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Compact Imbeddings in Weighted Sobolev Spaces 
and Nonlinear Boundary Value Problems 

P A V E L D R Á B E K , A L O I S K U F N E R 

A b s t r a c t . Weighted Sobolev spaces are a useful tool in the investigation of degenerated 
and/or singular elliptic differential operators. Information about the compactness of 
certain imbeddings in these spaces makes it possible to extend existence results to certain 
classes of nonlinear boundary value problems. 

It is the aim of this paper to point out the role of such imbeddings, even for the case 
of ordinary differential equations, where the situation is more transparent and easier to 
handle, and to give some criteria for the compactness or certain imbeddings. 

1991 M a t h e m a t i c s S u b j e c t C lass i f icat ion: 46E35, 34B15, 35J70, 26D10 

(Dedicated to the memory of Svatopluk Fučík) 

1 The space 
Let p > 1 and w = w(x) be a weight function on (0,1), i. e. a function measurable 
and positive a lmost everywhere in (0,1) . Denote by 

Lp(Qyl]w) = Lp(w) (1.1) 

the set of all functions u = u(x) on (0,1), for which the n o r m 

Nip.«=(Q[ Ht^wmty 
is finite. T h e n Lp(w) is called a weighted Lebesgue space. 

Further, let k G N and consider the set of all functions u G ACk~l(0) 1) ( i .e . 
functions whose derivatives of order k — 1 are absolutely continuous on [0,1]) for 
which the expression 

\\uW\\p,w = (£ \uW\»w(t)dty (1.2) 

is finite. Note tha t the expression (1.2) is only a seminorm on ACk"1(0} 1). There

fore, let us introduce two subsets Mo, M\ of the set { 0 , 1 , . . . , k — 1} which satisfy 

the condition 

card M 0 + card M i = k (1.3) 
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and the so called Polya condition 

rn 

^(<*oj + dij) > m + 1, m = 0, l , . . . , k - 1, (1.4) 
j = o 

where dij — 1 if j E Mj, d,-j = 0 if j ^ M,-, i = 0 ,1 . Now, if we denote by 
jB*'*(M0,Mi,ti;) the set of all functions u £ ACk~1(0, 1) for which ||u(/c)||P)u/ is 
finite and which satisfy the boundary conditions 

u^(0) = 0 for ieM0, u ^ ( l ) = 0 for j € Mu (1.5) 

then (1.2) is a norm on Bk>p(Mo, Mi, w) which is equivalent with the usual norm 
in the wieghted Sobolev space (for details, in particular for the important role of 
the Polya condition, see [3]) and the completion of BkjP(Mo, Mi, w) with respect 
to the norm (1.2) will be denoted by 

Wk'p{M0,Mi,w) (1.6) 

and called a weighted Sobolev space. 
If we assume in addition that the weight function w satisfies 

w'-r'e 1,^(0,1) (1.7) 

with p1 = -£y, then Wk>p(M0) Mi, tv) is a Banach space (see [7]). 
In several papers (see e.g. [6], [9] and mainly [5]), the so called k-lb Order 

Hardy inequality 

f \u(t)\«v0(t)dtY <c(f |u<*>(*)|pt>fc(t)d.-Y (1.8) 

is investigated and conditions on p,q,Vo,Vk are given which guarantee that (1.8) 
holds for all u£Bk>p(M0i Mu vk). 

Inequality (1.8) can be considered as a continuous imbedding of a weighted 
Sobolev space into a weighted Lebesque space: 

Wk>p{M0,Muvk) ^> Lq{v0). (1.9) 

In Section 3 of this paper, we will derive conditions on the parameters p, q > 1 
and on the weight functions vo,vk which guarantee that the imbedding (1.9) is 
also compact. In the following Section 2 we will illustrate the importance of such 
information in connection with the investigation of certain nonlinear boundary 
value problems. 

