Václav Dolejšek; Viktor Vranský O L-serii prvků Ta, W a Pt

Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 2, 61--77

Persistent URL: http://dml.cz/dmlcz/121980

Terms of use:

© Union of Czech Mathematicians and Physicists, 1940

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ČÁST FYSIKÁLNÍ.

O L-serii prvků Ta, W a Pt.

Václav Dolejšek (Praha) a Viktor Vranský (Sofia).

Podány výsledky studia L-serie Ta, W a Pt, za užití fokusační metody Kunzlovy s plasticky deformovaným mosaikovým krystalem NaCl užitým na základě výsledků Bačkovského o podmínce pro vyloučení vlivu mosaiky.

Nově nalezené čáry nediagramové a některé quadrupolové klasifikovány. Ukázáno, že na rozdíl od K-serie, kde nebyly dosud nalezeny přechody $\Delta l = \Delta j = 0$, tyto přechody v L-serii existují a rovněž přechody $l \rightarrow l + 3$ a $j \rightarrow j + 3$.

Srovnáním nově nalezených čar nediagramových s výsledky předchozími ukázáno, že při užití experimentálního uspořádání v této práci uvedeného bylo docíleno takové světelnosti, že mez dokazatelnosti charakteristického záření X-spekter je dána povšechnou přirozenou nedokonalostí krystalů. Nedokonalostí krystalů je způsobováno difusní záření, které nelze rozeznat od záření charakteristického.

Podle klasické teorie X-záření jsou z možných přechodů mezi energetickými niveaux atomů dovoleny pouze ty, pro které jsou splněny kvantové podmínky:

-	l + 1	. [j+1
$l \rightarrow \langle$	$l \\ l-1$	_j→{	j j 1

Již při použití metod s rovinným krystalem byly nalezeny některé čáry, které se shodovaly s hodnotami nedovolených přechodů, na př. kvadrupolových nebo nediagramových.

Naproti tomu již v K-serii některé nedovolené přechody, na př. přechod K—L_I, ač byly úsilovně hledány, nepodařilo se najíti. Pomocí metod fokusačních podařilo se sice najíti v K-serii kvadrupolové čáry K β_4 a K β_5 a některé nové linie nediagramové, avšak přechod K—L_I ani přechody podobné K—M_I a K—N_I ani kvadrupolový přechod K—N_{VI}, v_{II} nalezeny nebyly ani při užití fokusačních metod. V L-serii měřil Kaufman¹) první značný počet kvadrupolových čar u těžkých prvků a také první podal jejich klasifikaci.

¹) S. Kaufman, Phys. Rev., 45 (1934), 385, Phys. Rev., 45 (1934), 613.

6Ï ·

Kaufman nalezl tyto čáry metodou s rovinným krystalem, při čemž jednotlivé exposice trvaly 10—30 hod., tedy za experimentálních podmínek velmi obtížných.

Použitím fokusačních metod byl nalezen v L-serii těžkých prvků podobně jako v K-serii další počet kvadrupolových čar. Jsou to zvláště práce Cauchoisové,²) ³) Allaise,⁴) Hulubeia⁵) a Paratta⁶) pro prvky Re, Pt, Ra, Hg.

Těmito pracemi byly u některých prvků získány skoro všechny čáry kvadrupolové a rovněž řada nových nediagramových čar, jichž klasifikace v L-serii je pro její komplikovanost přirozeně velmi obtížná. Zvláště je patrna obtížnost klasifikace z toho, že na př. L-serie W, která byla dosud měřena více než 20 autory, není bezpečně klasifikována. Wolfram je měřen autory: Barnes, 7) Hull a Rice,⁸) Compton,⁹) Siegbahn,¹⁰) Siegbahn a Friman,¹¹) Gorton,¹²) Dershem,¹³) Overn,¹⁴) Duane a Patterson,¹⁵) Coster,¹⁶) Hoyt,¹⁷) Yoshida,¹⁸) Auger a Dauvillier,¹⁹) Rogers,²⁰) Crofut,²¹) Friman,²²) Jdei,²³) Kaufman.²⁴)

Tantal byl dosud měřen autory: Moseley,25) Siegbahn a Fri-

²) Y. Cauchois, C. R., 201 (1935), 598.

⁸) Y. Cauchois, C. R., 200 (1935), 1314, C. R., 201 (1935), 598, C. R., 204 (1937), 255, C. R., 206 (1938), 344.

4) Y. Cauchois et M. L. Allais, C. R., 200 (1935), 1314.

⁵) H. Hulubei, C. R., 208 (1936), 399, C. R., 208 (1936), 665, C. R., 208 (1936), 542.

•) L. Paratt, Phys. Rev., 54 (1938), 99.

7) J. Barnes, Phil. Mag., 30 (1915), 368.

⁸) A. W. Hull and M. Rice, J. Franklin Inst., 182 (1916), 403.

 A. H. Compton, Phys. Rev., 7 (1916), 646 Phys. Rev., 7 (1916), 498.
 M. Siegbahn, Verh. dtsch. physik Ges., 18 (1916), 39, Phys. Zs., 14 (1919), 137.

¹¹) M. Siegbahn und E. Friman, Ann. d. Phys., 49 (1916), 616.

¹⁹) W. S. Gorton, Phys. Rev., 7 (1916), 203.

¹⁸) E. Dershem, Phys. Rev., 11 (1918), 461.

¹⁴) O. B. Overn, Phys. Rev., 14 (1919), 137.

¹⁵) Duane and R. A. Patterson, Phys. Rev., 15 (1920), 328, Phys. Rev., 15 (1920), 526.

¹⁶) D. Coster, Zs. f. Phys., 4 (1921), 178.

¹⁷) Hoyt, Phys. Rev., 18 (1921), 331.

¹⁸) U. Yoshida, Mem. Coll. Sci. Kyoto Imp. Univ., 4 (1921), 343.

¹⁹) P. Auger et A. Dauvillier, C. R., 176 (1923), 1297.

20) J. S. Rogers, Proc. Cambridge phil. Soc., 21 (1923), 430.

²¹) C. B. Crofut, Phys. Rev., 24 (1924), 9.

29) E. Friman, Zs. f. Phys., 39 (1926), 813.

