Časopis pro pěstování matematiky a fysiky

Štefan Schwarz
 On universal forms in finite fields

Časopis pro pěstování matematiky a fysiky, Vol. 75 (1950), No. 2, 45--50

Persistent URL: http://dml.cz/dmlcz/120770

Terms of use:

© Union of Czech Mathematicians and Physicists, 1950

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

ON UNIVERSAL FORMS IN FINITE FIELDS.

STEFAN SCHWARZ, Bratislava.

(Received January 17, 1949.)
In two recent papers ${ }^{1}$) I dealt with the representation of the elements of a finite field $G F\left(p^{n}\right)$ by the forms

$$
\begin{equation*}
x_{1}^{k}+x_{2}^{k}+\ldots+x_{k}^{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1} x_{1}^{k}+a_{2} x_{2}^{k}+\ldots+a_{k} x_{k}^{k}, a_{i} \in G F\left(p^{n}\right), a_{1} a_{2} \ldots a_{k} \neq 0 . \tag{2}
\end{equation*}
$$

I proved that these forms are universal ${ }^{2}$)
α) for the form (1), if we suppose

$$
\left(p^{n}-1, k\right) \leqq p-1
$$

β) for the form (2), if we make the stronger supposition $k \mid p-1$.
The proof of the first statement was based upon an induction; the proof of the second on a method originally due to V. A. Lebesgue and generalised by several authors.

The purpose of this paper is to show
i) the form (2) is universal even, if we suppose only ($p^{n}-1, k$) \leqq $\leqq p-1$,
ii) the proof of this fact (which cannot be proved by means of the Lebesgue method ${ }^{3}$), can be given by a not too complicated induction in an analogous way as that for the form (1).

We prove the following theorem.
Theorem. Suppose that (i) GF(p^{n}) is a finite field of characteristic p. (ii) $a_{1}, a_{2}, \ldots, a_{k}$ are elements of the field $G F\left(p^{n}\right), a_{1} a_{2} \ldots a_{k} \neq 0$. (iii) $\delta=$

[^0]$=\left(p^{n}-1, k\right) \leqq p-1$. Then the equation
$$
b=a_{1} x_{1}^{k}+a_{2} x_{2}{ }^{k}+\ldots+a_{k} x_{k}{ }^{k}
$$
has a solution with $x_{1}, x_{2}, \ldots, x_{k} \in G F\left(p^{n}\right)$ for every $b \in G F\left(p^{n}\right)$.
To simplify the proof we divide it in five parts.

1. Trivial cases. The only substantial case is $\left(p^{n}-1, k\right)=k$. I treat first the cases $\left(p^{n}-1, k\right)=1$ and $1<\delta=\left(p^{n}-1, k\right)<k$.
$\alpha)$ Let $\left(p^{n}-1, k\right)=1$. Then it is well-known that if x_{1} runs through all elements of $G F^{\prime}\left(p^{n}\right)$ the expression $x_{1}{ }^{k}$ and the expression $a_{1} x_{1}{ }^{k}$ take all values of $G F\left(p^{n}\right)$. There exist therefore to every element $b \in G F\left(p^{n}\right)$ such elements

$$
\xi_{1} \neq 0, \xi_{2}=\xi_{3}=\ldots=\xi_{k}=0, \xi_{1} \in G F\left(p^{n}\right)
$$

that the relation

$$
b=a_{1} \xi_{1}^{k}+a_{2} \cdot 0^{k}+\ldots+a_{k} \cdot 0^{k}
$$

holds.
β Let $1<\delta=\left(p^{n}-1, k\right)<k$. Then there exist two integers x, y with $x\left(p^{n}-1\right)+y \cdot k=\delta$. Hence

$$
\xi^{\delta}=\xi^{x\left(p^{n}-1\right)+y k}=\left(\xi^{y}\right)^{k}
$$

for every $\boldsymbol{\xi} \in G F\left(p^{n}\right)$. Every δ-th power is at the same time a k-th power. We have now ($p^{n}-1, \delta$) $=\delta$. If we suppose the theorem proved in the case $\left(p^{n}-1, k\right)=k$, then every $b \in G F\left(p^{n}\right)$ is representable by means of the form

$$
a_{1} x_{1}^{\delta}+\ldots+a_{\delta} x_{\delta}^{\delta}, a_{1} a_{2} \ldots a_{\delta} \neq 0
$$