2 A nonlinear boundary value problem 

Let us consider the nonlinear Dirichlet boundary value problem 

(a(t)\u"(t)r2u"(t))'+\u(t)r2u(t) =g(t,u(t),u'(t)), <€ (0,1), (2.1) 

u(0) = u ' ( 0 ) = u(l) = « ' ( ! ) = 0 , (2.2) 
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where p,q > 1 are real numbers, a = a(t) is a positive and measurable function 
in (0, 1) and g = g(t,£,n) is a bounded Caratheodory function in (0,1) x IR2, i.e., 
measurable in t for any (£,77) £ H2 and continuons in (£,?/*) for a.e. t £ (0, 1). 
In contrast to analogous results on related topics we will consider a function a(t) 
which may have singularities and/or degeneracies in (0,1). To this end we will 
work with the notion of the weak solution to the problem (2.1) and we will look 
for it in a weighted Sobolev space X := tV2,p(Mo, Mi, a) with M0 = Mi = {0, 1}. 

Let us assume, in this section, that the compact imbeddings 

X <-+<-* L q a n d X <-><-> W0
1>r'q (2.3) 

hold with some r > 1. Here we denote by Lq the usual Lebesgue space and by 
WQ 'r,q an anisotropic Sobolev space with the norm 

IHIi,r,,:=IHU, + IKIU-

For the sake of brevity we shall write 

INI* := IKH-,. 

for any u £ X. Then (X, \\.\\x) is a uniformly convex Banach space. 
The function u £ X is called the weak solution of (2.1) if the integral identity 

/ a(t)\u"(t)\P~2u"(t)v"(t)dt+ [ \u(t)\q~2u(t)v(t)dt = (2.4) 
Jo Jo 

= / 0 ( t , t i ( O y ( t ) M * ) d t ' (2.5) 
Jo 

holds for any v £ X. 
It follows from (2.3) that all integrals in (2.4) make sense. Hence the following 

operators J, S, G : X —> X* are well defined: 

(J(u))v) = f^a(t)\u"(t)r2u"(t)v"(t)dtJ 

(S(u),v) = ti\u(t)\q~2u(t)v(t)dt, 

(G(u),v) = ft g(t,u(t),u'(t))v(t)dt 

for any u,v £ X (here (.,.) denotes the duality between X* and X). We ob
tain immediately from (2.4) that the weak solvability of (2.1) is equivalent to the 
solvability of the operator equation 

J(u) + S(u)-G(u) = 0. (2.6) 

Let us summarize some useful properties of the operators J, S and G. 

Lemma 2.1. The operators J and S are odd and the operator G is bounded. 

Lemma 2.2. The operators J and G are compact. 
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P R O O F : The compactness of S follows directly from the compact imbedding 

X c-»c-» Lq and the continuity of the Nemytskii operator from Lq into 

Lq f | + 4 = 1J which is given by the function 

*->Kr3*. 
Concerning the compactness of G we argue in a similar way: It follows from the 
continuity of the Nemytskii operator from Lq x Lr into Lq which is given by the 
function 

(£,*?) •->#(-,£,*?)• 

D 

Lemma 2.3. The operator J is one-to-one and, moreover, J and J~l are con
tinuous. 

P R O O F : It follows from the properties of the real function £ »-> |£|p~2£ that J is 
strictly monotone, i. e. 

(J(u)~ J(v),u-v) > 0 

holds for any w, v £ X such that u ^ v. The continuity of J follows from the 
continuity of the Nemytskii operator given by 

e^a(.mr2£ 
and acting between Lp(a) and (Lp(a))* (see [4]). It follows directly form the the 
definition that J is coercive. Applying the theory of monotone operators (see e. g. 
[2]) we get that J is onto X*, J~l is strictly monotone, bounded (i.e., J-1 maps 
bounded sets onto bounded sets) and denuconUnuous (i.e. J-1 maps strongly 
convergent sequences onto weakly convergent sequences). We prove that it follows 
already from here that J"1 is continuous. Let {wn} C X* be a sequence which 
converges to some element w E X*. Denote un = J~l(wn)) u = J~l(w). From the 
definition of J we obtain 

P-1 _ IU.IIP-^ 

I . Є . 

