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Some remarks on the discrepancy 
of the sequence {oty/n) 

ChHstoph Baxa 

Abstract: Let a > 0 and a2 € Q. We describe a way of calculating Hm^,^^ N~l/2D^(a) 
where D^(a) is a quantity related to the discrepancy of the uniformly distributed sequence 
( 0 \ / n ) n > l -
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For any a > 0 the sequence (ay/n)n>\ is uniformly distributed modulo 1. The 
discrepancies 

N 

0<x<l 
DN(a) = ^sup | ^ c ( 0 > : c ) ( { a v / ň } ) - Nx\ 

and 

n = l 

IV 

DN(a) = sup \y2c[Xiy)({as/n}) - N(y-x)\ 
o < * < y < i ,

n T ' 1 ' 

are used to study this fact from a quantitative point of view. (Here CA denotes the 
characteristic function of the set A and {x} = x — [x] is the fractional part of the 
real number x.) They are related to the auxiliary quantities 

Iv 
D%(a) = sup (Y^c[0}X)({ay/n}) - Nx) 

0 < * < l \ ^ ' 

and 
Iv 

DN(a)= sup (Nx- Ylcl°*x)({a^})) 
o<x<i n = i 

via D*N(a) = max{D%(a)iDN(a)} and DN(a) = D+(a) + DN(a). If a2 i Q 
J. Schoifiengeier [4] proved 

1™ - 7 ^ I v ( a ) = l i m -kfDN(a) = l™ -krD*N(a) = l i m "h^DN(a) = — , 
IV->oo vW Ivv IV-foo vlv" Iv IV-+00 VIV Iv v / / y ^ ^ VW v ' 4 a 

Um -7ffD+(a) = hm ^DN(a) = 0 and lim 4%D*N(a) = - U 
IV-4oo IV->oo IV-400 0 Q : 
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The much more difficult case a2 € Q was tackled recently by C. Baxa and J. Schoi-
fiengeier [2] who described a way of calculating 

fim N~1/2DN(a) and lim N~1/2DN(a) and thus lim N"1/2DN(a). 
IV-400 ^ V IV~>oo 7 V V IV-+00 ^ v ; 

An analogous result for 
iirrT N~1/2DN(a) 

IV—>oo 

was proved by C. Baxa in a follow-up paper [1]. 
It is the purpose of this note to describe an analogous result for 

lim N~1/2DN(a) 
IV—•oo 

and to discuss the limitations of the method used. 
We need a few notations which will be in force throughout the paper: Let a2 = 

q/p where p, q are positive integers and gcd(p, q) = 1, q = qjq2 and q2 squarefree, 

f(x,0)=p(l-/3)-\x-P\ + (x-P)2 for 0 < * , / ? < 1, 

Bx{x) = {x} - 1/2, B2(x) = {x}2 - {x} + 1/6, 

M = {(a,u,v) G Z3 | 0 < a < 2p, 0 < u < v, gcd(u,v) = 1}, 

1 ti 
x(a,ti,t/) = ^ ( a + ~) 

and 

5+(a,u,t;) = ! sup I T(B^(T(k + x(a,u,v))2) - ^ ( f (k + x(a,tx,t;))2 + *)) 
o<H<i k=l

y ' 

for (a, u, t;) G M. 

Lemma 1. As N —> oo 

^ ( a ) = 7fe + ^ X > ( ? * 2 ) 
A:=0 

+ sup (,/f/(x(a,u,t;),{aN/1V}) + ^ S * (a,tx,t;)) + O ^ " 1 / 4 log2 TV). 

