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On some modifications of two theorems of Erdos 

Katalin Kovács 

Abstract: If certain sums of two completely additive functions are constant or convergent, 
then the functions are some constant multiples of the logarithm function. 
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In 1946 Erdos [2] proved the following theorems: 

Theorem 1 (Erdos). Let f be a real valued additive function. If f(n+l) — f(n) —•> 0, 
then f(n) = c logn for all n G IV. 

Theorem 2 (Erdos). If a real valued additive function f is monotonically increas
ing, then f(n) = c logn. 

I. Katai [3] generalized Theorem 1 for completely additive functions using a result 
of E. Wirsing [6]: 

Theorem 3 (Katai) . Let f be a completely additive function. If ]C!=i cif(n + 
a{) = o(logn), then f(n) = c logn for all n G IV. 

P.D.T.A. Elliott [1] and the author ([4],[5]) found the following further general
izations: 

Theorem 4 (Elliott, [1]). Let f be an additive function, A > 0 ,C > 0,L?,D 
integers and Ax = AC(AD - BC) ^ 0. If f(An + B) - f(Cn + D) -> c, then 
f(n) = c\ logn for all (n, A i ) . 

Theorem 5 [4]. Let f be a completely additive function, A > 0 ,C > 0,13,D inte
gers and A2 = ,4C(,4 + \)(C + \)(AD - BC) jL 0. If f(An + B) + f(Cn + D) -4 c, 
then f(n) = 0 for all (n, A 2 ) . 

Theorem 6 [5]. Let f be a completely additive function. If 

f(2n + A)-f(n) 

is monotonic from some number on, then f(n) = c logn with some c > 0 for all 
ne IV. 

In this paper I prove the following generalizations of Theorem 5 and Theorem 6: 
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Theorem 7. Let A > 0, C > 0,23, D be integers and e G { 1, -1}. If 

(1) h(An + B) + / i ( C n + D) + f2(n) -> c, 

/Or £/ie completely additive functions f\ and / 2 ; i/ien / i(n) = Q logn Or / i (n) = 0 
(i £1,2) for all n coprime to A3 = ABCD(C2B2 - A 2 D 2 ) (A 2 D + 1) (C 2 £ + 1). 

Theorem 8. Let A > 1, B > 0 6e integers, e G { I, -1} and a G C\{0, - 2 } . I/ 

(%) / ( / I n + H) + / ( A n - B) + a / ( n ) -> c 

/Or a completely additive function f, then f(n) = 0 /Or all n £ N. 

Theorem 9. Let f\, / 2 denote completely additive arithmetical functions and e G 
{ 1 , - 1 } . If one of the conditons 

(3) h(n + 2k + e) - h(n + 2k) + / 2 ( n + e) - / 2 (n ) = o(logn), 

(4) h(n + 2k + c) - / i ( n + 2k) + / 2 (n) - / 2 (n - e) = c, 

W / i ( n + 2) - h(n - 1) + / 2 (n - 1) - / 2 (n) = c, 

(6) h(n) - / i ( n - 3) + / 2 ( n - 1) - / 2 (n) = c, 

ra / i ( n + 3) - h(n) + / 2 ( n » 1) - / 2 (n ) = c 

is satisfied, then h(n) = C{ logn (i = 1,2,) /Or all n e N. 

Proofs 
PrOO/ O/ Theorem 7. We may assume, that B and C are positive. (Otherwise we 
replace n by n + s in (1) with a number 5 big enough such that B' = B + s_4 > 0 
and J9' = .D + sA > 0.) We substitute n by C£?n and ADn in (1), resp. Therefore 

(8) h(ACn + 1) + eh(C2Bn + F>) + / 2 (n) -> C l 

and 

(9) h(A2Dn + B) + e / ^ C n + 1) + / 2 (n) -> c2. 

The difference of (9) and (8) shows that 

h(C2Bn + D) - eh(A2Dn + H) -> c3. 

Finally we apply Theorem 4 and Theorem 5, resp. 

Proof of Theorem 8. We replace n by I?n in (2). So we have 

(10) f(An + 1) + f(An - 1) -> c. 