(j(Un) - j(u),Un -u)> (IKU5P - NIST MIKII* - 1MW, 

I K - W\\X> \\J~\wn) - J _ 1 H | | x > K - W, J~\wn) - J-l{w)) > 

> [WJ-H^Wx'1 - WJ-'WWx'1} [WJ-'Mlx - WJ-'HWx] • 

The left hand side approaches zero due to the convergence wn —> w in K* and the 
boundedness of J-1. Hence 

\\J-l('»n)\\x-+\\J-1W\\x-

This convergence together with the demicontinuity of J-1 and the uniform con
vexity of X imply that 

J-'KO-* J-"H 
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(strongly) in X (see [2]). D 

Let us define the operator T : X —> X* by the relation 

T(w) := w + S(J~l(w)) - G(J~l(w)), 

w G X*. It follows from Lemmas 2.2, 2.3 that T is a compact perturbation of the 
identity on K* and hence the Leray-Schauder degree theory can be applied to T. 
Due to Lemma 2 A the operator 

w^S(J'l(w)) 

is odd and the operator 

w^G(J~l(w)) 

is bounded. 

T h e o r e m 2 .1 . The equation (2.6) has at least one solution. 

PROOF: Let us define the homotopy of compact perturbations of the identity in 
the following way: 

-H(w,\) = w + S(J-1(w))-\G(J~1(w)) 

for w G X*, X E [0,1]. Let us prove that % is an admissible homotopy, i.e. there 
exists R> 0 such that 

n(w,\)^Q (2.7) 

for any A G [0,1] and for any w G X* satisfying \\w\\x* = R. For a given w £ X* 
denote u = J_1(tv). Then we get 

(U(w, X),J"x(w)) = ( j («) ,«) + (S(u),u) - (2.8) 

- A ( G ( t z ) , U ) > H & - c | | u | | x , (2.9) 

where the constant c > 0 is independent of A G [0,1]. It is easy to see that 

Nix- = !Hlpx_1(= ll-t-'HIK"1) 

for any w G X* and hence (2.7) follows from (2.8) for sufficiently large R> 0. 
Let us denote by BR(0) the ball in X* centered at the origin and with the 

radius R> O.lt follows from (2.7) and from the homotopy invariance property of 
the Leray-Schauder degree that 

deg[T;B f l(0),0] = degfr( . , l ) ; IMO),0] = 

= deg[^(. ,0);5 f l(0),0] = deg[/ + 5 o j - 1 ; 5 f l ( 0 ) , 0 ] . 

Since the last degree is equal to an odd number, by the Borsuk theorem, we get 

deg[T;B f l (0) ,0]^0 . 
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The basic property of the degree implies the existence of at least one w £ BR(0) 
such that 

T(w) = 0. 

But then u ~ J~l(w) is the solution of the operator equation (2.4). • 

Remark 2 .1 . It follows from the considerations at the beginning of this section 
that the element u £ X the existence of which is guaranteed by Theorem 2.1 is 
the weak solution of the Dirichlet boundary value problem (2.1). 

Remark 2.2. Let us note that for q > p and r > p the compactness of the 
imbeddings (2.3) is guaranteed if the following conditions are satisfied: 

lim Bi(t) = lim Bi(t) = 0 , i - 1,2,3, 
t—>0 + £-»l_ 

where 

B1(t) = (l-t)l-$(f*ai-»'(s)ds)jr, 

B2(t) = (l-t)^(^(t-sr'a'-P'(s)ds)ir, 

B3(t) = (l-t)^(jt
Qa^'(s)ds)Jr . 

