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K Y B E R N E T I K A - V O L U M E 27 (1991), N U M B E R 6 

BRANCHING PROGRAMS PROVIDE LOWER BOUNDS 
ON THE AREA OF VLSI CIRCUITS 

JURAJ HROMKOVIČ 

Branching programs that were studied as nonuniform computing model providing lower 
bounds on the space of deterministic sequential computations are considered. We show that they 
can be used for providing lower bound on the parallel VLSI computations. 

1. INTRODUCTION AND DEFINITIONS 

The branching programs represent a tool for proving lower bounds on the space 
complexity of sequential computations (see [10, 12, 14, 19] for details), and they were 
studied in several papers for this reason [1 — 5, 9 — 14, 17 — 21]. 

In this paper we find a strong connection between the branching programs and 
VLSI circuits that represent a model of parallel computations. To be more precise 
we prove the following results: 

(i) The capacity of the levelled branching programs provides lower bounds on the 
area complexity of the multilective VLSI circuits, 

(ii) The capacity of the levelled one-time-only branching programs provides lower 
bounds on the area complexity of the basic model of VLSI circuits. 

These results enables us to regard the several nontrivial lower bounds on the capacity 
of branching programs (especially the exponential lower bounds on the size of the 
one-time-only branching programs) proved in [1, 9, 11, 13, 17, 21] for lower bounds 
on the area complexity of VLSI computations. Thus, we obtain several new, non-
trivial lower bounds on VLSI computation by relating the complexity of branching 
programs to VLSI computations. 

Usually, an informal or partially formal description of VLSI circuit models is 
used in the current literature [15, 16]. We use the definition of the basic VLSI model 
in the form of a mathematical structure from [6, 7]. Now, we define the model 
of multilective VLSI circuits in this formal way because it helps us to find a clear 
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idea connecting the complexity of multilective VLSI circuits with the capacity 
of branching programs. 

Definition 1.1. LetX = [xu ..., xn}, Y — {y1, ..., ym} be sets of Boolean variables. 
A problem instance P from the input variables X to the output variables Yis a non
empty set of Boolean functions / l s . . . , /m such that ft: (0, 1}" -* {0, 1} and y{ = 
= fi(xt, ..., xn) for i = 1, ..., m. The positive integer n is called the size of P. 

Definition 1.2. A problem is an infinite sequence of problem instances, where each 
two instances in the sequence have a different size parameter n. 

The recognition of a language L ^ |0 , 1}+ can be considered as an example of 
a problem. To see this fact we associate with each language L £ {0, 1}+ the infinite 
sequence of Boolean functions {h^}f=1, where hf: (0, 1}' ~> {0, l}a.ndhf(au ..., a() = 
= 1 iff a1a2, ..., ai e Ln (0, 1} . So, the ith problem instance is the Boolean function 
hf. 

Definition 1.3. A 4-graph is such a directed graph G = (V, E) that, for each v e V, 
the sum of the number of output edges of v (the outdegree of v) and of the number 
of input edges of v (the indegree of v) is bounded by 4. 

Definition 1.4. A grid-graph MG is a 4-graph G embedded in the lattice in such 
a way that each square of the lattice has one of the following contents: 
(a) a vertex of the graph 
(b) a straightforward part of a line going in the horizontal or in the vertical direction 

(this line is part of the layout of an edge of the graph) 
(c) a broken line coming in the lattice square in one of two vertical (horizontal) 

directions and coming out in one of two horizontal (vertical) directions, 
(d) a crossing of two lines, one going in the horizontal direction, the other in the 

vertical direction (this depicts the place of two crossing edges), 
(e) the empty content 

Definition 1.5. The area complexity of a grid-graph is the area of a minimal rectangle 
involving all non-empty squares of the lattice. The area complexity of a 4-graph 
is the minimum of area complexities of all grid-graphs that are embeddings of G 
in the lattice. 

Definition 1.6. A multilective VLSI circuit is a 6-tuple R = <MG, P, p,X, Y, r}, 
where: 

(1) MG is a grid-graph which is an embedding if the graph G = (V, E), 
(2) P is a finite, nonempty set (called a processor set) of the functions from [0, l}1 

to {0, 1}J', where i + j ^ 4, i,j e (0, 1, ..., 4}, 
(3) X = {xlt ..., xn} is the set of input variables 
(4) Y = {yt, ...,ym} is the set of output variables 
(5) r is a function (called an I/O function) from X u Y to the set of nonempty, 
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finite subsets of V x N such that for all x, y e X u Y, |r(v)| _• 1; x #= y implies 
r(x) n r(y) = 0; and if (y, t) e r(x) for an x ex (Y ) then v is called an input 
(output) vertex and v has the indegree (outdegree) zero and the outdegree (in-
degree) at most three. 