There exist therefore elements $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{\boldsymbol{\delta}} \in G F\left(p^{n}\right)$ such that

$$
b=a_{1} \xi_{1}^{\delta}+a_{2} \xi_{2}^{\delta}+\ldots+a_{\Delta} \xi_{\delta}^{\delta} .
$$

Thus, we can writè
$b=a_{1}\left(\xi_{1}\right)^{k}+a_{2}\left(\xi_{2}^{y}\right)^{k}+\ldots+a_{\delta}\left(\xi_{\delta}^{y}\right)^{k}+a_{\delta+1} \cdot 0^{k}+\ldots+a_{k} \cdot 0^{k}$, q.e.d.

In what follows we can and shall suppose therefore allways $k \mid p^{n}-1$.
2. Construction of a special field $G F\left(p^{n}\right)$. Let T_{p} be the field of all residue-classes modulo p. Without fear of misunderstanding we shall denote the elements of T_{p} by the integers $0,1,2, \ldots, p-1$. The field $G F\left(p^{n}\right)$ is obtained from the field T_{p} by adjunction of a root j of an irreducible equation $f(x)=0$ of degree n. Every element of the field $T_{p}(j)=G F\left(p^{n}\right)$ is of the form

$$
\xi=u_{0}+u_{1} j+\ldots+u_{n-1} j^{n-1}, u_{i} \in T_{p}
$$

We can formally realize the field $T_{p}(j)=G F\left(p^{n}\right)$ in several ways according to the choice of the irreducible polynomial $f(x)$ the root j of which we use in constructing the field $T_{p}(j)$. But it is well-known that two such
fields (defined for the same n) are isomorphio with respect to T_{p}. Therefore it is sufficient to prove our theorem for a special field of this type. ${ }^{4}$)

Let us now take for the irreducible polynominal $f(x)$ by means of whose root we realize the field $G F\left(p^{n}\right)$ such an irreducible polynomial of the field T_{p} of degree n which divides

$$
x^{\frac{p^{n}-1}{k}}-1
$$

The existence of such a polynomial is assured by the following Lemma:

Lemma: Let n, k be two integers such that

$$
n \geqq 1, k \mid p^{n}-1,1<k \leqq p-1
$$

Then there exist in T_{p} an irreducible polynomial of degree n which divides

${ }^{4}$) The explicit proof of this statement is as follows.

Let us suppose that our theorem holds for the field $T_{p}(j)$ generated by the root j of the irreducible equation $\epsilon T_{p} f(x)=0$. That is, let us suppose that every form $a_{1} x_{1}^{k}+a_{2} x_{2}^{k}+\ldots+a_{k} x_{k}{ }^{k}, a_{1}, a_{2}, \ldots, a_{k} \in T_{p}(j)$, is universal in $T_{p}(j)$.

Let be $T_{p}\left(j^{*}\right)$ the field generated by a root j^{*} of an other irreducible polynomial $f^{*}(x) \in T_{p}$ of degree n. We have to show that every form

$$
\begin{equation*}
a_{1}^{*} x_{1}^{k}+a_{2}^{*} x_{2}^{k}+\ldots+a_{k}^{*} x_{k}^{k} \tag{A}
\end{equation*}
$$

$a_{1}{ }^{*}, a_{2}{ }^{*}, \ldots, a_{k}{ }^{*} \in T_{p}\left(j^{*}\right)$,is universal in $T_{p}\left(j^{*}\right)$. We prove that the equation

$$
\begin{equation*}
b^{*}=a_{1}^{*} x_{1}^{k}+a_{2}^{*} x_{2}^{k}+\ldots+a_{k}^{*} x_{k}^{k} \tag{B}
\end{equation*}
$$

has for every $b^{*} \in T_{p}\left(j^{*}\right)$ at least one solution with $x_{1}, x_{2}, \ldots, x_{k} \in T_{p}\left(j^{*}\right)$.
It is well-known that the numbers j, j^{*} depend one on another rationally. That is, two relations of the form $j=\varphi\left(j^{*}\right), j^{*}=\psi(j)$ hold, where $\varphi(z)$ and $\psi(z)$ are polynomials in z (with coefficients in T_{p}) of degree at most $n-1$.