(For details, see Section 3.) 

3 The compactness of the imbedding (1.9) 

First, let us introduce two operators, namely the operator Mw of pointwise multi
plication (by a weight function w): 

(Mwf)(t)=w(t)f(t), < e ( 0 , l ) , (3.1) 

and the integral operator T: 

(Tf)(x)= f K(x}t)f(t)dt. (3.2) 
Jo 

Proposition 3.1. Let s > 1 and w,v be weight functions on (0,1). Then the 
operator Mw is an isometric isomorphism, 

Mw :Ls(v)->Ls(w~sv) (3.3) 

with \\MW\\ = 1, and (Mw)~l = M±_. 
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Proposition 3.2. Let p, q > 1 and suppose that the kernel K{x,t) satisfies 

(f([\K(xyt)\p'dtYdx) < o o . (3.4) 

Then the operator T from (3.2) maps Lp compactly into Lq. 

The proof of Proposition 3A is straightforward, the proof of Proposition 3.2 
can be found in [1]. Using these two results, we are able to prove the following 
assertion. 

Theorem 3.1. Let p,q > 1. Let vo,Vk be weight functions on (0,1) and suppose 
that the kernel K{x,t) satisfies 

f (f \K{xyt)\p'vl"p\t)dt\P t; 0(x)dxj < o o . (3.5) 

Then the operator T from (3.2) maps Lp{vk) compactly into Lq{vo). 

P R O O F : If we denote 

K(x,t) = K(x,t)v;>(t)vl(x) 

then condition (3.5) implies that, in view of Proposition 3.2, the operator T defined 
by 

(fh)(x)= f K(x,t)h(t)dt 
jo 

maps Lp compactly into Lq. Hence 

(Tf)(x) = f0

1K(x,t)f(t)di = 

= tiK(x,t)v0-<(x)v>(t)f(t)dt = 

= v^(x)J0

1K(x,t)vl(t)f(t)dt, 

I . Є . 

Т = М . 1 о Г о М 1. 
г/0 ч Ь к Р 

Since 
f:Lp^Lq 

and (due to Proposition 3.1) 

M x.:Lp(vk)-*Lp, M _i : Lq -»• Lq(v0), 
Vkp

 VQ « 

we have 
L : Lp(vk) -> L"(v0). 
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Moreover, T is compact as a composition of the compact operator T and two 
bounded operators of the type Mw. • 

In [5], the investigation of the Hardy inequality (1.8) for u E Wk>p(Mo, Mi, v*) 
is reduced to the study of the inequality 

j \(Tf)(x)\"v0(x)dx) " < c ( f f(x)vk(x)dx) ' , (3.6) 

where T is an integral operator of the form (3.2), defined on the set of all measur
able nonnegative functions / on (0,1). More precisely, the kernel K(x,t) in (3.2) 
is the Green function of the boundary value problem 

*(*> = / on (0,1), 
u(0(o) = 0 forz 'EMo, u ^ ( l ) = 0 f o r j E M i . { } 

It can be shown - supposing that the boundary value problem (3.7) is uniquely 
solvable - that K(x,t) is given by 

v ' (̂  A2(~M) for 0 < x < t < 1. v J 

Consequently, we have that 

(Tf)(x)= f" K1(x,t)f(t)dt+ f K2(x,t)f(t)dt (3.9) 
JO J £ 

T/ = Ti/ + T2/ 

^here 

( T i / ) ( x ) = / Kx(x,t)f(t)dt, (T2f)(x)= f K2(x,t)f(t)dt. 
JO Jx 

(3.10) 

In order to investigate the compactness of the imbedding (1.9), i.e. 

