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A self-similar t i l ing generated by the minimal Pisot 
number 

Shigeki Akiyama 

Taizo Sadahiro 

Abstract: Let (3 be a Pisot unit of degree 3 with a certain finiteness condition. A large 
family of self similar plane tilings can be constructed, by the digit expansion in base 0. 
(cf. [7], [5], [8]) In this paper, we prove that the origin is an inner point of the central tile 
K. Further, in the case corresponds to the minimal Pisot number, we shall give a detailed 
study on the fractal boundary of each tile. Namely, a sufficient condition of "adjacency" of 
tiles is given and the "vertex" of a tile is determined. Finally, we prove that the boundary 
of each tile is a union of 5 self similar sets of HausdorfT dimension 1.10026 . . . . 

Key Words: Fractal, Plane Tiling, Pisot number. 

Mathematics Subject Classification: Primary 11A68, 11R06 

1. Plane t i l ing and Pisot numeration system 

Let- /3 > 1 be a real number. A representation in base /3 (or a /3-representation) of 
a real number x > 0 is an infinite sequence (-Ci)fc>i>~ooi %i > 0> such that 

x = xk0
k + xk-if3

k~~l + ••• + xi0 + x0 + x~i0~l + .r_2/3~2 + • • • 

for a certain integer k > 0. It is denoted by 

X = XkXk~i • • • XIXQ.X-\X-2 • • • • 

A particular /3-representation - called the /3-expansion - can be computed by the 
'greedy algorithm': Denote by [y] and {y} the integer part and the fractional part of 
y. There exists k G Z such that /3k < x < (3k+l. Let xk = [x/0% and rk = {x/(3k}. 
Then for k > i > — oo, put Xi = [/3n+\], and r, = {/3rj+i}. We get an expansion 
x = xk(3

k + xk-i(5
k~l H . If k < 0 {x < 1), we put x0 = x_i = • • • = xk+i = 0. 

If an expansion ends in infinitely many zeros, it is said to be finite, and the ending 
zeros are omitted. 

The digits Xi obtained by this algorithm are integers from the set A = { 0 , . . . , / 3 -
1} if /? is an integer, or the set A = { 0 , . . . , [/3]} if /3 is not an integer. 
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A particular /3-representation of 1, d(l,/3) is defined by means of the ^-transfor
mation of the unit interval: 

T0x = {0x}, a: €[0 ,1] , 

d(l,/J) = 0 . ^ 1 ^ 2 - . . , t.k = [0Tk~ll}. 

If a real number x has finite /3-expansion, x = a;*/?* + Xk~\0k~l + ...xt0
l, 

(xk,xt it 0 k > t), then we denote deg^(x) = k and ord/?(x) = £. Let Fin(/3) be 
the set of numbers which have finite /3-expansions. A Pisot number is an algebraic 
integer such that all its Galois conjugates other than itself are strictly inside the 
unit circle. A Pisot numeration system is a system to represent real numbers by 
the above greedy algorithm in a Pisot number base. In the following of this paper, 
we assume that 0 is a Pisot unit of degree 3 which is not totally real. (Here a Pisot 
unit means a Pisot number which is also a unit.) 

We also assume that 0 has a property 

(F) Z[/?]>o = Fin(/J). 

A neccesary and sufficient condition of (F) for an arbitrary Pisot unit is shown 
in Theorem 2 of [1]. Here, we restate it, in our case. 

Let 0 be the Pisot unit of degree 3 which is not totally real. Then 0 has the 
property (F) if and only if each element of 

{x£Z[0) IxGlOAllx'lKM^ 

has finite 0-expansion. Here M\ is an upper bound of modulus of conjugates of all 
0-expansions Yli>oaiP% -

Let XMXM-\ • •' xo.x-\ • • • x_/v be a sequence of integers in { 0 , 1 , . . . , [0]} which 
includes the decimal point. Then SXMXM_1... ....X_N denotes the set of the numbers 
of the form 

yh0
h + yh-\0

h~1 + • • • + xM0M + • • • + x„N0~N, (h > M) 

which is a /3-expansion. So if XM0M + XM~\0M~1 + • • • + X~N0~N is not a 0-

expansion then SXM... ....X_N is an empty set. For convenience we denote by 

S = S. = {x e Fin(/3) | ord/3(a?) > 0}. 

Let 0' be a complex conjugate of /?, and <f> be the conjugate map which transforms 
0 to 0'. We denote <f>(x) by x' and for any set A C Q(/J), A1 denotes 0(A). It is 
clear that 

/T"l«S = 5 u S . i U ' - - U S . [ 0 ] (disjoint). 