The transformation

$$
\begin{equation*}
j^{*} \rightarrow \psi(j) \tag{C}
\end{equation*}
$$

is a one to one mapping of the field $T_{p}\left(j^{*}\right)$ into the field $T_{p}(j)$. The mapping (C) carries the form (A) into the form $a_{1} x_{1}^{k}+\ldots+a_{k} x_{k}^{k}, a_{1}, a_{2}, \ldots, a_{k} \in T_{p}(j)$. The number $b^{*} \in T_{p}\left(j^{*}\right)$ is carried into the number $b \in T_{p}(j)$.

Consider now the equation in $T_{p}(j)$

$$
b=a_{1} x_{1}^{k}+a_{9} x_{2}^{k}+\ldots+a_{k} x_{k}^{k}
$$

According to the supposition this equation has at least one solution. There exist therefore numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{k} \in T_{p}(j)$ such that the relation

$$
\begin{equation*}
b=a_{1} \xi_{1}^{k}+a_{2} \xi_{k}^{k}+\ldots+a_{k} \xi_{k}^{k} \tag{D}
\end{equation*}
$$

holds.
The inverse mapping $j \rightarrow \varphi\left(j^{*}\right)$ carries (D) into the true relation

$$
b^{*}=a_{1}^{*} \cdot \xi_{1}^{* k}+a_{2}^{*} \cdot \xi_{2}^{* k}+\ldots+a_{k}^{*} \xi_{k}^{* k}
$$

with $\xi_{2}{ }^{*}, \xi_{2}{ }^{*}, \ldots, \xi_{k}{ }^{*} \in T_{p}\left(j^{*}\right)$. The equation (B) has in $T_{p}\left(j^{*}\right)$ a solution, q. e. d.
the polynomial

$$
\begin{equation*}
x^{\left(p^{n}-1\right) / k}-1 . \tag{3}
\end{equation*}
$$

The proof of this Lemma for $n>1$ is given l. c. ${ }^{1}$) p. 124-125. (The case $n=1$ is trivially true.)

The irreducible polynomial $f(x)$ divides (3). Thus, j satisfies the equation $j^{\left(p^{n}-1\right) \mid k}=1$. The element j is a k-th power in $\left.G F\left(\dot{p}^{n}\right),{ }^{5}\right)$ that is, there exist a number $\xi_{0} \in G F\left(p^{n}\right)$ such that $j=\xi_{0}{ }^{k}$ holds.

This choice of the number j will very simplify our later investigations.
3. Futher notations. Let us denote by \mathfrak{G} the multiplicative group of the field $G F\left(p^{n}\right)$, by \mathfrak{S} the sub-group of k-th powers. The decomposition of \mathfrak{G} modulo \mathfrak{H} has the form ${ }^{6}$)

$$
\begin{equation*}
\mathfrak{G}=d_{1} \mathfrak{S}+d_{2} \mathfrak{H}+\ldots+d_{k} \mathfrak{S} \tag{4}
\end{equation*}
$$

[$d_{i} \in G F\left(p^{n}\right)$, one of the d_{i} is equal to 1 (unity element)].
In what follows I call the numbers $u_{0}, u_{1}, \ldots, u_{n-1} \in T_{p}$ the coordinates of the element

$$
d=u_{0}+u_{1} j+\ldots+u_{n-1} j^{n-1}
$$

and the number of coordinates different from zero the length of the element d. The length l is an integer, $1 \leqq l \leqq n$. The following remark is of great importance: If a co-set $d_{i} \mathfrak{S}$ contains an element d of the length l, then there exist in $d_{i} \mathfrak{H}$ an element of the same length l having the first coordinate u_{0} different from zero. For, if the number

$$
u_{o} j^{\rho}+u_{\rho+1} j^{\rho+1}+\ldots+u_{n-1} j^{n-1}\left(u_{\rho} \neq 0, \varrho \geqq 1\right)
$$

belongs to $d_{i} \mathfrak{S}$, so does the number

$$
j^{-\rho}\left[u_{\rho} j \rho+\ldots+u_{n-1} j^{n-1}\right]=u_{\rho}+u_{\rho+1} j+\ldots+u_{n-1} j^{n-\rho-1}
$$

(since $j^{-\rho}$, being a k-th power, belongs to \mathfrak{S}).
4. The arrangement of the co-sets of \mathfrak{S}. Now we choose the arrangement of the co-sets of \mathfrak{G} in (4) in a special way.