²³) S. Jdei, Sci. Rep. Tohoku Imp. Univ., 19 (1930), 559.

²⁴) S. Kaufman, Phys. Rev., 45 (1934), 385, Phys. Rev., 45 (1934), 613.

²⁵) H. G. Moseley, Phil. Mag., 27 (1914), 703.

man,²⁶) Hjalmar,²⁷) Coster,²⁸) Auger a Dauvillier,²⁹) Wennerlöf,⁸⁰) Jdei,³¹) Kaufman,³²) Cauchoisová.³³)

Platina je měřena dosud autory: Moseley,³⁴) Siegbahn a Friman,³⁵) Siegbahn,³⁶) Coster,³⁷) Dauvillier,³⁸) Rogers,³⁹) Lang,⁴⁰) Friman,⁴¹) Jdei,⁴²) Hoyt,⁴³) Kaufman,⁴⁴) Cauchois.⁴⁵)

A právě L-serie wolframu není dosud měřena žádnou fokusační metodou. Ve spektru W různí autoři často měřili čáry, které později druzí autoři nezjistili, jak je patrno z tabulky 1.

Experimentální uspořádání. Obecně lze říci, že pro L-serii dosud bylo užito fokusační metody Cauchoisové,46) která náleží do skupiny metod asymetrických s fokusací vertikální.⁴⁷)⁴⁸)

Fokusační metoda Kunzlova,49) 50) které bylo užito v této práci, podle uvedeného rozdělení patří do fokusačních metod symetrických s vertikální fokusací. Lze tedy v této symetrické metodě použíti mosaikových krystalů, jak ukázal Bačkovský,51) při čemž rozlišovací mohutnost v takovém symetrickém uspořádání je stejná jako při užití ideálně dokonalých krystalů. To bylo verifikováno na čáře Cu Ka Bačkovským a Dolejškem⁵²) za použití krystalu soli plasticky deformovaného, způsobem, který vypraco-

²⁶) M. Siegbahn und M. Friman, Ann. d. Phys., 49 (1916), 616.

²⁰) M. Siegbahn und M. Frinda, June 1, 1979, 1979
²⁷) E. Hjalmar, Zs. f. Phys., 7 (1921), 314.
²⁸) Coster, Zs. f. Phys., 6 (1921), 185.
²⁹) P. Auger et A. Dauvillier, C. R., 176 (1923), 1297.
³⁰) Wennerlöf, Zs. f. Phys., 41 (1927), 524, Ark. f. Mat. Ast. o. Fysik, 22 (1930), č. 8.

1930), č. 8.
⁸¹) S. Jdei, Sci. Rep. Tohoku Imp. Univ., 19 (1930), 559.
⁸²) S. Kaufman, Phys. Rev., 45 (1934), 385, Phys. Rev., 45 (1934), 613.
³³) Y. Cauchois, C. R., 202 (1936), 2068.
³⁴) H. G. I. Moseley, Phil. Mag., 27 (1914), 703.
³⁵) M. Siegbahn und E. Friman, Phys. Zs., 17 (1916), 17.
³⁶) M. Siegbahn, Verh. dtsch. physik. Ges., 18 (1916), 150.
³⁷) D. Coster, Zs. f. Phys., 4 (1921), 178, C. R., 112 (1921), 1176.
³⁸) A. Dauvillier, C. R., 174 (1926), 443.
³⁹) J. S. Rogers, Proc. Cambridge phil. Soc., 21 (1923), 430.
⁴⁰) K. Lang, Ann. d. Phys., 75 (1924), 489.
⁴¹ E. Friman, Zs. f. Phys., 89 (1926), 813.
⁴² S. Jdei, Sci. Rep. Tohoku Imp. Univ., 15 (1930), 559.

⁴¹) E. Friman, Zs. f. Phys., **39** (1926), 813.
⁴²) S. Jdei, Sci. Rep. Tohoku Imp. Univ., **15** (1930), 559.
⁴³) Hyot, Phys. Rev., **18** (1921), **33**.
⁴⁴) S. Kaufman, Phys. Rev., **45** (1934), 385, Phys. Rev., **45** (1934), 613.
⁴⁵) Y. Cauchois, C. R., **201** (1935), 598.
⁴⁶) Y. Cauchois, Journ. de Phys. et le Radium, **7** (1932), 320.
⁴⁷) V. Dolejšek-M. Tayerle, C. R., **205** (1937), 605.
⁴⁸) V. Kunzl, C. R., **201** (1935), 656.
⁵⁰) V. Kunzl, Zs. f. Phys., **99** (1936), 481.
⁵¹ J. M. Bačkovský, Nat., **141** (1938), 872.
⁵² J. M. Bačkovský-V. Dolejšek, Čas. mat. fys., **67** (1938), 211.

vali Bačkovský a Neprašová.58) Krystal soli kamenné je proto velmi vhodný ku zvýšení výkonnosti symetrické fokusační metody Kunzlovy a skýtá nové možnosti pro hlubší studium spekter X. V K-serii ukázali výkonnost takového uspořádání Bačkovský a Neprašová při studiu Mo. Souvislost ideální mosaikové struktury s reflekční mohutností daná vztahem $\Delta \sigma_{\min}/R_s = \text{konst}$, kde R_i = reflekční mohutnost krystalu v sym. metodě, $\Delta \sigma_{\min}$ = ideální mosaika, jak bylo prokázáno ve společné práci Dolejška. Jahody, Ježka a Rozsívala,⁵⁴) ukazuje, že bylo výhodnější použíti místo krystalu NaCl na př. krystalu ZnS, který má v symetrickém uspořádání ještě větší reflekční mohutnost než krystal NaCl. Dosud však není vypracována metoda pro deformaci tohoto krystalu, takže nelze jej zatím pro fokusační metody použíti. Výkonnost uvedeného uspořádání byla taková, že na př. při studiu Ta vystoupily, jako znečištěnina Ta, všechny dosud měřené čáry Os: $\alpha_1, \alpha_2, \beta_1, \beta_3, \beta_4$ a β_5 (jak známo spektrum Os lze velmi těžko získat a další čáry, známé u sousedních prvků v L-serii, u Os známy dosud nejsou). Vlnové délky námi měřené u Os udává tabulka 1.