Wk*{Mo,Muvk)^<-+L*{vo), (3.11) 

it suffices to investigate the compactness of the operator T from (3.9) - or the two 
operators Ti,F2 from (3.10) - as mappings from Lp(vk) into Lq(vo)- The reason 
is that the identity operator 

I :Wk'p{M0iMuVk) -* L*{vQ) 

can be considered as the composition 

I = ToDk (or I = TioDk+T2oDk)i 
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where the operator Dk : Wk,p(M0, M\,Vk) ™> Lp(vk) is defined by 

DkU^z u{k). 

Consequently, we will use the following assertion (see also the proof of Lemma 
7.12 in [8]). 

L e m m a 3.1. Let p, q > 1 and suppose that the operator T (or the operators 
Ti,F2J: Lp(vk) —> Lq(vo) is (are) compact. Then the imbedding (3.11) is compact, 
too. 

So, we can concentrate on the compactness of the integral operators T\, F2- For 
the kernel K from (3.8) the condition (3.5) reads as follows 

If' (J* ^ ( x , ^ ' vl~p'(t)dt + J* \K2(z,t)f vl-p'(t)dty v0(z)dz\ < 

This condition can be replaced, in general, by a pair of conditions 

7o (/oX \Ki(z,t)f v1,-"'(t)dt)f v0(x)dx\ ' < oo, 

oo. 

(3.12) 

/„' (£\K2(z,t)fvl-','(t)dt)> v0(z)dzy <*o. 

From Theorem 3A , we immediately obtain. 

T h e o r e m 3.2. Let p) q > 1 and suppose that the kernels Ki,K2 satisfy the 
conditions (3A2). Then the operator T from (3.9) maps Lp(vk) compactly into 
L*(v0). 

R e m a r k 3 .1 . Since the kernel K(x^t) from (3.8) is connected with the boundary 
value problem (3.7), the kernels K\, K2 have a specific form, which allows to derive 
- at least in some cases - conditions, which are necessary and sufficient. 

First, let us consider the case 

M0 = { 0 , 1 , . . . , * - 1 } , M i = 0 . 

In this case, the boundary value problem (3.7) is in fact the Cauchy problem 

u^ = / in (0,1), t*(0) = ti;(0) = . . . = u(k~l>>(Q) = 0, 

and its solution u = Tf is given by 

u(z) = (Tf)(x) = JJ-L^ f~(x - t)k-lf(t)dt. (3.13) 
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So we have (3.9) with 

Ki(*>t) = Jj~[y(x-t)h~1> K2(x,t) = 0 

and the following assertion holds. 

Theorem 3.3. Let 1 < p < q < oo and let vo.Vk be weight functions on (0,1). 
Then the operator T from (3.13) maps Lp(vk) compactly into Lq(vo) if and only 
if the following conditions are satisfied: 

lim Bi(x)= lim H,(x)=0, * = 1,2, (3.14) 
X-+0+ V ; :r-H_ V ; ' V ; 

where 

fliW = ( ^ ( ť - * ) ^ - 1 ^ ^ * ) * (j0
Xvl-r'(t)dtý 

[ B2(x) = (tiv0(t)dt)< (f0
x(x-t^-^'vlr'(t)dt)] 

(3.15) 

Instead of giving a proof let us only mention that the conditions (3.14) are in 
fact the conditions derived by Stepanov [9]. He considered the operator T and 
the corresponding weighted Lebesgue spaces on (0,co) instead of (0,1) but his 
approach can be used almost literally also in our case. 

Remark 3.2. If k = 1, then the functions Hi (x), B2(x) coincide and the condition 
(3.14) is exactly the condition for the Hardy operator Hi, 

(H\f)(x)= f f(t)dt (3.16) 
Jo 

to map Lp(vk) compactly into Lq(vo). See [8], Theorem 7.3. 