Conjugating both sides, 

/ 3 ' _ 1 5 ' = S' U S'i U • • • U S'm (disjoint). 



A self-similar tiling generated by the minimal Pisot number 11 

In general, 
S a f i S 6 ^ 0 = > S a c S & or S 6 c S a . 

Let K.X_X...X_N denote the closure of S ' X l . . . x / v for the standard topology of C 
and K denote the closure of S''. We say a set K.x_lX„2...X-M to be a tile. 

This type of tiling constructed by the Pisot numeration system can be found in 
[7], [8] and [5]. We are interested in studying the topological structure of the tile, 
especially the structure of the boundary. 

In this paper, we will prove that the origin is an inner point of /C in Theorem 
1, using geometry of numbers. This result is very much fundamental and give us 
good insight to understand Theorem 1 of [1]. 

In §3, we concentrate on the concrete Pisot number /3, which is a positive root of 
x3 — x - 1 and study the structure of the boundary in detail. A sufficient condition 
of the adjacency of two tiles is shown in Theorem 2, by constructing infinite points 
on the boundary. Here we used the fact d(l,/3) = .10001, which means there exist 
two ways to carry up the digits: 

1 = .011 and 1 = .10001 . 

This fact brings us an interesting feature of this Pisot numeration system. By 
the result of [6] and d(l,/3) = .10001, an abstract sum __ZaiPi w i t n a* € I 0 ' 1 } i s 

obtained as a /3-expansion then 

a t = 1 = > ai+\ = at-+2 = a t+3 = a t+4 = 0. (1) 

The converse is also true if we forbid the exceptional expansion 

100001000010000 • • •= (10000)°° 

in the tail of the sum YlaiPl-

In Theorem 3, we prove that the 'vertex' of K forms a set which consists of five 
elements. Finally, in Theorem 4, we show that the boundary of /C consists of 5 self 
similar set of Hausdorff dimension 1.10026 . . . . (See figure 4.) 

To prove these theorems, we develop a new technique called 'encircling method', 
which itself is of interest. We also employ the result proved in claim 1 of [1], which 
asserts that, for any greedy expansion __li_z0 a^1 with an = 1, we have 

|1 + ax/3' + a2(/3')2 + • - • + aN(0')N\ > ci|/J'| (2) 

with a =0.5752415728. . . . 
In contrast with the result of [5] on the Pisot number defined by x3 — x2 — x — 1, we 

used geometry of numbers and Pisot numeration system instead of finite automata. 
The first author believes that this way is promissing in understanding universal 
phenomena of these tilings. 
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2. Fundamental properties of the tiling 
We shall show fundamentals of the tilings generated by cubic Pisot unit with (F), 
which will be needed later. 

Lemma 1. Let £ be an arbitary point in C. Then only a finite number of tiles 
can contain f, i.e. 

Proof. First, we show the set C = {x' \ x € Fin(/3), 0 < x < 1} is a discrete 
set in C. Suppose there is an accumulation point of C in C, then 0 is also an 
accumulation point. For if there was a sequence (aJJ which converges to z, then 
the sequence b'n associated to bn = \an+i — an\ belongs to C since bn > 0 and 
bn € Fin(/3). Moreover h'n converges to 0. However for any e > 0, only finitely 
many algebraic integers can satisfy the condition, |x| < l , |x ' | < e, |x' | < e. That 
is a contradiction. Assume that there exists infinite tiles (K{) i = 1,2,-•• who 
include f. As each tile Ki must contain an element of C, and each tile has bounded 
diameter, there exist an accumulation point of C in C. This proves the lemma, rj 

Lemma 2. Let j3 be a Pisot number of degree 3 with property (F), which is not 

totally real. Then C = U. a . i a_2 . . .a_M * 

Proof. By the property (F), it is clear that 

Z[/?]>o = [j S . a _ i a _ 2 . . . a _ M , 
. a _ i a _ 2 - a _ M 

where the summation is taken over all greedy expansions in base 0 of degree smaller 
or equal to 0. Thus it suffice to prove that the conjugate image of Z[/3]>Q is dense 
in C. Let 

A_(W W2\ and (vA_A-1(i\_J_(2W\ 

As {l,/3,/?2} is a base of Q(/3)/Q, one can show that l,vi,V2 a re linearly indepen
dent over Q. Kronecker's approximation theorem implies the set Z (mod /3'Z + 
/?/2Z) is dense in C/(/3'Z -f- ft Z). Let x be an arbitrary point of C. For any 
e > 0, there exist (a,b,c) € Z 3 such that |x — a — 6/3' - c/?'2| < e/2. Take a suf
ficiently large M € Z such that | / 3 ' M | < e/2 and a + b0 + c/32 + (3M > 0. Then 
y = a + 6/3 4- c/32 + / 3 M € Z[/?]>0 satisfies |x - t/'| < e. This proves the lemma, rj 