Vzhledem k uvedené vysoké výkonnosti metody ukázalo se nutným získati co možno nejčistší spektra. To se zatím podařilo u zkoumaných prvků Ta, W a Pt tím, že kromě normálních nejpečlivějších opatření bylo použito katod ze stejného materiálu jako antikatody zkoumaných látek (u Wa, Ta).⁵⁵) Při studiu Pt bylo použito jako přímo žhavené katody molybdenové spirály. Data o specifické emisi byla použita z knihy Espe a Knoll.⁵⁶)

Výsledky. S tímto uspořádáním u uvedených prvků Ta, W, Pt, obdrženy byly všechny čáry dosud měřené a řada nových čar, jak kvadrupolových, tak zvláště nediagramových. Přehled obdržených výsledků je uveden v tabulkách 2, 3, 4, 5, 6, 7 a 8.

U každého prvku byly získány minimálně 4 serie snímků téhož oboru a to s různými krystaly NaCl. Hodnoty pro dipolové čáry neudáváme, byly však všechny proměřeny za účelem vyloučení různých koincidencí.

U Ta objevily se jako znečištěniny čáry niklu, který patrně zbyl ze sintrování Ta, dále čáry Os, Cu, Fe, Zn. U W objevily se čáry těchto prvků rovněž až na čáry prvků Os a Fe. U Pt objevily se čáry Cu, Zn a Ir a čáry K-serie Mo. Většinou jich bylo použito jako čar referentních pro klasifikaci.

⁴⁸) J. M. Bačkovský a M. Neprašová, Čas. mat. fys., 67 (1938), 176.

4) Dolejšek, Jahoda, Ježek, Rozsíval, Nature, 142 (1938), 253.

⁴⁶) Zajímavé je, že tantalové katody se osvědčily jako velmi vhodné a zdá se, že přítomnost tantalového karbidu na povrchu spirály značně zvyšuje emisi, a také životní doba tantalových spirál byla stejně dlouhá jako wolframových.

⁵⁶) W. Espe und M. Knoll, Wcrkstoffkunde der Hochvekuumtechnik, Berlin 1936.

Snímek	Vlnová délka, difusnost, in- tensita	Ref. čára	<i>∆d</i> v m. m.	Disperse	Δ λ	Niveau
I ‴f	1140,6 (1)	γ1	+0,7	7,18	5,0	LIIIOIV, v—
I'h	1140,5 (1)	γ1	+0,7	$(\gamma_1\gamma_2)$ 6,96	4,9	—čára β_5
Stř.	1140,6 (1)	γ_1		(1/2)		
IIf	1165,0 d (1)	¥5	+0,7	7,73	5,4	LIIINv-
III″g	1165,5 d (1)	γ_5	0,7	$(\gamma_1\gamma_5)$ 6,96	4,9	-cara p_2
. I'h	1164,6 (1)	γ_5	0,85	$(\gamma_1\gamma_5)$ 6,82	5,8	
IIh	1164,5 d (1)	Y 5	0,8	$(\gamma_1\gamma_5)$ 7,32	5,9	-
IV″h	1166,3 d (1)	γ_5	0,5	$(\gamma_1\gamma_5)$ 8,29	4,1	
Stř.	1165,2 d (1)	· 75		(7175)		
IIf	1176,3 (1)	γ ₅	+0,8	7,42	5,5	LiMin-
III″g	1176,3 (1)	Y 5	+0,85	$(\gamma_5 \rho_9)$ 6,96	5,9	cara p ₃
I'h	1175,9 (1)	Y 5	+0,8	$(\gamma_1\gamma_5)$ 6,82	5,5	-
IIh	1176,3 (1)	Y 5	+0,8	$(\gamma_1\gamma_5)$ 7,35	5,9	
IV″h	1176,9 (1)	γ_5	+0,8	$(\gamma_5 \rho_9)$ 8,08	- 6,5	
Stř.	1176,3 (1)	Y 5		· (75P9)		
IIf	1193,4 d (2)	. 75	+3,1	7,42	23,0	LIIMIV-
III″g	1194,8 d (2)	Y5	+3,5	$(\gamma_5 \rho_9)$ 6,96	24,4	cara ρ_1
I'h	1194,2 d (2)	¥5	+3,5	$(\gamma_1\gamma_5)$ 6,82	23,8	
IV"h	1193,8 d (1)	75	+2,9	$(\gamma_1\gamma_5)$ 8,08	23,4	
Stř.	1194,2 d (2)	Y 5		(7509)		
IIf	1214,5 (1)	β ₅	+5,2	7,44	38,6	LIMII-
II,"h	1213,9 (1)	β ₅ -	+5,2	(γ _s β ₉) 7,55	39,2	-cara β_4
IV"h	1214,3 (1)	β_{5}	+4,8	$(\gamma_5 p_9)$ 8,08	38,8	
Stř.	1214,2 (1)	β_{5}	•	→ (γ ₅ β ₉)		
••••••••••••••••••••••••••••••••••••••	·····				- . ^	64

Tabulka čís. 1. Přítomnost osmia v tantalu. Měření některých čar osmia.

. .

Snímek	Vlnová délka, difusnost, in- tensita		Vlnová délka, difusnost, in- tensita Kef. Δd v m. m.		Disperse	Δλ	Niveau
IV'f	1399,4	(1)	Cu Kβ ₁	+1,35	8,42	10,0	LIIIMIV-
VI'g	1400,1	(1)	Cu Kβ ₁	+1,25	$(p_4, Ou ISp_1)$ 8,57	10,7	—čára α ₂
VI″g	1399,5	(1)	Cu Kβ ₁	+1,25	$(\rho_4, Cu \ K\rho_1)$ 8,05	10,1	
VI‴g	1399,4	(1)	Cu Kβ ₁	+1,15	$(\beta_4, \operatorname{Cu} K\beta_1)$ 8,75	10,0	
V‴h	1399,3	(1)	Cu Kβ ₁	+1,05	$(\beta_4, \operatorname{Cu} \mathrm{K}\beta_1)$ 9,44	9,9	
Stř.	1399,6	(1)	Cu K eta_1	-	(β ₄ , Cu Kβ ₁)		

Kvadrupolové čáry u L-serie tantalu.

Střední hodnoty.