First take the co-set $a_{1} \mathfrak{H}$. Then take the co-set $c_{2}\left(a_{2} \mathfrak{S}\right)$, where c_{2} is chosen as follows. Among all numbers c_{2} satisfying the condition

$$
c_{2}\left(a_{2} \mathfrak{H}\right) \subset \mathfrak{G}-a_{1} \mathfrak{H}
$$

we take those with the smallest length l_{2}. From them we choose the

[^1]element
$$
c_{2}=c_{02}+c_{12} j+\ldots+\dot{c}_{n-1,2} j^{n-1}
$$
such that $c_{02} \neq 0$ and, moreover, c_{02} has the least possible positive value ≥ 1. According to the remark at the end of section 3 such an element allways exists.

Then take the coset $c_{3}\left(a_{3} \mathfrak{S}\right)$, where c_{3} is chosen again as follows. Among all numbers c_{3} satisfying the condition

$$
c_{3}\left(a_{3} \mathfrak{J}\right) \subset \mathfrak{G}-a_{1} \mathfrak{S}-c_{2}\left(a_{2} \mathfrak{S}\right)
$$

we take those with the smallest length l_{3}. From them we choose the element

$$
c_{3}=c_{03}+c_{13} j+\ldots+c_{n-1,3} j^{n-1}
$$

such that $c_{03} \neq 0$ and c_{03} has again the least possible positive value $\geqq 1$.
We repeat this process just k times.
The last element

$$
c_{k}=c_{0 k}+c_{1 k} j+\ldots+c_{n-1, k} j^{n-1}
$$

will be chosen as follows. We find first all numbers c_{k} of the least possible length having the property.

$$
c_{k}\left(a_{k} \mathfrak{S}\right) \subset \mathfrak{G}-a_{1} \mathfrak{S}-c_{2}\left(a_{2} \mathfrak{S}\right)-\ldots-c_{k-1}\left(a_{k-1} \mathfrak{S}\right)
$$

Then among them we choose an element whose first coordinate $c_{0 k}$ has the least possible positive value $\geqq 1 . .^{7}$)

The rearrangement of the decomposition (4) has the final form

$$
\mathfrak{G}=a_{1} \mathfrak{S}+c_{2}\left(a_{2} \mathfrak{H}\right)+c_{3}\left(a_{3} \mathfrak{S}\right)+\ldots+c_{k}\left(a_{k} \mathfrak{S}\right)
$$

5. The main part of the proof. To show now that every element $\epsilon G F^{\prime}\left(p^{n}\right)$ is representable by the form (2) it is sufficient to prove that each of the elements

$$
a_{1} c_{1}, a_{2} c_{2}, a_{3} c_{3}, \ldots, a_{k} c_{k}\left(c_{1}=1\right)
$$

can be written in the form (2).
This will be proved, if we show that every $a_{i} c_{i}(1 \leqq i \leqq k)$ can be already written in the form

$$
a_{i} c_{i}=a_{1} \xi_{1}^{k}+a_{2} \xi_{2}^{k}+\ldots+a_{i} \xi_{i}^{k}
$$

with $\xi_{1}, \xi_{2}, \ldots, \xi_{i} \in G F\left(p^{n}\right)$.
The proof follows by induction.
The statement is true for $i=1$, since $a_{1} c_{1}=a_{1}=a_{1} .1^{k}$. Now supposing our statement true for all $a_{t} c_{t}$ with $1 \leqq t<i$ we prove it for $a_{i} c_{i}$.

Let be

$$
c_{i}=c_{0 i}+c_{1 i} j+\ldots+c_{n-1, i} i^{n-1}
$$

${ }^{7}$) Such a number c_{k} allways exists since there are exactly k co-sets in the decomposition (4).