Lemma 3. Le£ /? > 1 be an algebraic integer of degree k, which is a unit, and M 
be a positive number. Put 

X{p) = {xe Fin(/J) | |x| < M,ord^(x) = - p } . 
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Then we have 
lim min max \x™'\ = co. 

p-+<x>x€X(p) j = l , . . . , k - \ I I 

Here x ^ (j = 0 , 1 , 2 , . . . k — 1) are all the conjugates of x with x^ = x. 

Proof Denying the assertion and assume that there exist a constant B and an 
infinite sequence X{ (i = 1,2, . . . ) so that both 

\xi \ < B for j = 1,2, . . . A; - 1 and lim ord*(xi) = - c o 
t—>oo 

hold. Since /3 is a unit and |x;| < M, these x^'s are finite, a contradiction with the 
second condition. This shows the assertion. rj 

Here we can prove one of the main results of this paper. 

Theorem 1. Let (3 be a Pisot unit of degree 3, which is not totally real, with 
property (F). Then for each element x £ Fin(/3) with ord/?(x) > 0, x' is an inner 
point of /C. 

Proof. First we show that 0 is an inner point of /C. By Lemma 1, for any positive 
B, there exists N such that ord#(x) < -IV implies la:') > B. (In fact, let x = x\ -\-x2 

with o r d ^ x i ) > 0,deg/3(x2) < 0. Then there exist an absolute constant C that 
\x'x\ < C. By using ord^(x) = ord^(x2) = -IV, we see for any positive B, there 
exist IV such that \x'2\ > B + C, which shows \x'\ > B. ) Let x = 0~N+ly, then 
we have 

ord^Q/) < 0 = > |y'| > \p\N~lB. 

Thus there are no elements of Fin(/J) of negative order in the disk 

u = {zec | |e| < l/J'l"-1-?}. 

By lemma 2, this shows that U C K. Thus 0 is an inner point of K. Let x be an 
element of Fin(/3) whose expansion is 

X = XkXk-l•• x 0 . 

Let m be the minimal length that [/3]0m_1l = [/5]00- -01 is lexicographically 
smaller than d(l,0). Subdivide /C in a form: 

л- = U*-*+. -fc + m - ľ - Ї O - ' 

where the index runs over all greedy expansion of length m + A; + 1. We see that 0 
is also an inner point of K0k+tn+i. By adding x, <f>(xkXk-\ • • *xo) is an inner point 
of I-'oma;i.xfc_1 xo- Thus the theorem is proved. rn 
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Figure 1. K, K.\ x ~ 1. 

3. Tiling generated by the minimal Pisot number 
In [5], [7], there exist extensive study on the tiling generated by the Pisot number 
of irreducible polynomial x3 - x2 - x — 1. This is now called the Rauzy fractal. It 
seems that few examples exist on other Pisot numbers. Hereafter in this paper, we 
concentrate on the minimal Pisot number /3, which is the positive root of x3 - x — 1. 
See Theorem 3.5 of [2]. Figure 1 shows /C and K.\ in this case. We believe that 
this example is interesting among others, because there exist two different ways to 
carry up: 

i = /r2 + /r3 and i = /r1 + /r5. 
See also §9 and §10 of [8]. 

Propositon 1. Let (3 be the real root of x3 - x - 1 = 0. For any distinct tiles 
Ti,T2, /i(Ti HT2) = 0, where \x denotes Lebesgue measure. 

Proof. It suffices to show when T\ = /C, T2 = K.\. Recalling the admissiblity 
condition (1), JCUK.l= / S ' " 1 ^ , KA = /3 ' " 1 4- /3'4K. So we have 

MKu/ť.,) = |/3'-1lV(X) = / W ) MIC.) = I/?'TMlO = /rV(jg. 4 , 2 , 

Thus 

м(к: n кл) = м!c) + /.(/<.i) - м(^ u üfл) 

= (1 + /Г4 - /з)м(̂ ) 
= 0. 

п 
Lemma 4. Let 0 be the positive root of x3 - x - 1. T/ien Z[/3]>0 = Fin(/3) 
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Figure 2. /C, K.\, ICoi . x3 - x - I. 