Niveau	λ , dif. int.	ν/R poč.	$rac{m{ u}/R}{ m zmer}.$	$\sqrt[]{\nu/R}$	Cizí měření
LIMI LINI LINIV, V LINVI, VII LIOI LIOIV, V LIIMII LIIMII	$\begin{array}{cccc} 1079,0 & (1) \\ 1114,8 & (2) \\ 1081,3 & d & (4) \\ 1065,0 & d & (1) \\ 1065,0 & d & (1) \\ 1058,8 & (2) \\ 1427,8 & (1) \\ 1383,7 & (2) \end{array}$	660,6 818,6 843,0 ' 858,5 855,2 860,7 638,5 658,6	660,8 817,8 842,8 855,7 855,7 858,7 638,2 658,6	25,71 28,60 29,03 29,25 29,25 29,25 29,30 25,26 25,66	1114,8 — Kaufman 1079,7 — Kaufman 1081,2 — Kaufman 1066,3 — Kaufman 1066,3 — Kaufman 1059,6 — Kaufman 1383.2 — Auger a
LIIMV LIINII LIINII LIIMV	1315,1 (1) 1161,2 (2) 1152,3 (3) 	692,5 786,1 790,5 zko u	692,9 784,8 790,5 - 1138	26,33 28,01 28,12 5,58	Dauvillier 1316,3 — Kaufman 1152,5 — Kaufman
LIINVI, VII LIIOII, III LIIINIII LIIINIII LIIIOII, III	$ \begin{array}{cccc} 1114,3 & (2) \\ 1114,3 & (2) \\ 1315,1 & (1) \\ velmi bli \\ 1260,0 & (1) \end{array} $	817,4 817,4 693,5 zko u - 724,8	$ 817,8 \\ 817,8 \\ 692,9 \\ - 1304 \\ 723,2 $	28,60 28,60 26,33 4,19 26,89	1114,8 — Kaufman 1313,5 — Kaufman 1261,3 — Auger a
	~				Dauvillier 1257,6 — Kaufman

Jak je patrno z tabulky 3, pokud se týče kvadrupolových čar Ta, byly v této práci nalezeny chybějící kvadrupolové přechody

 $L_{II}N_{II}-L_{I}M_{I}$, $L_{II}N_{II}-a$ $L_{II}N_{VI},VII$,

66

ſ

		•	
Vlnová délka dif., int.	ν/R	$\sqrt{\overline{\nu/R}}$	Cizí měření
dif., int. 1069,5 d (1) 1090,6 d (1) 1109,4 (1) 1115,8 (2) 1129,4 (3) 1145,6 (2) 1173,4 (2) 1173,4 (2) 1179,6 (1) 1204,4 (0) 1209,2 d (1) 1249,0 (1) 1265,1 (0) 1272,9 (1) 1275,5 (3) 1355,3 d (1) 1364,0 (1) 1364,0 (1) 1365,7 d (1) 1653,9 (1) 1653,9 (1)	852,1 835,6 821,4 816,7 806,9 795,5 776,6 772,4 756,6 754,5 720,3 715,9 714,6 672,4 667,2 630,37 625,3 585,0 585,0 551,0	29,19 28,91 28,36 28,58 28,41 28,20 27,87 27,79 27,51 27,45 27,11 26,84 27,76 26,73 25,93 25,93 25,93 25,93 25,99 25,11 25,01 24,19 24,13 23,47	
1663,7 (1)	547,7	23,40	<u> </u>

Tabulka č. 3. Jiskrové čáry u L-serie tantalu. Střední hodnoty.

čímž byly nalezeny všechny kvadrupolové přechody u tohoto prvku.

U W, kde již rovinným krystalem byl měřen značný počet kvadrupolových čar, ovšem různými autory, nalezli jsme v této práci všechny hodnoty již dříve měřené a vedle řady nových diagramových čar, o nichž se zmíníme až později, nalezli jsme nový kvadrupolový přechod L_{I} —O_I. Přechody L_{I} —N_I a L_{III} —N_I nemohli jsme rozlišiti od normálních dipolových přechodů, prvý od L_{I} —O_I, III a druhý od L_{II} —M_V. Naproti tomu nemohli jsme najíti chybějící přechod L_{II} —M_I. U Pt, kde měření Kaufmanovo bylo doplněno měřením pomocí fokusační metody Cauchoisové⁵⁷). nebyly dosud měřeny tři očekávané přechody kvadrupolové a sice L_{II} —M_{II}, L_{II} —M_V a L_{II} —N_V, které všechny jsme nalezli v této práci, jak je patrno z tabulky kvadrupolových linií Pt (tab. 7).

⁵⁷) Y. Cauchois, C. R., 201 (1935), 598.

Tabulka č. 4.

Kvadrupolové čáry u L-serie wolframu. Střední hodnoty.

Niveau	λ, dif., int.	$\left \begin{array}{c} \nu/R \\ \mathrm{poč.} \end{array} \right \left \begin{array}{c} \nu/R \\ \mathrm{zm}\check{\mathrm{e}}\check{\mathrm{r}} \end{array} \right $	$\sqrt{\overline{v/R}}$	Cizí měření
LIMI	1335,0 d (2)	683,5 682,5	26,13	1336,6 — Dershem 1334,4 — Dauvillier
LINI	1075,0 dd (2)	847,5 847,5	29,12	1335,9 — Kaufman 1070,5 — Dershem 1074,8 — Crofut
LINIV	1044,2 (3)	872,1 872,7	29,54	1075,2 — Jdei 1075,1 — Kaufman 1044 — Overn 1043,9 — Dauvillier 1043,8 — Bogers
LINV	1042,8 (4)	873,2 873,9	29,56	1044,4 — Crofut 1043,7 — Jdei 1044,4 — Kaufman 1044 — Overn
				1043,9 — Dauvillier 1043,8 — Rogers 1044,4 — Crofut 1043,7 — Jdei
LINVI VII	– velmi blízko i	1 1026		1045,5 — Kauman
	1030.4 (1)	1884.41884.4	29.74	
LiOiv. v	1022.8 (2)	890.8 891.	29.85	1023.0 — Kaufman
LuMu	1381.0 (1)	660.6 659.	25.69	1373.5 - Rogers
LuMu	1335.0 d (2)	682.4 682.	26.13	1336.6 Compton
				1334,4 — Dauvillier
				1335,9 — Kaufman
LIIMV	1269,1 dd (1)	717,0 718,	26,80	1270,2 — Kaufman
LIINII				
LIINIII	1112,3 d (2)	818,1 819,3	5 28,62	1113 — Barnes
LuNy	1090.3 (3)	832.3 835	28.91	1113,8 — Kogers 1095 — De Broglie
				1088,7 — Dauvillier
LIINVI, VII	1075,0 dd (2)	847,9 847,'	29,12	1086,2 — Rogers 1074,8 — Crofut 1075,2 — Jdei
LIIINII LIIINIII LIIINIII LIIIOII, III	1269,1 dd (1) 1269,1 dd (1) 1217,5 (2)	715,3 718, 719,5 718, 748,8 748,	26,80 26,80 27,36	1075,1 — Kaufman 1270,2 — Kaufman 1264,6 — Kaufman 1218,6 — Kaufman