In what follows, we shall consider kernels K(x)t) of the type 

K(xyt) = w(x)W(t) 

with w,W weight functions. In [5], it is shown (for Mo D Mi = 0) or at least 
conjectured (for the remaining choice of Mo, Mi) that the kernels Ki(x,t)) i = 
= 1,2, appearing in the boundary value problem (3.7), are in the corresponding 
triangles Ai = {(x,t) : 0 < t < x < 1}; A 2 = {(#,£); 0 < x < t < 1} equivalent to 
special products Wi(x)W{(t) with w%(x) = xa*(l - xf\ W%(t) = T l ( l - t)s\ The 
nonnegative integers a2-, fy, 7^, S{ depend on Mo, Mi . In some cases, these kernels 
are not only equivalent but, moreover, equal to such products: e. g., for k = 2 and 
M0 = Mi = {0}, it is K\(x,t) = (1 - x)t and K2(x,t) = x(\-t). 

For kernels K% of the form 

Ki(xJ) = Wi(x)Wi(t) (3.17) 
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with general weight functions Wi, Wi on (0,1), we can give again necessary and 
sufficient conditions for the compactness of the corresponding operators T, from 
(3.10). For this purpose, let us consider, besides the Hardy operator H\ from 
(3.16), its counterpart H2 : 

(H2f)(x) = [ f(t)dt. (3.18) 
J X 

Since necessary and sufficient conditions, under which Hi maps Lp (vk) compactly 
into Lp(vo)) are already known (see [8], Section 7), we immediately obtain the 
following assertion. 

T h e o r e m 3.4. Let p, q > 1 and let vo1 Vk, Wi, Wi(i = 1,2) 6e weight functions on 
(0,1). Let 

(T\f)(x) =w\(x)f0
xW\(t)f(t)dt, (3.19) 

(T2f)(x) = w2(x) fl
x W2(t)f(t)dt (3.20) 

[i.e. T\ and T2 are the operators from (3.10) with kernels K\)K2 of the form 
(3.17)]. Denote 

Bi(x) = ( £ w\(t)vo(t)dtY ( / ; Wl\t)v\->\t)&tf , 

B2(X) = (f* wi(t)v0(t)dty (slwt'(t)vl-pl(t)dty, 

M = (/o ( £ -î(í)t;o(t)dí) ? (/* ^p'(ť)^-p'(ť)dť) 7 WT'(*)t,í-''(.-)d* 

^ = (/o1 (J>.(t)»o(ť)dť)í ( £ ^'(ť)^-"'(ť)dť)^ ^ ' (^^-" ' ( .-Jd*) ^ , 
(3.22) 

WltA 1 = 1 - 1 
r q p 

Then T7; maps the space Lp(vk) compactly into Lq(vo) if and only if the fol
lowing conditions are fulfilled: 
(i) For 1 < p < q < oo, £be functions Bi(x) are bounded on (0,1) and 

lim _"?,•(_;) = lim Bi(x) = 0 (i = 1,2). (3.23) 

a;—>0-j- .r—fl_ 

(n,) FOr 1 < q < p < oo, it is 

Ai < oo (i = 1,2). 

P R O O F : It follows from (3A9) that 

Ti = MWtoHioMWl, i= 1,2, (3.24) 
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where Hi are the Hardy opera tors (3.16), (3.18) and MWi,MWt are the operators 
from (3.1). Due to Proposi t ion 3.1 we have 

MWi: U>{vk)^IS{Wr*vk), 

MWt : L^wtvo) -> LP(w-qwq
iVo) = L*{v0). 

The boundedness of the function Bi(x) from (3.21) together with (3.23) (for p < q) 

or the fmiteness of the number A{ from (3.22) (for p > q) are the necessary and 

sufficient condit ions for the Hardy operator Hi to be compact as 

Hi:Lt>(W-pvk)-+L<*(wqvo) 

(see [8], Section 7). Now, the assertion follows from (3.24) due to the boundedness 

of MWt and MWi. D 

R e m a r k 3 . 3 . T h e functions Bi,i— 1, 2, from Remark 2.2 are the functions (3.15) 

from Theorem 3.3 for the special case k = 2 and VQ(X) = 1. 
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