Proof. We use theorem 2 in [1], recalled in §1. By using (1), we can take M\ = 
(l- l/3'l 5)- 1. Let 

= {xєz[/з] o<»<i,И< x_
l

mь} 

Each element x of Z[/3] can be written as a + 6/3 -f c/32 with a, 6, c E Z. Thus, for 
x = a + 6/3 -f c/32 € C, 

/ l /? £ 2 

1 ^ &1 
\ 1 /?' /?'2 

with 0 < u < l , |v | < 1/(1 - | /3 ' | 5 ) , | ^ | < 1/(1 - |/3'|5). Multiplying the inverse 
matrix and considering the absolute value, we see 

N < 2, |6| < 1, \c\ < 1. 

By checking every element, 

C = {1, - 1 + /3, - 1 + /32 , - /3 + t32,1 + 0 - /32}. 

Now it is easy to show that these five elements have finite greedy expansion in base 

0- D 

Lemma 5. Let /3 be the real root of the polynomial x3 - x - 1. and (an) C 
Fin(/?) 6e a sequence of nonnegative numbers. Then limn-+oo \an\ = 0 if and only 
i/limn-^oo ordp(an) = oo. 
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Proof. Suppose hn = deg / 3(an), tn = ord#(an) and 

an = cn,hn0
h» + cn.fc.-i/?*--1 + • • • + cn , tn /3 'n . 

Then 

|a n | < cn,fcnl/TI^ +c n , / l n _ i | / 3 ' | / l n ~ 1 + . . . + cn, tn |/3fn 

^ f / ? 1 F i t n __r / ? 1i/? /rd^ ( f l- ) 

~ L P J 1 - | / 3 ' | LPJ 1 - | / J ' | * 

This shows ord#(an) -> +00 implies | a n | —> 0. 
Assume there exist a sequence (a n) n>o, such that limn_>+oo \an\ -> 0 and 

ord / ?(an) < £?. Then the sequence 6n = an /3~P~o r d" ( a n ) satisfies limn_>+00 |6'n| -•» 0 
and ord/3(6n) = - p . This contradicts the lemma 3. 

D 

Lemma 6. If there exist two sequences (an) C S........__N , (6n) C S.y_....y_M 

suc/i JiW {an},{6'n} converge in C and ord^(|an - 6n|) ~> 00, then K,X_X...X_N n 

K.y-,.y-M*$ 
Proof. It follows from lemma 4 and 5. rj 

For example we can find a point of K. f)KA by using /35 - 1 = /34 and /33 - 1 = /3. 

a0 = 0 60 = 0.1 = / T 1 |a0 - 60| = /3" 1 

fll = /34 + a0 61 = 60 |ai - bi\ = |/34 - 0~l\ = /33 

a2 = ai 62 = h + /38 |a2 - 62| = |/38 - /33 | = /37 

a3 = /?12 + a2 63 = 62 |a3 - 63| = |/312 - /37 | = /311 

In fact /3'4 + /312 + /3 ' 2 0 + • • • and / 3 ' " 1 + /?'8 + /3'1 6 + • • • converge to the same 
point /3'4/(l - /3'8), which is in K, D K.\. Many other choices of {a*} and {6*} will 
produce other points of -AT. n K.\. We describe this construction more precisely as 
the following theorem. 

Theorem 2. Lei /3 6e the real root of the polynomial x3 — x — 1. Let a = 
0.a_i • • a_m and 6 = 0.6_i • • - 6_ n 6e ^-expansions of two nonnegative reals less 
than 1. If the following conditions are satisfied, then K.a_l...a„m n/-T.6_1...6-.n is an 
infinite set. 

• For an integer d > —5, a — 6 = /3d . 

• degp(a) < d + 4, degp(b) < d. 

Proof. We define sequences (,4n) and (P?n) by the following procedure. Let A0 = 
a, £?0 = 6. When An - Bn = /3 d " , let An+i = An and £?n+i = £?n + /3dn+Cn where 
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cn = 5 or 3. When Bn - An = /3 d " , let An+i = An + 0d*+c» and B n+i = Bn where 
cn = 5 or 3. If we choose cn = 5 then 

| A n + i ~ _ 3 n + i | = / 3 ^ + 5 - | A n ~ H n | 

= /3<In+4, 

and hence 

ord0(\An+i - Bn+l\) = dn + 4 = ord/j(|An - 5 n | ) + 4. 

Similarly, if we choose cn = 3, then 

o r d ^ l ^ n + i - _?n+1 |) = dn + 1 = ord/jflAn - B„|) + 1. 

Repeating this procedure, we can obtain sequences (An) and (Bn) such that 

ord(|An - Bn\) -> co. 