Na základě našich výsledků možno říci, že pro uvedené prvky skutečně existují v L-serii všechny přechody mezi jednotlivými energetickými niveaux a to i takové přechody kvadrupolové, které se v K-serii nevyskytují. U W, Ta, Pt nalezené linky odpovídají přechodům:

⁷ Tabulka ĕ. 5.

Jiskrové čáry u L-serie wolframu.

Střední hodnoty.

Vlnová délka dif., int.	v/R	$\sqrt[]{\nu/R}$	Cizí měření
$\begin{array}{cccc} 1050,7 & (1)\\ 1082,1 & d & (2)\\ 1134,2 & d & (1)\\ 1141,9 & (0)\\ 1173,4 & (0)\\ 1176,1 & (2)\\ 1188,7 & (0)\\ 1194,9 & (1) \end{array}$	867,3 842,1 803,4 798,0 766,6 774,8 766,6 762,6	29,45 29,02 28,34 28,25 27,87 27,84 27,69 27,62	1080 — Jdei
-1205,7 (3) 1227,3 (2)	752,3 742,5	27,42 27,25 .	— — — — — — — — — — — — — — — — — — —
1235,5 (6)	737,6	27,16	1235 — Overn 1235,4 — Coster 1236 — Hoyt 1236,0 — Dauvillier 1235,5 — Rogers 1236,4 — Crofut 1235,8 — Jdei 1236,8 — Jdei
1310,4 d (0) 1320,9 (0) 1409,0 (1)	695,9 689,9 646,8	26,38 26,27 25,43	1312 — Barnes 1321,2 — Rogers
1450,9 (3) 1501,3 (1) 1515,3 (1)	628,3 607,0 601,4	25,07 26,64 24,52	1450,3 — Rogers — —
· · · (l+3	-	(j+3)

 $l \to \begin{cases} l+3 \\ l+2 \\ l+1 \\ l \\ l-1 \end{cases} \qquad j \to \begin{cases} j+3 \\ j+2 \\ j+1 \\ j \\ j-1 \end{cases}$

Kromě přechodů $l \rightarrow l + 3$ a $j \rightarrow j + 3$, jichž existence v K-serii není dosud jistá a které se v L-serii objevují, vyskytují se tedy v L-serii určitě v K-serii marně hledané přechody typu K-X_I pro něž $\Delta l = \Delta j = 0$.

Regulérní dublety tvoří tyto nalezené kvadrupolové čáry: $L_{II}M_{II}$ —t, $L_{II}M_{III}$ —s, $L_{II}M_{V}$ — α_1 , $L_{II}N_{II}$ — $L_{III}N_{II}$, $N_{II}N_{III}$ — $L_{III}N_{III}$, $L_{II}N_{V}$ — β_2 , $L_{II}N_{VI}$, v_{II} — $N_{III}N_{VI,VII}$, $L_{I}O_{II}$, $I_{II}O_{II}$, $I_{II}O_{II}O_{II}$

69°

Niveau	λ, dif.,	int.	ν/R poč.	γ/R změř.	$\sqrt[]{\nu/R}$	Cizí měření
LIMI LINI LINIV, V LINVI, VII LIOIV, V LIOIV, V LIMII LIMV LINNI LINV LINVI, VII	1171,5 9940,9 912,6 900,2 892,1 1207,4 1162,6 1109,3 980,0 969,4 959,1 950,7	$(1) \\ (0,5) \\ (3) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (1) \\ (0,5) \\ (2) \\ (1) \\ $	poč. 779,3 969,0 999,0 1012,9 1014,9 1021,3 754,8 782,8 821,4 932,7 939,4 954,8 972,2	změř. 777,8 968,5 998,5 1012,3 1021,5 754,7 783,8 821,5 929,9 940,1 950,1 972,9	27,89 31,12 31,60 31,82 31,82 31,96 27,46 28,00 28,66 30,49 30,65 30,82 31,19	1175— Cauchois9944,6— Rogers943,7— Cauchois912,2— Kaufman897,3— Cauchois897,3— Cauchois891,4— Kaufman891,6— Cauchois892,5— Cauchois1164,6— Kaufman1164,3— Cauchois980,5— Cauchois969,9— Kaufman969,78— Cauchois967,2— Dauvillier937,46— Cauchois
L11011, 111	936,7	(1)	973,4	972,9	31,19	937,46 — Cauchois 937,2 — Kaufman 937,46 — Cauchois
LIIINII LIIINIII LIIIOII, III	1131,2 1121,7 1076,2	(2) (0) (3)	806,9 813,6 847,6	805,6 812,4 847,8	28,38 28,50 29,10	1129,1 — Kaufman 1120,1 — Kaufman 1075,2 — Rogers 1077 — Hoyt 1076,3 — Kaufman 1073,09 — Kaufman

Tabulka č. 6. Kvadrupolové čáry u L-serie platiny. Střední hodnoty.