Now we substitute n by .An, (A + l )n , A(A + l )n , A(A + l )n + 1 and A(A + l )n - 1 
in (10). Therefore we obtain the following assertions: 

(11) f(A2n + 1) + f(A2n - 1) + af(n) -> cu 

(12) f(A(A + l )n + 1) + f(A(A + l )n - 1) + af(n) -> c2, 

(13) /( .42(A + l )n + 1) + f(A2(A + l )n - 1) + af(n) -^ c3, 
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(14) f(A2n + 1) + f(A2(A + l )n + A - 1) + af(A(A + l )n + 1) -4 c4, 

(15) f(A2(A + \)n - A + 1) + / ( A 2 n - 1) + af(A(A + \)n - 1) -> c5. 

By the linear combination of the equations (14) + (15)-(ll)-a(12) we have 

/( / l2(yl + l )n - A + 1) + / ( A 2 ( A + l )n + A - 1) - (a2 + a ) / ( n ) -> c7. 

Then we replace n by (A — l )n in this formula, which yields that 

(16) f(A2(A + l )n - 1) + f(A2(A + l )n + 1) - (a2 + a)f(n) -+ c8. 

The difference of (16) and (13) shows that (a2 + 2a)fn —> c8, i.e. / = 0 if a $!• 
{ 0 , - 2 } . 

Proof of Theorem 9. 

Case 1. Replacing n by n + e in (3) we have 

(17) / i ( n + 2fc + 2e) - / 1 ( n + 2fc + e) + / 2 (n + 2e) - / 2 ( n + e) = o(logn). 

The sum of (3) and (17) yields that 

(18) / i ( n + 2fc + 2c) - / i ( n + 2fc) + / 2 (n + 2c) - / 2 (n) = o(logn). 

Replacing n by 2n in (18) we get that 

(19) / i ( n + fc + e) ~ / i ( n + fc) + / 2 (n + e) - / 2 (n) = o(logn). 

The difference of (19) and (3) shows that 

/ i ( n + 2fc + e) - / i ( n + fc + e) - / i ( n + fc) + / i ( n + 2fc) = o(logn). 

By Theorem 3 we have that / i (n ) = ci logn or / i ( n ) = 0. We substitute this result 
in (3) to obtain / 2 (n ) = c2 logn. 

Case 2. We replace n by n + e in (4). Therefore 

(20) / i ( n + 2fc + 2c) - / i ( n + 2fc + e) + / 2 (n + e) - / 2 (n) = c. 

The sum of (4) and (20) yields that 

(21) / i ( n + 2fc + 2c) - / i ( n + 2k) + f2(n + c) - / 2 (n - e) = 2c. 

We replace n by n — fc in (4) and by 2n in (21). So we have 

(22) / i ( n + fc + c) - / i ( n + fc) + / 2 (n - fc) - / 2 (n - fc - e) = c'. 

(23) / i ( n + fc + c) - / i ( n + fc) + / 2 (2n + e) - / 2 (2n - e) = c". 

The difference of (23) and (22) shows that 

/ 2 (2n + e) - / 2 (n - fc) - / 2 (2n - c) - / 2 (n - fc - c) + c'"(e = lor - 1), 

i.e. / 2 (2n + 2fc + c) - / 2 (n) is monotonic. Finally we apply Theorem 6. 

Case 3. We replace n by n + 1 in (5), so we have 

(24) h(n + 3) - / i ( n ) + / 2 (n ) - / 2 (n + 1) = c. 
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We substitute n by 2n + 1 in the sum of (5) and (24), i.e. 

/ i (n + 2) - / i (n - 1) + / i (n + 3) - / i(n) + / 2 ( n - 1) - / 2 ( n + 1) = 2c, 

which follows 

(25) /x(2n + 3) - A(n) + fx(n + 2) - /,(2n + 1) + / 2 (n) - / 2 ( n + 1) = 2c. 

The difference of (25) and (24) shows that 

A(2n + 3) - /x(n + 3) = /i(2n + 1) - fx(n + 2) + c, 

i.e. /i(2n + 3) — /i(n) is monotonic Finally we apply Theorem 6. 
The proof of the remaining two cases is very similar. 
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