But the condition _4n+i G S.a„1...a_m and Bn+i G S.6_....&_n may not hold in the 
process. For example, let A0 = 0.1 and B0 = 0.01 then A0 - B0 = /3~ 6 . If we 
put Ai = A0 and J?i = _30 + /3-6+c° where Co = 3 or 5 then Bi & S.oi as it 
violates the condition (1). So we add the following restriction in choosing cn . Let 
M n = deg0(m<ix{An, Bn}) - cfn, m n = deg /3(min{An, £ n } ) - dn. 

( 5 or 3 mn < -2 ,d n > - 3 
1 5 ГПn < - 2 , - 4 > drг > 

1 5 -2 < m n < 0 
l stop other 

Then c n - m n > 5 and dn + cn> 0. So by (1) in section 1, -4n+i € S.a_!- •a_m and 
J5n+i € S.6.!...6-n* K w e c a n choose cn = 5 then ( M n + i , m n + i ) = ( l , M n - 4), and 
if we can choose cn = 3 then ( M n + i , m n + i ) = (2, M n — 1). 

We can take A0 = a, B0 = b, Ax = a, # i = 6 + / 3 d + 5 and A2 = a + /3d4"9 , B2 = 
b-h^"1*5 by the conditions of the theorem. For d+5 > deg/?(6)-f5, r14-9 > deg/3(a)-f-5 
and d -f 5 > 0. 

Then (M 2 ,m 2 ) = ( 1 , - 3 ) and d2 > - 3 . Figure 3 shows the transition of 
(Mn,mn) which starts from (M2,m2) = (1, - 3 ) : An edge from (M,m) to (M',m') 
labeled by c means that , for (Mn,mn) = (M,m), if we choose cn — c then 
( M n + i , m n + i ) = (M1 ,m!). Distinct words c2c3 . . . correspond to distinct sequences 
(An), (Bn). The set of right infinite words c2C3 . . . obtained from this figure is 
{c2C3 • • • | C{ £ {3,5},CjCj+i 7-= 33} and hence is an infinite set. So we can find in
finitely many sequences (An) of S.__,....o_m and (Bn) of S.&_,...6_n which converge 

tO poin ts Of If a _ i a_m H I^.b.j • 6_n-

Let Ea be the set of all of the sequences (An) which are obtained from the process 

above. Then Ea is an infinite set. We have to show the set of limit points of elements 

of Ea is also an infinite set. Let x be a point of C. Suppose (Aj ) (i = 1,2, • • • , IV) 

are distinct IV elements of Ea with limj(A^)' = x. Then there exist a positive 
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Figure 3. (Mn ,mn) and cn 

Figure 4. subset of K H (KA U if.oi U if.ooi u #.0001 U ICooooi). 

integer M that, for a sufficiently large j , the fractional part of 0~M Aj are distict. 
This means that fi'~Mx is contained in distinct IV tiles. By lemma 1, only finitely 
many tiles can contain a same point, we see that IV is bounded. Thus the set of 
limit points of elements of Ea is also an infinite set. rj 

Figure 5 shows the subset of /C n (K.x U If .01 u I^.ooi U ICoooi u ICooooi) obtained 
by the process above. The second auther predicts that these points are all of the 
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# . o i к 0001 ß'-3 

\_y 
# . 1000001 #.0000001 

Figure 5. adjacency of /C, #.0001, #.1000001, #.0000001 and # . 0 i . 

intersection. We shall prove later that this boundary can also be obtained by 
iterated function system. 

Lemma 7. Consider five tiles K, #.0001 > #.1000001. #.0000001> # . oi in this order. We 
consider this order "cyclically". In other words, we consider that K and K.01 are 
also adjacent. Then two adjacent tiles in this sense have infinitely many points in 
common, And two tiles, which are not adjacent in this sense, have only one point 
-(3'~3 in common. Moreover, -0'~~3 is an inner point of ICUK,0001 U#.ioooooi U 
#.ooooooi U IT.oi. 

Roughly speaking, this lemma assures that these 5 tiles are "actually" adjacent 

in this order and surround a point - / ? ' " . (See Figure 5,6.) 