Irregulerní dublety tvoří tyto čáry:

 $L_IM_I - \eta$, $\beta_4 - L_{II}M_{II}$, $\beta_3 - L_{II}M_{III}$, $\beta_9 - L_{II}M_V$, $L_IN_I - \gamma_5$, $\gamma_2 - L_{II}N_{II}, \ \gamma_3 - L_{II}N_{III}, \ L_IN_{IV} - \gamma_1, \ L_IN_V - L_{II}N_V,$ $L_I N_{VI}, V_{II} - L_{II} N_{VI}, V_{II}, L_I O_I - \gamma_8, \gamma_4 - L_{II} O_{II}, III, L_{II} O_{IV}, V - \gamma_8$

Jak je však z uvedených tabulek patrno, byla u těchto prvků měřena hlavně velká řada čar nediagramovi ných. Klasifikaci některých čar nediagramových a to $L\beta'_2$, $\breve{\beta}_2$ — β_2^{VII} , $\breve{\gamma'}_1$, γ'_2 , γ''_2 podali Richtmayer a Kaufman.⁵⁸

Některé z těchto čar byly měřeny u těžkých prvků fokusační metodou. A to pro at. č. 88 Hulubei⁵⁹) a pro at. č. 68, 70, 71, 73, 75, 78 a 80 Cauchoisovou.⁶⁰) Pro Pt měřili jsme v této práci všechny

58) F. K. Richtmayer and S. Kaufman, Phys. Rev., 44 (1933), 605.

⁵⁹ H. Hulubei, C. R., 208 (1936), 665.
 ⁶⁰ Y. Cauchois, C. R., 208 (1936), 398, C. R., 202 (1936), 2068, C. R., 204 (1937), 255, C. R., 201 (1935), 598, C. R., 200 (1935), 1314.

λ int.	dif.	ν/R	$\sqrt{\nu/R}$	Cizí měření	
905,8 d	1 (1)	1006,11	31,72		÷
922,2	(1)	988,2	31,44	922,9 — Kaufman	
946,3	(1)	963,1	31,03	· · · · · · · · · · · · · · · · · · ·	
950,5	(1)	958,7	30,96	950,3 — Dauvillier	÷
966,0	(1)	943,3	30,71		
992,7	(1)	918,0	30,30		
999,6	(1)	911,6	30,19		
1006,5	(1)	905,4	30,09	·	
1011,3	(1)	901,1 ⁻	30,01		
1014,2	(1)	898,6	29,98		
1030,7	(1)	884,1	29,73	· ·	
1036,8	(1)	878,9	29,65		
1047,8	(1)	869,7	29,49	_	
1049,2	(1)	868,5	29,47		
1055,5	(2)	863,4	29,38	1053 — Hoyt	
	• •	-	,	1057,0 — Cauchois	
1061,9	(1)	858,2	29,30	1063.1	•
	``			1062.0 - Kauman	
				1064.0 — Cauchois	
1064.1	(2)	856.4	29.06	1063.1 — Dauvillier	
	(-/	,_	,	1065.7 — Kaufman	
				1065.7 - Cauchois	
1080.7	(8)	843.5	29.04	1080.3 - Bogers	
1085.7	- XX	839.4	28.97	1085.8 - Cauchois	
1087.8	213	837.7	28.94	1087.8 - Kaufman	
1092.8	181	833.9	28.88	1092.6 Kaufman	
1002,0	(0)	000,0	20,00	1092.9 - Cauchois	
1094.8	(10)	832.4	28.85	1092.8 - Coster	
1001,0	(10)	002,1	20,00	10941 - Dauvillier	
				1093.6 - Bogers	
				1094.4 Idei	
				1004.2 - Kaufman	
				1094.4 - Cauchois	
11494	(2)	792.8	28 16		
1171 5	2.2.	777 9	27,89	1175 — Cauchois	
1183 1	a 27	770 3	97 75		
1911 9		752 0	97 49		
1211,5	- 22	740.6	07 91		•
1200,0	- 22	727 0	97 18		
1200,1	a 11	790.9	97.01		
1249,0	u (1)	7966	27,01		
1204,1	- 117	710.5	20,90		
1200,0	8	719,0	20,02		
12099	- 52	600 8	20,00		
1304,3	- 12	099,0	20,40	1202.8	
1309,2	(4)	098,2	20,42	1303,8 Coster	
1444.0	/11	690 F	05.11	1304,9 — Dauvillier	
1444,8	- 11	030,7	20,11		
1471,1	8	019,0	24,89	· · ·	
1473,5	(1)	018,4	24,87	· · ·	

Tabulka č. 7. Jiskrové čáry u L-serie platiny. Střední hodnoty.

•

.

71

.

Tabulka čís. 8.

Dipolové a kvadrupolové

Wolfram-serie.

/

Niveau	1)	2)	3)	4)	5)	6)	7)	8)
LIMI			1336,6					
LIMII	1296	1300	1298,6	1296	1292	1297,7	1298,7	1298
	1258	1260	1260,2	1258	1256	1256,6	1260,0	1259
LIMIV				-	-	1209,8	1000 1	1209
LIMV						1070 5	1203,1	1202
LINI		1005	1005 2	1004		1070,5	1005 0	1005
LINII		1000	1000,0	1004	1057	1004,8	1000,8	1000
LINIII		<u> </u>	1058,4	1008	1097	1038,7.	1099,7	1009
LINIV L Ny						1049 7		1044
						1042,7		1044
		1033	1025.1		1025	1025.3	1026.5	1026
LiPi. II								
LTIMT	<u> </u>					1416.3	1417.7	
LIIMI								
LIIMIII			1336,6					
LIIMIV	1277	1280	1279,2	1278	1275	1278,4	1279,2	1279
LIIMV								
LIINI						1129,7	1128,4	1130
LIINII					—			
LIINIII	1113							
LIINIV .	1082	1100	1096,5	1095	1094	1095,3	1095,5	1096
LIINV	·							1095
LIINVI, VII					-		•	1050
								1048
		1072		-				1079
LIIFI, II TerrMa		1075		1677 1			1875 1	1074
				1077,1			1070,1	
								_
LinMer		1480	1484.6	1481	1476	1482.8	1484.5	1483
LTITMY	1477	1468	1473.6	1471	1466	1472.2	1473.5	1473
LIIINI					1283	1286.8	1287.1	1287
LIIINII	1 <u> </u>						`	
LIIINIII						·		
LIIINIV	·						—	
LIIINv	·	1242	1242	1241	1237	1241,6	1241,9	1243
LIIINVI, VII			—	-				
LniOi	<u> </u>		1218,7			1220,2	1220,5	1221
LmOn, ш			-		-	-	1011 0	1010
LIIIPI, II			-		-	-	1211,8	1213
			-	-	—	-	-	
	-							1000
		,						1000
		_			_			
· .		_						

72

.

a jiskrové čáry.

