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Abstract: We define completely density of real sequences as a generalization of the com
pletely uniformly distribution of real sequences. There are given sufficient conditions for 
the completely density of multiplicative arithmetic function and the topological properties 
of completely dense sequences are studied. 
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The concept of completely uniform distribution mod 1 was introduced in [2] 
by N. M. Korobov (see also [3]). The sequence (xn) of real numbers is called 
completely uniformly distributed modi if for every s = 1,2,. . . the s-dimensional 
sequence ((xn+i,xn+2j • • -xn+s)) is uniformly distributed modi. This suggest the 
following definition. 

Definition. The sequence (xn) of real numbers is completely dense modi if for every 
s = 1,2,. . . the 5-dimensional sequence ((xn+i,xn+2,.. • ,xn+ s)) is dense modi in 
[0,1]5. Analogously, the sequence (xn) is completely dense in an interval X if for 
every 5 = 1,2, . . . the s-dimensional sequence ((xn+\, xn+2,..., xn+8)) is dense in 
Xs 

Trivially, if a sequence is completely uniformly distributed modi then it is com
pletely dense modi . Examples of completely uniformly distributed sequences modi 
was constructed by L. P. Starcenko [5]. 

In this paper we give sufficient conditions for the complete density of multiplica
tive arithmetic functions and show, that from topological point of view the complete 
density is a typical property of sequences. 

Let pn denote the n-th prime number. We have 

Theorem 1. Let f(n) be a positive multiplicative arithmetical function satisfying 
the following conditions: 

(i) lim f(pn)
n = 1 

n—>oo 
(H) I ! /(Pn) = +00, n /(Pn) = 0. 

f(Pn)>l f(Pn)<l 
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Then the sequence ( / ( n ) ) ^ } is completely dense in the set of positive real numbers. 

Proof. It is sufficient to prove, that for arbitrary e > 0 and arbitrary a\, 02 , . . •, Q>i > 
0 (l > 1) there exists an k G N such that 

| a t - / ( * + t)l < e , (t = 1 ,2 , . . . , / ) . 

Let e > 0 and a i ,a2 •.*.., a* be positive real numbers. The condition (i) gives 
lim f(pn) = 1. From this and the condition (it) follows that there exist A\, Ab, • • • 

n—>oo 

. . . , Ai pairwise disjoint sets of natural numbers such that 

k -/(*') n /to)l < I- (i = i.2,...,i) (i) 
j € A . 

/ 

and the minimum element of A = |J Ai is greater than l. 

Let us consider the system of congruences 

x = 0 (mod (Л)2) 

x = 0 (mod pj) 

Pj>/, j<m 

+ i = pj (mod p 2 ) , j Є Aiy (i = 1,2,...,/), 

(2) 

where m is a sufficiently large natural number. By the Chinese Remainder Theorem 
system (2) has an x = k solution satisfying 0 < k < H, where 

y = M2I[p2y I I Pi-
P i > ^ j<m 

It is known that every term of the arithmetical progression (k + by)(^zl is a solution 
of (2). 

We will show, that in this arithmetical progression there is a term for which in 
the factorings 

k + i + by = 2. Yl Pj.Ui, (v.i,y) = l (3) 
jeAi 

and each u* (i = 1,2,..., l) is square-free. 
The number of terms in the sequence b = 1, 2 , . . . , y for which at least one term in 

the arithmetic progressions (k + i + by)y

=l has in the factoring into prime numbers a 
prime greater or equal to pm the exponent at least 2, is not greater than l. Yl l~ "^ 1 

j>m 3 

for sufficiently large m. If we denote the number of primes that do not exceed x by 
TT(X) we have 

i-*(s/y) 
'•E:r4is».(i.EH + 

j > m ^ \ j>m ^ 
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Since 

I £ JL + L?Ш _> o for m -» oo 

J ^rn 

for sufficiently large m there is a solution k + by of (2), where 0 < b < y and in the 
factorings (3) each u» is square-free (i = 1,2,...,/). 