Proof. First we prove 
KH #.0000001 = {~/3 ,~3}. (3) 

Other equalities of this type are proved similarly. Consider two subdivisions: 

IC = Ifoooo. U #1000. U #ioo. U #io . U # i . 

and 

#.0000001 = #0000.0000001 U A'lOOO.0000001 U #100.0000001 U #10.0000001 U #1 .0000001-

Let" D(x,r) = {z e C | \z - x\ < r}. We have the inclusion (cf. Lemma 4), 
K C D(0,v) with v = 1/(1 - | / 3 ' | 5 ) . Thus #10oo. = #00001000. C D((3'3,v\0'\s\), e t c 
By using this, we see 

# 0 0 0 0 . U # 1 0 0 0 . U # 1 0 0 . U # 1 . C 

C D(O,v\0'\4) U D((3'3,v\0'\8) U D((3'\v\p'7\) U D(l,v\f3'f) 

and 

K0000001 C D(0'~7 ,v\0'\4)U D(0a + 0'~7 ,v\0'\8)U 

D(0'2 + 0'-7,v\0'7\) U D(0' + 0'-7,v\0'\6) 

UD(l+0'-7,v\0'f). 
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/^VOOIOOOШ 

ґjíлoooou { gГлoooooo;ŕ £ £ 

Г / ^ ^ Л . 0 0 0 0 0 1 
^^#.00000001 ì 

\ # o o Г 

J ^ k ^ - ^ j ŕ ^ . l /g ioV \ J/#.OIOOOQІI 

-/ ч i Ч-^ Ҡi, t î ^ ^ í #.0001 / 
л . 0 0 0 0 1 r 

Hence 

K 10000.1 

.1001 

* #.000000 L 

r. o íoodi 

#1000. 

#00000 m íooo. oi 

Figure 6. Subdivision of tiles 

#0000001 n (fCoooo. U tfiooo. U #100. U Kx.) = 0. (See Figuře 6,7.) (4) 

In the same manner 

/C O (#0000.0000001 U #1000.0000001 U #10.0000001 U #1.0000001) = 0- ( 5 ) 

Hereafter we call this type of arguments "encircling method". Combining (4) and 
(5), 

K O #.0000001 = # 1 0 . n #100.0000001 = # 0 . n #00.0000001- ( 6 ) 

# 0 . = # 1 0 . U # 0 0 0 0 . U # 1 0 0 . U # 1 0 0 0 . 

Here we used 

and 
#00.0000001 = #100.0000001 U #0000.0000001 U #1000.0000001 • 

Now let ift(z) = 0,bz + #' , then 

ф[(K0.) = Kю. 
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,v\P'7\) 

D(l,v\ß i\Ь\ 

Figuгe 7. tf.ooooooi П (D(0,v\ß'\4) U D(ß'3,v\ß'\8)U 

D(ß'2,v\ß'7\)UD(l,v\ß'\5))=®. 

and 
V>i (I^OO.0000001 ) = I^l00.0000001 (8) 

hold. For the convenience of the reader, we will show (8) precisely. It suffice to show 
^i(Soo.ooooooi) = Sioo.oooooi with ipx(z) = 05z 4- 0. Take any x = • • -00.0000001. 
Then 

^ ( x ) = • • 0000000.01 4-10. 

= • • • 0000010.01 

= .••0000010.0010001 

= •0000100.0000001. 
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Here we used /35 = /34 + 1 twice. Note that, as there exist 4 consecutive O's in 
front of 100.000001, ipi(x) lies in Sioo.oooooi by (1). This shows ip\(Soo.ooooooi) C 
Sioo.oooooi- Similarly, i/*"1 (Sioo.oooooi) C Soo.ooooooi- This shows (8). Hereafter 
we omit the details of such calculation in Pisot numeration system. By using (6), 
(7),(8), we have a set equation 

K0. n #00.0000001 = ip[(Ko. n #00.0000001 )• 

This shows that # 0 . n #00.0000001 consists of all fixed points of ip[. Therefore, 

#0. n #00.0000001 = {-P'~~}i which shows (3). 
Now consider the map n(z) = f¥z -f /3 '~ 7 . Then one can show that 

# 0 . - * #00.0000001 -> #000.0001 -» #0000.01 -> #0000.10000001 - > # o . 

By Lemma 6, we can show that { — 1, - /3 '~3} C #o.n#ooo.oooi • As 77 is a contraction 
map with fixed point - / 3 ' ~ 3 , { r l 5 n ( - l ) | n = 0 ,1 , • • •} is an infinite set contained 
in #0. n #000.0001 C /Cn #0001- By considering {n~n+k(~l) | n = 0 ,1 , • • •} for 
k = 1,2,3,4, adjacent tiles in the above sense have infinitely many common points. 