ς.

	-	Wolfram-serie.									
	9)	10)	11)	12)	. 13)	14)	15)	16)*)	17)	18)	
				_	1334,4		_			1335,0	
	1298,9			1297,7	1298,5	1298,7	1292,8	1298,79	1298,79	1298,79	
	1260,5			1259,5	1259,8	1260,1	1260,2	1259,92	1259,92	1259,92	
			1209		1210,5		1209,9	·	1209,6	1209,27	
	1204,4		1201	1201,0	1203,4	1202,1	1202,7	1202,5	1202,3	1202,32	
							1074,8		1075,2	1075,0	
	1065,9	1065,8		1064,8	1065,6	1065,0	1065,9	1065,88	1065,88	1065,88	
	1059,9			1058,5	1059,2	1059,0	1059,9	1059,87	1059,87	1059,87	
					1043,9	1043,3	1044,4	—	1043,7	1044,2	
1	-	·			1043,9	1043,3	1044,4	-	1043,7	1042,8	
								`		1026,2	
					—					1030,4	
	1026,4	· ·		1025,1	1026,2	1025,6	1026,6	1025,8	1025,8	1026,21	
	-									1022,8	
	1418,1			1414,3		1417,3	1418	1418,1	1418,1	1,418,33	
1						1373,5	—	<u> </u>	-	1381,0	
					1334,4					1335,0	
	1273,34			1279,2	1278,8	1279,05	1279,3	1279,17	1279,17	1279,17	
					·	·			—	1269,1	
				1128,8	1128,8	1129,2	1129,9		1129,8	1129,66	
									-		
	·				—	1113,8				1112,3	
	1096,44			1096,2	1095,5	1095,53	1096,4	1096,30	1096,30	1096,30	
				·	1088,7	1086,2		<u> </u>		1090,3	
1					—		1074,8	. —	1075,2	1075,0	
	-	<u> </u>			1078,5	1078,0	1078,6		1079,1	1078,80	
							1074,8		1075,2	1075,0	
1	_	1072,0		1071,1	1072,1	1071,5	1072,3		1072,1	1072,23	
		1676,2					—	1675,0	1675,0	1675,0	
			_		1621,6					1621,4	
					1561,0					1559,6	
	1484,4			1484,5		1484,3	1484,4	1484,38	1484,38	1484,38	
·	1473,55			1474,0		1473,27	1473,3	1473,36	1473,36	1473,36	
	-			1287,6	1288,3	1287,6	1287,5	1287,0	1287,0	1287,38	
	-		-				—			1269,1	
•	•						—		1010	1269,1	
						1011 00			1243,9		
	1243,24	1241,2		1242,3	1242,4	1241,92	1242,1	1242,03	1242,03	1242,03	
					1218,0		1216,6		1216,1	1216,46	
1		1220,8	1221	1221,3	—	1220,6	1221,7		1221,7	1221,35	
	-		1010	1011	1014 0	1010 0	1010 0		1010 0	1217,5	
			1213	1211,6	1214,6	1212,6	1213,3		1212,9	1212,58	
	—						1000 0			1020,7	
1	— ,			-			1009,9	-	_	1000 1	
				-					-	1082,1	
	. —				- · /	<u> </u>	_			1104,2	
				_						1141,8	
				· ·					,	11/0,4	

Časopis pro pěstování matematiky a fysiky. 6

. . . .

73

۰

,

Pokračování tab. 8.

* *				•
v	۷G	11	ram	-serie.

Niveau	1)	2)	3)	4)	5)	6)	7)	8)
						1177.3		· ·
								1221
								1235
								1254
	1312							
l								
1 · · ·								

1) Barnes 1915 — 2) Hull a Rice 1916 — 3) Compton 1916 — 4) Siegbahn a Friman; Siegbahn 1916 — 5) Gorton 1916 — 6) Dershem 1918 — 7) Siegbahn 1919 — 8) Overn 1919 — 9) Duane a Patterson 1920

uvedené čáry, jak je patrno z tabulky č. 1, a nově čáru β_2^{VII} , která pro tento prvek dosud měřena nebyla. Nemohli jsme rozlišiti čáry $\gamma'_1 a \gamma'_2$ pro přílišnou přeexposici hlavních čar. Rovněž pro W jsme nemohli oddělit čáru β_2^{∇} od čáry β_9 . U Ta a W rovněž jsme neměřili čáru γ'_2 , naproti tomu γ''_2 byla měřena u všech 3 prvků.

Přehled těchto námi nalezených čar podává diagram. V diagramu je učiněn pokus o ukázání, že tyto čáry vyhovují u studovaných prvků Moseleyovu zákonu. Některé z těchto čar mohou se přiřadit jako satelity k čarám γ_4 nebo γ_2 , některé jako satelity ke γ_5 a β_9 , jiné ke β_2 , β_4 a konečně lze některé označit jako satelity α a *l* čar. Takové přiřazení lze nejlépe provésti u čar β'_9 a β''_9 , které u všech tří prvků Ta, W a Pt vyhovují v mezích přesnosti Moseleyovu zákonu. U W hodnota čáry β'_9 souhlasí s čarou, kterou již dříve nalezl pro tento prvek Dershem (loc. cit.), která však nemohla být dříve klasifikována, poněvadž u jiných prvků až dosud měřena nebyla.

Grafické znázornění Moseleyho zákona pro čáry β'_9 a β''_9 pro bíhá paralelně s grafem pro čáru β_2^X , který však protíná skupinu grafů pro satelity čáry γ_1 a γ_2 a proto čára β_2^X byla přiřazena k čáře β_2 . Čára β_2^X u Ta vůbec měřena nebyla. Pro Pt souhlasí hodnota této čáry s čarou, kterou dříve nalezli Cauchoisová a Kaufman. Tři trabanty čáry β_4 splňují Moseleyův zákon úplně

Pokračování tab. 8.

