x) admits at least N(r\x(Q) ° T(.)) 

solutions belonging to Q, provided g(t,c,c) = f(t,c) takes place a.e. in J, for 
any c G 3tn. 

Proof Since S was supposed to be bounded and that T(Q) C S, all as
sumptions of Theorem 2 are satisfied. So according to this theorem, T(Q) is a 
relatively compact subset of S, i.e. T : Q —> S is compact and (because of (d) 
in Theorem 2) continuous. 

Now by the first Hanner theorem (see e.g. [5]), we obtain that, if X is 
a metrizable neighbourhood retract of a locally convex space, then X is an 
ANR-space. Since T is retractible onto Q in the sense of Definition 4, Q is a 
neighbourhood retract of C(J,Un). Since C(J, 5Rn) is a Frechet space (i.e. a 
completely metrizable locally convex topological vector space), Q is an ANR-
space. 

Denoting TQ = r |g , then rQ o T : Q -» Q is a composition of compact 
mapping with continuous mapping, so rg o T is also compact. Then according 
Theorem 1, the mapping r g o T has at least N(rQ o T) fixed-points. All fixed-
points of rQoT are also fixed-points of T (see remarks after Definition 4) and it 
is clear that each fixed-point of T is a solution of the system x' = g(t, x(t),q(t)). 
Moreover, because of g(t, c, c) = f(t, c), it is also a solution of the system x' = 
f(t,x). This completes the proof. • 

3 Application 

In this section we give a slight generalization of an example in [1] (cf. also [2]). 
It consists in replacing the concrete nonlinearities x*, Hm, where m, n are odd 
integers with min(m,n) > 3, by monotone nonlinearities u(y), v(x) with similar 
properties (see bellow). 

Consider the Caratheodory system (cf. [1]) 

x' + ax = e(t, x, y)u(y) + g(t, x, y), 

Vf + by = f(t,x,y)v(x) + h(t,x,y), 

with the following properties: 

(i) a, b are positive numbers, 

(ii) there exist positive constants E0,F0,G,H such that 

W,x,y)\ <E0, \f(t,x,y)\<Fo, 

\g(t,x,y)\ < G, \h(t,x,y)\<H, 

for a.a. t G (-00,00) and all (x,y) £ & ' 

(i) 

(2) 

(3) 
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(iii) there are positive constants e0, /0, <$l5 S2 such that 

0 < e 0 < e ( t , x , y ) (4) 

for a.a. t G 5ft, all x G 5ft and \y\ > S2 together with 

0 < /o </(«,*, y) (5) 

for a.a. t G 5ft, |#| > 6*1 and all y G 5ft, 

(iv) functions u(y), v(x) are increasing for 5i < \x\ < It, $2 < |y| < 1?, 
respectively and 

lim i # = 0 ) (6) 
|y|-»oo 12/1 

|z|-»oo | X | 

u(J2) > -St + - and u(~52) < - f - * i + - ) , (8) 
e0 e0 \ e 0 e0/ 

V ( * I ) > ^ 2 + T and ^(-r51)<-fl52 + ^ y (9) 
Jo Jo V/o Jo/ 

Besides this, consider the periodic boundary condition S 

(s(O).v(O)) = (*(*), y(w)). (10) 

More precisely, we take S-=Q = QiflC52n(53, where 

Ql = {q(t)eC(%u}^2): 

\\q(t)\\ =max( max |gi(r)|, max |g2(i)|) < R\, 
\tG[0,oo] t€[0,oo] / J 

Q2 = (g(r)GC([0,a;],5ft2): 

( min \qi(t)\ >Si >0) V ( min \q2(t)\ > S2 > o i l , 
\iE[0,oo] / \ te[0,oo] / J 

Qz = {«(*) 6 C([0,W],3?2) : g(0) = ?(«)}, 

the constant it will be specified bellow. 
Our aim is to prove that, under the assumptions specified above, system (1) 

has at least two solutions belonging to Q. Since we use the same approach as 
in [1] we go through it briefly and emphasize only the changes affected by the 
replacement of the nonlinearities x~. Hm with the monotone ones. 

It is easy to see that Q is a (nonempty) closed subset of C(5ft, 5R2). Moreover 
Q is an ANR-space (cf. [1]). Furthermore, since S = Q and Q is closed, in order 
to check that T(Q) C S = Q, it is sufficient to prove only T(Q) C Q, and if 
T(Q) C Q then T will be clearly retractible onto Q. 
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Besides (1), consider its embedding into the system 

x' + ax = [(1 - ki)e0 + fj,et]u(y) + iigu 

y' + by = [(1 - fi)fo + fJ.ft]v(x) + \ihu 
(п) 

where /x £ [0,1] and 

et := e(t,qi(t),q2(t)), ft := f(t,qx(t)yq2(t)), 

9t -= g(t>qi(t),q2(t)), ht : = h(t,qi(t),q2(t)). 

For /x = 1 (11) is reduced to (1). 
Problem (11)—(10) has according to Green's formula a unique solution 

X(t) = (x(t),y(t)) 

for each q(t) G Q. We denote such a solution T^(q) (see [1]). 
Now we would like to show that T^(Q) C Q for each \i £ [0,1]. Since 

X(0) = K(cj) it is obvious that T^(Q) C Q3, so it is sufficient to prove that 
- W ) C Qi and T^Q) c Q2. 