Let its length be l_{i}. We form the co-set ($c_{i}-1$) . $a_{i} \mathfrak{H}$. Let us consider the number

$$
\left.c_{i}-1=\left(c_{0 i}-1\right)+c_{1 i} j+\ldots+c_{n-1, i}\right)^{n-1}
$$

If $c_{0 i}=1, c_{i}-1$ has a length less than c_{i}. If $c_{0 i} \neq 1, c_{i}-1$ has the length l_{i} but its first coordinate is less than that of the number c_{i}. In both cases - with respect to the definition of the number c_{i} - the co-set $\left(c_{i}-1\right) a_{i} \mathcal{S}$ does not belong to the set

$$
\mathfrak{G}-a_{1} \mathfrak{S}-c_{2}\left(a_{2} \mathfrak{S}\right)-\ldots-c_{i-1}\left(a_{i-1} \mathfrak{S}\right) .
$$

It holds therefore

$$
\left(c_{i}-1\right) a_{i} \mathfrak{S} \subset c_{1}\left(a_{1} \mathfrak{H}\right)+c_{2}\left(a_{2} \mathfrak{S}\right)+\ldots+c_{i-1}\left(a_{i-1} \mathfrak{S}\right)
$$

That means: there exists an index $t \leqq i-1$ and a number ξ_{0} such that

$$
\left(c_{i}-1\right) a_{i}=c_{t} a_{t} \cdot \xi_{0}^{k} .
$$

By the inductive supposition $c_{t} . a_{t}$ can be written in the form
Therefore

$$
c_{t} a_{t}=a_{1} \xi_{1}^{k}+a_{2} \xi_{2}^{k}+\ldots+a_{i-1} \xi_{i-1}^{k}
$$

$$
\begin{gathered}
c_{i} a_{i}-a_{i}=\left(a_{1} \xi_{1}^{k}+\ldots+a_{i-1} \xi_{i-1}^{k}\right) \cdot \dot{\xi}_{0}^{k} \\
c_{i} a_{i}=a_{1}\left(\xi_{1} \xi_{0}\right)^{k}+a_{2}\left(\xi_{0} \xi_{2}\right)^{k}+\ldots+a_{i-1}\left(\xi_{i-1} \xi_{0}\right)^{k}+a_{i} .1^{k},
\end{gathered}
$$

which completes the proof.

O univerzálnych formách \mathbf{v} konečných telesiach.

(Obsah predošlého článku.)

Obsahom predloženej práce je dốkaz tejto vety:
Nech $G F\left(p^{n}\right)$ je konečné teleso charakteristiky p. Nech $a_{1}, a_{2}, \ldots, a_{k}$ sú elementy telesa $G F\left(p^{n}\right), a_{1} . a_{2} \ldots a_{k} \neq 0$. Nech k je celé číslo $\geqq 1$, $\delta=\left(p^{n}-1, k\right) \leqq p-1$. Potom každé číslo b telesa $G F\left(p^{n}\right)$ dá sa písat v. tvare

$$
b=a_{1} x_{1}^{k}+a_{2} x_{2}^{k}+\ldots+a_{k} x_{k}^{k}
$$

kde $x_{1}, x_{2}, \ldots, x_{k}$ sú vhodne volené proky z telesa $G F\left(p^{n}\right)$.

[^0]: ${ }^{1}$) „On WARING's problem in finite fields", Quart. J. of Math. (Oxford), 19 (1948), 123-128; ,On the equation $a_{1} x_{1}{ }^{k}+a_{2} x_{2}{ }^{k}+\ldots+a_{k} x_{k}^{k}+b=0$ in finite fields"', ibidem 19 (1948), 160-163.
 ${ }^{2}$) That is: every $b \in G F\left(p^{n}\right)$ can be represented by the form (1) or (2) respectively with $x_{1}, x_{2}, \ldots, x_{k} \in G F\left(p^{n}\right)$.
 ${ }^{8}$) See the footnote 1. c. ${ }^{1}$), p. 162.

[^1]: ${ }^{5}$) The multiplicative group of the field $G F\left(p^{n}\right)$ is cyclic. See van der Waerden, Moderne Algebra I. Teil, 2. Auflage, p. 123. Therefore every element satisfying the equation $x^{\left(p^{n}-1\right) / k}=1$ is a k-th power.
 ${ }^{6}$) The group (G) being cyclic, the subgroup of the k-th powers has under \mathfrak{G} the index k.