9)	10)	11)	12)	13)	14)	15)	16)	17)	18)
			1235,8 	1224,4 1236,0 	1230 1235,5 1248,7 1321,2 	1236,4 		1235,8 — — — — — — — — — — — — — — — — — —	1176,1 1188,7 1194,9 1205,7 1227,6 1235,5

Wolfram-serie.

— 10) Coster 1921 — 11) Hoyt 1921 — 12) Yoshida 1921 — 13) Dauvillier 1922 — 14) Rogers 1923 — 15) Crofut 1924 — 16) Friman 1926 — 17) Jdei 1929 — 18) Dolejšek-Vranský 1939.

*) Hodnoty přesného měření Frimanova vyznačené dvěma desetinnými místy jsou přejaty Jdeim (17) i námi (18) jako referentní čáry.

stejně jako trabanty čáry β_{9} . S výjimkou β'_{4} u W, kterou již roku 1916 měřil Barnes, všechny ostatní čáry až dosud měřeny nebyly. Tato klasifikace je naprosto bezpečná. Z trabantů čáry γ_{5} je zajímavá čára γ_{5}^{x} , která tvoří pro tyto 3 prvky s čarou β''_{9} irregulerní dublet, jak plyne z Moseleyho grafu. Grafy pro ostatní trabanty čáry γ_{5} nejsou paralelní s grafem pro čáru γ_{5}^{x} , nýbřž protínají jej a jsou paralelní s grafy trabantů čáry γ_{2} . U W nebyla čára γ_{5}^{x} původně v této práci nalezena a teprve po přiřazení pomocí Moseleyho zákona byla hledána. Nebyla však nalezena. Hodnota trabantu γ_{5}^{z} pro W souhlasí s hodnotou, kterou dříve nalezl pro tento prvek Jdei. Čára γ_{5}^{z} u Ta byla hledána a nalezena dodatečně až při klasifikaci nových nediagramových čar. Z trabantů čáry γ_{2} je zajímavá čára γ'_{2} , kterou klasifikoval již dříve Kaufman jako čáru γ'_{2} . Tuto čáru jsme však nenalezli ani u jednoho ze zkoumaných prvků. (Patrně u těchto prvků je γ'_{2} příliš blízko u γ_{3} nebo γ_{3} .)

Na kratší straně čáry α_1 měřili jsme trabanty α_s a α_i . Hodnota α_i pro W byla hledána a nalezena dodatečně. Z těchto trabantů je zajímavý α_s , který tvoří irregulérní dublet s β'''_{4} . Dále byly měřeny trabanty α'_{y} , α''_{y} a α'''_{y} . Tyto tři čáry byly naměřeny u všech tří prvků. Pro platinu ale hodnoty α''_{y} a α'''_{y} splývají

6*

s hodnotami trabantů α^x a α'^x , měřených Cauchoisovou pro Ta, Re a Bi a Hulubeiem pro Ra. Konečně lze přiřadit čáře l satelity l' a l'', měřené u Ta a Pt. Hodnota l' pro W splývá s čarou t, a l''pro týž prvek nalezena nebyla.

Jak je vidět z uvedeného grafu, zůstává u Pt ještě značný počet čar, které nelze zatím klasifikovati, neboť, jak bylo uvedeno již dříve, platina je prvek velmi vhodný pro spektroskopické studování a proto lze snadněji obdržeti jeho spektrum.

Jak ukazuje srovnání našich výsledků na př. pro W (viz tab. 8) s výsledky ostatních uvedených autorů, byly nalezeny téměř všechny čáry, které na různých místech mnohými autory jsou udávány.⁶¹) Velmi překvapující byl fakt, že se nepodařilo nikomu pomocí rovinného krystalu tyto slabé linie získati všechny. Tento fakt lze vysvětliti z poznatku učiněného během naší práce, kde při použití fokusační metody mohli jsme pro kratší doby exposiční získati větší počet snímků pro týž obor spektra. Ukázalo se, že ke zjištění některých čar bylo nutno voliti exposice ne s maximální hustotou černání fotografické desky, které naše uspořádání dovolovalo. Neboť difusní podklad, vznikající vadami krystalů při krajních exposicích překrýval charakteristické slabé čáry i při použití různých exemplářů krystalů. Tento faktor — difuse záření na krystalu – zdá se nám, určuje při našem fokusačním fotografickém uspořádání hranice stanovitelnosti slabého charakteristického záření.

Spektroskopický ústav Karlovy university, Praha.

⁴¹) Přehled těchto výsledků udán je v knize M. Siegbahn: Spektroskopie der Röntgenstrahlen, 1932.

Über die L-Serie von Ta, W und Pt.

(Inhalt des vorhergehenden Artikels.)

Wellenlängen der L-Serie von Ta, W und Pt wurden gemessen. Die Messung wurde nach der symmetrischen Fokusationsmethode nach Kunzl mit einem auf die von Bačkovský angegebene Art plastisch deformierten NaCl-Kristall vorgenommen. Es zeigte sich, daß diese Anordnung sehr vorteilhaft ist.

Einige neue Quadrupletts wurden beobachtet und klassifiziert. Es wurde auch gezeigt, daß die Übergänge $\Delta l = \Delta j = 0$, welche in der K-Serie nicht gefunden wurden, in der L-Serie dieser Elemente existieren. Auch die Übergänge l - l + 3 und j - j + 3wurden beobachtet.

Viele nicht diagrammatische Linien, welche bis jetzt von anderen nicht registriert waren, wurden beobachtet und ihre Wellenlängen gemessen, wie die Tabellen 2 bis 8 zeigen. Eine Klassifizierung dieser Linien wurde vorgenommen.

Die gegenwärtigen Resultate wurden mit früheren verglichen. Es zeigt sich, daß verschiedene Autoren verschiedene Linien fanden, welche bis jetzt nicht bestätigt waren; da, wie aus den gegenwärtigen Resultaten ersichtlich ist, die Grenze für die Registrierung der charakteristischen Linien sichtlich durch die Unvollkommenheit des als Gitter verwendeten Kristalls herabgesetzt wird. Als Ergebnis zufälliger Unvollkommenheiten der Kristalle entsteht eine diffuse Strahlung, welche die Linien überdeckt, so daß die schwachen Linien in der durch die diffuse Strahlung verursachten Schwärzung verschwinden.

Spektroskopisches Institut der Karls-Universität, Prag.