It remains to prove that -/?'"" is an inner point of /C U #.0001 U #1000001 U 
#0000001 U #.oi- One can show that — (3,A is an inner point of /C. In fact, by using 
(2), \/3'A\ < 0.570 < c i . Thi 
is subdivided into 11 tiles: 
(2), \/3'A\ < 0.570 < a. This implies that - / ? ' 3 is an inner point of /?' 7/C, which 

ff 7/C =/C U # 1 U # 0 1 U # 0 0 1 U #.0001U 

#.00001 U #.000001 U K. 100001U 

#.0000001 U #0100001 U #.1000001, 

as there exist 11 different /3-expansions of length 7. By using encircling method, 
one can easily show that 6 tiles: 

# . 1 , # .001 , #.00001, #.000001, #.100001, #0100001 

do not contain —0'~~ . This completes the proof. rj 
We call a set KXNXN_1...Xo.x_lX_2...x_M t o be a subtile of t he tile K.x_lX_2...x_M. 

All subtiles are similar to /C. A common point of two tiles is called an element of 
the boundary of the tiling. A common point of three tiles is called an element of 
the vertex of the tiling. We define d(K.x_lX_2...x^M) to be the set of all bound
aries of a tile K.x_lX_2...x_M and V(K.x_lX_2...x_M) to be the set of all vertices in 

•*» .X-\X-2'-X- M ' 

Theorem 3. We have 

V(K) = { -1 , -p'-\-0'-\ - / 3 ' ~ 3 , - / J ' " 4 } . (See Figure 4.) 

Proof. We use the same notation as in the proof of Lemma 7. Remembering 
/C C L>(0, v), and D(0,Ci) C /C. As Ci|/3'|""9 > v, each element of /C is an inner 
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point of 0'~ K. Thus it is enough to consider 0'~ /C, which is subdivided into 20 
tiles. (See Figure 6. Remark that there exist subtiles in this figure.) There are only 
10 tiles which have at least one common point with K, namely 

I-".i, K.oi, #.ooi, #.0001, #.00001, IC oooooi J IC.ooooooi, K. 1000001,#00000001, IC.oioooooi • 

(By using this, we see that all element of K is an inner point of /3'"~8rC, actually.) 
Here we used a refined version of encircling method. For example, to prove K D 
#.000000001 = 0, we subdivide K into 5 subtiles: # i . , # 1 0 . , # I O O . J # I O O O . , # O O Q O . and 
use the encircling method. Hereafter we will use this technique, if necessary. The 
numerical value of the radius v = 1.9806 can be replaced by 1.85 but we cannot 
expect 1.8, as 

|1 + /J'5 + /3 '1 0 + 0>15 -f (5'21 + 0'26 + 0'311 = 1.80809 . . . . 

However we cannot confirm K n #.000000001 — 0' by simple encircling method with 
radius 1.8. Thus we cannot get rid of this refined version. For the simplicity, we 
also call this refined version as "encircling method". 

By using the results and the proof of Lemma 7, multiplying /J'""1, the same 
kind of statements holds for the 5 subtiles: # i . , #.00001, #.01000001, #.00000001, #.ooi 
surround the point —0'~ in this order. In the same way, multiplying 0', we see that 
the 5 subtiles #ioo., -^.ooi, #1.000001, #0.000001 , IO surround -0'~2 in this order. 
Noting 

#.000001 = #1.000001 UICo.oooooi J 
we should say that 4 tiles #ioo., #.ooi, ICoooooi, IC.i surround -0'~2 in this order 
and satisfy similar properties. Continuing this process, 4 subtiles: ICiooo., ICoi, 
I-".o.oooi, Ki. surround -0'" in this order and satisfy similar properties. However, 
noting Ifiooo. U I-Y C /C, 3 tiles /C,Iv'.oi,I-".ooooi surround -0'~l and K n Km n 
I-".ooooi = {-0'~ }• (In fact, by using encircling method, K \ (IsTiooo. U K\) — 
I^io. UIv"oooo. UICioo. does not have any intersection with IC.ooooiO Similarly, 3 tiles 
/C, AT.i jICoooi surround ~~1 and rCnIT.i nIC.oooi = {-1}. Summarizing these facts, 
we have shown V(K) D { -1 , -0'~\ -/3!~2, ~ / 3 ' ~ 3 , -0'~A), and 

IC.oooooi n K ~{—0' } 

IC.ooooooi n K ={—0' } 

IC.ioooooi n K ={—0' } 

#.00000001 n K ={--/3 , } 

#01000001 n K —{~0'~ }. 