Proof This is part of Lemma 5 of [2]. • 
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Lemma 2. 

lim -k?D%(a) = - J U 
IV—>oo 

+ v l E 5 l ( f ) + \ / f SUP ( ^ ( M , « ) ( i ( a , u , t i ) - 1) + - ^ S + ( a , u , t A 
k-Q (ayu,v)eM x ' 

Proof. Set NM = pqp2 for /LI > 1. Then { a y N ^ } = 0 and by Lemma 1 

Jh^-^^(a)<^-^ .-^(a) 

%i&(.^+.*x><^>+^ 
- ----- + - i - r . 5 , f ^ i 

V^i" ^ v ^ 9 - ^ U 9 1 
fc=0 

+ . / * sup (x(a,u,u)(a,(a,u, i ; ) - l) + -±-S+ (a ,u ,v)Y 
V V (a , tx ,v)€MX P / 

It is easy to check that / ( x , /?) > / ( x , 0) for 0 < x, /3 < 1 and the converse inequality 
follows from Lemma 1. D 

Theorem. 

lim jjjD%(a) 
IV—»oo 

= ^ + ̂ E^(f) + \ / 5 S U P to^,t;)(x(a,ult;)-l) + ^ S + ( a > u > t ; ) ) 
fc=0 ( a , u , u ) € B v 7 

w/iere £ = { (a,uyv) e Z3 |0 < a < 2p, 0 < u ^ < 16pg3, gcd (u^ ) = 1 }. 

Proof Suppose that 

x(a1u)v)(x(a,u,v) - l) + ^ S + ( a , u , i O 

> x(0 , l ,2g) (x(0 , l ,2g) - l) + ^ S + ( 0 , l,2g) = 3 ^ 

where we made use of a way of calculating S + (0 , l,2g) described in [2]. Using 
the trivial estimate S+(0 , l ,2g) < g/2 yields 1(1 - - ^ - ) 2 - ! + - £ - > - ^ 

and therefore (l - 2x(a, u,v)) + | J > 1 + g^-p-. As |1 - 2 x ( a , u ^ ) | < 1 we get 

v < 8p2q2 • 2g/p = 16pg3. Finally note that (0,1,2g) € B. D 

Remark. The sum ]C*=o ^i(pk2/q) was studied by M. Lerch [3] in the case 2 \ q. 
If g is an odd prime his result is reduced to 

M ' ' 1 - 5 i f < ! s l (mod4) . 

Here h(~q) denotes the class number and w the order of the unit group of the 
imaginary quadratic field Q(y/—q)-
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Corollary. 

Џ VÑD+NФ 
IV—>oo 

TP
 if* = 1 

(- + &71p if1 =2 (and thus2\p) 

-,U if q = 3 and p=l (mod 3) 

(§ + & ) ; & */<? = 3 and p = 2 (mod 3). 

Proof. Only the case a = 1 will be proved. The other assumptions can be proved 
along the same lines. If 

x ( a , u ^ ) ( x ( a , u ^ ) - l ) + ^ -L 

then i < 1(1 - - ^ ) 2 - I + -L. < -X- and thus v < 1, which is impossible. • 

Remarks. 

1. The papers [2] and [1] contain tables of values of limIv->oo N~1^2D^(y/qJp), 
HmIv-̂ oo N~l/2D^(y/qJp) and limIv->oo N~l/2DN(\/qJp) which exhibit 
very little regularity. 
In comparison the Corollar suggests that the values of 

lim N-l'2D%(y/~p) 
IV—>oo 

should obey a fairly simple law. However, the method used so far seems to 
be unsuitable to prove a respective theorem. This is due to the heavily in­
creasing amount of computation necessary for larger values of q, one reason 
for which is that the estimate S+ (a,u,v) < a/2 is rather weak for larger q. 

2. Lemma 5 of [2] also contains a description of N~l^2D^(\Jq/p) analogous to 
that of Lemma 1. Therefore, the reader might be surprised by the absence 
of a formula for l i m ^ ^ ^ N~l^2D~^(\Jq/p), but there is no easy way of 
replacing Lemma 2 as there is no 0O € [0,1) such that f(x,0) < f(x,/30) 
for all x e [0,1). 
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