Consider the first inclusion T^(Q) C Q\. We obtain for the solution X(t) 
that 

m a x \x(t)\ = m a x / Gi(£ , s)[((l - u)e0 + l^es)u(q2(s)) + (igs]ds 
te[o,u] t£[0,u>] Jo 

< [(e0 + Eo)UR + G] max / G1(t,s)ds = ~[(e0 + E0)U^ + G], 
te[o}uj] Jo a 

where U# := max{U(It), -u(R)}. Similarly 

/•a; 

max \y(t)\ = max / G2(£,s)[((l - /x)/0 + f^fs)v(q1(s)) + fj,hs]ds 
*€[0,w] i e [ 0 , w ] / 0 

< [(/o + Fo)^H + H] max / G 2 ( M ) ^ = i [ ( / 0 + F0)VH + H], 
t€[0,w].I0 0 

where V# := max{v(It), —7;(It)}. Since 

\\X(t)\\ = m a x ! max > ( * ) | , max |H(t)|} 
Ue[o,tu] te[o,uj} J 

< max{ i [ (e 0 + F0)UH + G], i [ ( / 0 + F0)V* + i f ]} , 

then with respect to (6), (7) a sufficiently big constant R exists such that 
\\X(t)\\ < R. But it means that T^(Q) C Qi for all xx £ [0,1]. 

Similarly we can verify the second inclusion T^(Q) C Q2. If we assume that 
q(t) £ Q2 , we have either 

min |gi(r)| > o\ > 0 or min |<?2(£)l > #2 > 0 
t€[0.w] te[o,u] 
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Then according to (8) we have 

trim \x(t)\ = min / Gi(t,s)[((l - fJ,)e0 + ^es)u(q2(s)) + iiga] ds 
= [o,w] te[o,w]J0 

m m 

а . . G 

eo 

r" \ ( a 
> \e0u(S2) -G\\ G1(t,s)ds > - e0 [ —S1 Jo a \e0 

for \q2\ > S2 or according to (9) 

min |H(r)| = min / G2(t,s)[((l - u)f0 + ufs)v(qi(s)) + ufs]ds 

= 01 

> \fov(5i) - H\ r G2(t,s)ds >-b Ч 7*2 + 7 ) 
J0 Jo 

s2, 

for |gi| > 0*1. It means that T^(Q) c Q2, independently of Li G [0,1]. 
If we put all together we can easily see that T^(Q) C Q, independently of 

li€[0,l]. 
Now we can already see that all assumptions of Theorem 3 are satisfied, so 

the problem (11)—(10) has for every \i G [0,1] at least JV(T)U(.)) solutions in 
Q (in particular problem (1)-(10) has N(Ti(.)) solutions). But since it can be 
easily proved that the operator (TM, //) : Q x [0,1] -» Q is compact, Tx and T0 

are compactly nomotopic, and according to Theorem 1 N(Ti(.)) = N(T0(.)). 
Thus we need to compute the Nielsen number N(T0(.)). 

It can be shown (see [1]) that N(T0(.)) is equal to the Nielsen number of the 
operator T°(q) : Q f] ^ 2 ~> Q f] K2 where 

T°(q)=(^u(q2),^v(ql)) 

for q = (<?i,qi) = (5i(0),G2(0)) G Qp[5R2. So we need to find two solutions of 
the system 

^ i ^ S f e i ) , Q2 = v(qi), (12) 

where u := -̂H, v := ^-v and (5i>$i) £ Qf)^ J > belonging to different fixed-
point classes. 

Because of T°(Q f] 5R2) c Q f] 5R2 it is obvious that u(q2) < R for 52<q2< 
R and U(<Ji) < R for 0*1 < qx < R. On the other hand according to (8), (9) and 
the fact that u(y), v(x) are increasing we have 

^(#2) > ~~^i f° r ^2 < q2 < R, 
e0 

v(Qi) > T^2 f o r *i - ?i --- B -
/o 

So it is easy to see that ^(§2) > ^1 f° r $2 < q2 < R and D(gx) > S2 for 
#i < q\ < I?. Now by the obvious geometrical reasons it is clear that system 
(12) has just one fixed point §+ in [<$i,-R] x [S2l R]. Quite analogously we can 
find another fixed point of (10) q~ in [-It, -Si] x [-It, -S2]. 
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So the operator T°(q) has just two fixed-points in Q f | S 2 , namely g+ , 
g_. These fixed-points belong to different fixed-point classes of T° (q) because 
any path C that connects them in Qf^^R2 is not homotopic with T°(C) in 
space Qf)$l2. Therefore in accordance with Definition 3 N(T°(q)) — 2. But 
N(Ti(q)) = N(T°(q)) and Theorem 1 assures that system (1) possesses at least 
two solutions belonging to Q. 

Remark 1 When we transform (1) by replacing t with t + ^ , then for any 
UJ > 0 there are two solutions of (1) belonging to Q\ H Qi and satisfying 

K-SM-DH-GM!))-
and according to the Lemma 2.8.1 in [12] system (1) possesses two entirely 
bounded solutions in Q\ [\Q^-

Remark 2 By replacing t with —t in (1) we can obtain the same results for 
negative constants a, 6 as well. 

Therefore we can finally give 

Theorem 4 Let suitable positive constants eo, fo, G, H, 5\, 82 exist such that 
inequalities (2)-(9) are satisfied for constants a, b such that ab > 0. Then 
system (1) possesses two entirely bounded solutions. 
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