Further, the condition (i) guarantees such a choosing of m that \f(pm) - 1| > 
\f(Pn) — 1| for arbitrary positive integer n > m, moreover 

l / ( P m ) 2 m ~ l | < - — i 7 — - ( 4 ) 
4 - E t = - i ( a t + 1 ) 

and 

| ( 2 - / ( P m ) ) 2 " ' - l | < . £ (5) 
4 -Ei= i (« i + l) 

r 
Let the factoring of U{ be of the form m — Yl Qj- Notice that qj > pm (j = 

i = i 
1,2,...., r ) . The combination of u2 < y2 and pm > y yields r < 2m. 

Using the inequality f(qj) < f(pm) in the case f(pm) > 1 and the inequality 
f(Qj) < 2 - /(Pm) in the case / ( p m ) < 1 together with (3), (4) and (5) we get 

r 

/(*+*+by)=fw. n fiPi) n /(*) < ( ^ + ! ) ( ! + ^ ^ — I T ) < *+*• 
jeAi i=i z 4-Li=i(at + 1) 

Using the same method, we can prove that f(k + i + by) > cii-e, 2 = 1 ,2 , . . . . / . 
The proof is complete. D 

Remark. The multiplicative arithmetic function 

/<»)=- n (i+j-) n <--;-> 
, Pr , Pr 

Pr\n pr\n 
r is even r is odd 

is completely dense in the set of positive real numbers. 

From the proof of Theorem 1 follows that the sequences (^~p)£Li, ( ^ y ) ^ L i , 

(^(n))n=i a r e c o m ple te ly dense in (l,oo) generalizing results in [1], [4]. 

In the next part we will study the topological properties of completely dense 
sequences. 

Denote by s the space of all real sequences with the Frechet metric 

bn\ p{&M-h l + \an-bn 

where a = ( a n ) ^ ! G s and b = (bn)n
cLl G s. Denote by A the set of all real 

sequences (an)n
<Ll with the property: for arbitrary e > 0, arbitrary positive integer 

/ and arbitrary bi, b2, • • •, b/ real numbers there exist infinitely many k such that 

|a*+t — 6*| < £ , (i = 1 ,2 , . . . , / ) . 

We have 
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Theorem 2. The set A is residual in the metric space (s,D). 

Proof. Let / G N. In the sequel we need some auxiliary sets. For e > 0 and b = 
(6i, 62 , . . . ,6/J 6 Rl denote by A(l,b,e) the set of all real sequences satisfying the 
property: there exist only finitely many k such that \ak+i — bi\ < e, (i = 1, 2 , . . . , /). 
Then A(l,b,e) = Um

D
:=1Am(/,b,£), where A[m(/,b,£) is the set of all real sequences 

(flrOnlLi s u c n t n a t there exist at most m solutions of the system of inequalities 
\ak+i — bi| < £, (i -= 1 ,2 , . . . , /) for k. Taking into account that a x^ = (xn )'5£=i, 
r = 1,2, . . . sequence of real sequences converges by Frechet metrics to x = (xn)n^=i 
(for r ~» 00) if and only if lim xn = x n for every n = 1,2 , . . . , it is easy to see 

r—>oo 
that the set ALm(/,b,£) is closed in (s,p). Therefore A(l,b,e) is an Fa set in s. 

We prove,that the set s \ A ( / , b , £ ) is dense in s. Let a = (an)n
<L1 £ A(l,b,e) and 

00 

T) > 0. Then there exists an n 0 € N such that Yl J^ < n- Define the sequence 
n=no + l 

C = (Cn)n°=i: 
f a n , if n < n 0 cn = < 
[ bi, if n -= no 4- k.l + z, where A: > 0 and i = 1,2, . . . , /. 

Then evidently c € s \ .A(/,b,£) and we have 

!>(a'c) = £ ¥l + \an-cn\< £ 2^<7?-
n=n0 + l ' n n | n=n0 + l 

Therefore, the set Al(/,b,£) is of the first category in s. 
Denote by Q the set of all rational numbers. Using 

00 00 .. 

/ = l n = l b € Q ' 

together with the pervious facts we get that the set A is residual in (s ,p) . D 
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