Thus, to prove V(K) C {~1, -0'~\ -0'~\-0>~\ -0>~4}y we only have to consider 
5 tiles Iv.I, Iv.oi, IC.ooi, ICoooi, IC.ooooi• Again, by using encircling method, 

(KAUKmx)nKm =0 
(#0001 UiY, i )n IV.ooooi =0 

(#.ooi U#.oooi )n# .oo i =0 

(#00001 U # . o o i ) n # . i =0 

(#.ooi u #.00001) n #.0001 =0-
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This proves the assertion. rj 

Theorem 4. The boundary of K is a union of 5 self affine sets. More precisely, 
define two types of contraction maps ip[(z) = f¥ z -f- /3'1 and <t>'j(z) = 0' z + 0'J. 
Then we have 

8(K) = Xi U X2 U X3 U K4 U X5, 

and each X{ is defined by a set equation: 

We also have 

Xx=ф'2(X,)Uф'^(X,) 

X2=xþ[(X2)Uф'_A(X2) 

X3=ф[(X3)Uф'_2(X3) 

X 4 = ^ ( X 4 ) U ^ _ 5 ( X 4 ) 

Xь=гþ'Q(Xь)Uф'_3(Xъ). 

x1nx2={-i} 

x2nx3={-0'~3} 

X3nX4={-0'~1} 

I 4 n i 5 = { - r 4 } 

x5nx,={-/3'-2}. 

The Hausdorff dimension of the boundary is 1.10026 . . . .(See Figure 4.) 

According to this theorem, we say that X\ is an edge between -0'~ and - 1 , 

which is denoted by _3(-/3'~2, - 1 ) , and so on. 

Proof. In the proof of Theorem 2, we already showed that 

d(K) = K(l (K.i U FT.oooi U Km U JCooooi U K.ooi). 

Thus define 

X\ =KDKA 

X2 — K n JCooOl 

x3 =K n IY.oi 

X4 =/C n ICooooi 

X5 =/C n ICooi-

See Figure 4. First, we consider K3. Note that 

K = K\. U FTio. U Iv"ioo. U iv'iooo. U IGoooo. U i^ooooo. 
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and 

#.01 = #10000.01 U #00000.01 U #1000.01-

By using encircling method, we have 

(#ioo. U #10000.) n # o i = 0 

and 
#1000.01 n / c = 0. 

Thus 

/C n #.oi = ( # i . U # io . U #1000. U #00000.) n (#10000.01 U #00000.01) • 

By using Lemma 7 and multiplying /3'5 , we see 5 subtiles #00000., #10., #10000.01, 
#00000.01, #1000. surround - / 3 ' 2 in this order and satisfy similar properties. Espe
cially, #00000. n #0000.01 = {-P'2}- In the proof of Theorem 3, we already showed 
that # 1 . n # o i = {~0'~~1}. Summing up 

/Cn # 0 1 = (#10. U #1000.) n (#10000.01 U #00000.01) = #0. U #0000.01-

Further, by using # i 0 . n #00000.01 = {~P'2} and #1000. H #10000.01 = {-/?' }, 

X3 = (#10. n #10000.01) U (#1000. n #00000.01) = #0. U #0000.01-

Now, 

^ ( # 0 . ) = # 1 0 . 

^1 (#0000.01) =#10000.01 

0_2(#O.) =#00000.01 

0_ 2 (#0000.01) =#1000.-

Thus we have a set equation X3 = rjj[(X3) U 0'_2(K3). Other set equations can 
be shown similarly. But there exists a short cut. It is easy to show X\ = 0'X3 

and X5 = P'~ X3. One see that X2 is a subset of 0'~lX^. To be precise, K2 = 
(j)'4(/3'~ X$). For X4, we can show X4 = /?' X2. These relations are enough to 
prove the set equations for Xi,X2,K4,K5. The relations 

XinK2={~l} 

X2nK3={-/5'"3} 

^ 3nK 4={-/3 '" 1} 

K4nX5={-/3'"4} 

^ n i 1 = { - r 2 } , 

are easily shown by similar arguments. 
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It remains to determine the Hausdorff dimension of <9(/C). As all X{ is similar 
to K3, we treat only X3. Our obstacle is the fact that the iterated function system 
{V>i, 0-2} seems not satisfy open set condition. But we use the criterion of Exercise 
3.3 in [3], to show that the Hausdorff dimension s of X3 coincides with the upper 
and lower box counting dimension and the Hausdorff measure HS(X3) is positive. It 
is also proved in Corollary 3.3 of [3], that US(X3) < oo. Noting ip1(X3)D(j)^2(X3) = 

ns(x3) - ns(MX3)) + n8(<t>-2(x3)) = \(3'5s\ns(x3) + \pf4s\ns(x3). 
Thus 

l = |/3f* +|/?f*, 
which shows that s — 1.10026 • • •. rj 
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