(6) p is a function from Vto P such that: 

(i) for each v EV which is not an input or output vertex, if v has the indegree i 
and the outdegree/ then p(v) = fv, where fv: {0, l}1 -+ {0, \}J; 

(ii) for each input vertex veV, p(v) = fv, where fv: {0, 1} -> {0, l}7 and j is 
the outdegree of v; 

(iii) for each output vertex ve V, p(v) = fv, where fv: {0, 1}' -+ {0, 1} and i is 
the indegree of v. 

The vertices with functions assigned from P are called processors. 

Definition 1.7. A VLSI circuit is a multilective VLSI circuit R = <MG, P, p, X, Y, r> 
with the property |r(x)| = 1 for any xeX (each input variable is available exactly 
ones). 

Now, let us define the computation of a multilective VLSI ciscuit R = 
= <MG, P, p, X, Y, r> with G = (V, E). Let vx, ..., vm be a fixed order of all vertices 
in V. Let, for/- e {1, 2, 3, 4}, en, ..., e(7. be the sequence of all input edges of vt from 
E for all Vi*s that are not input vertices, and let en be an "input edge" (not in E) 
if vt is an input processor. For each time unit t one can associate a Boolean value 
a-fcto each eik, i e (1, . . . ,m} , k e {1, . . . , / • } . Thus, we can define a state s, of the 
VLSI circuit R in the time unit t as the sequence 

fln, . . . , atjt, fl22> •••> a2j2-> •••> flm»i! • ••> amjm 

of values on the edges 

e l l 5 . . . , eijj, ^22> • • •> e2y2> • • •> erara> • • •> emjm ' 

The subsequence of sr consiststing only from the values on the edges from E is called 
the internal state of R. In the time unit t = 0 all input edges from E have the value 0. 
For all x e X, if (vu 0) e r(x), the en has the value of the input variable x. If for all 
x's (vt, 0) £ r(x) then en has the value 0 (an = 0). 

Clearly, knowing the values of all input edges in the time unit t we obtain values 
on edges from E in the time unit t + 1 as output values of all processors (vertices) 
with given inputs. The input edge of the input processor (vertex) v has in the time 
unit t + 1 either the value 0 (if no input variable is inputing in v in the time unit 
t + l) or the value of an input variable comming in v in the time unit t. 

The computation of R on an input a is a sequence of states s0, sl5 ..., st, s r+1 , ... 
such that for each t, st is the state of R working on a in the time unit t. Taking the 
output values from output processors in the time units determined by r one can 
associate exactly one problem instance to R. 

Definition 1.8. The time complexity l(R) of a multilective VLSI circuit R = 
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= <MG, P, p, X, Y, r> is max {t \ (v, t) e r(y) for a y e Y}. The area complexity 
A(R) of R is the area complexity of MG. The time (area) complexity T(P) (A(P)) 
of a problem instance P is the time (area) complexity of an R solving P with minimal 
time (area) complexity. 

2. RESULTS 

We shall show that the branching programs provide lower bounds on the area 
complexity of VLSI computations. To do it we define m-branching programs (m-BP) 
as a generalization of branching programs (BP). We use m-BPs to simulate the work 
of multilective VLSI circuits. Then simulating m-BP by the original BP we obtain 
the connection between the complexity of VLSI computations and the complexity 
of BPs. 

Definition 2.1. LetX = [xx, ..., xn} be a set of Boolean variables. The m-branching 
program, m-BP, for a X and a positive integer m ^ n, is an acyclic directed graph 
with the following properties: 
1) there is exactly one source, 
2) every node has the outdegree 2k for a k e {0, 1, ..., m}, 
3) every node v is labelled by a set {xtl, ..., xir} ^ X for an r ^ m, each edge e 

of 2r edges leading from v is labelled by /(e) = (kx, ..., kr), kie{0, 1} for i e, 
e {1, ..., r}, and /(e) =H l(e') for different e and e' leading from v 

4) every sink is labelled by 0 or 1. 

Definition 2.2. Let U be an m-BP for X = {xl5 . . . ,x„}. Given an input a = 
= (ait..., a„) e (0, 1}", U computes a function value fu(a) in the following way. 
The computation starts at the source. If the computation has reached a node v 
labelled by {x(1, ..., xir} then computation proceeds via the edge labelled by 
(ait, ..., air). Once the computation reaches a sink, the computation ends and/„(a) 
is defined to be the label of that sink. 

The length of an m-BP Ll is the length of the longest path in U, and the complexity 
of U, BP(ll) is the number of nodes in U. The capacity of U is log2 BP (Ll). 

It is easy to see that 1-BPs are the original BPs as defined in [10, 12], and that each 
Boolean function can be computed by an m-BP of length njm and complexity 0(2"). 

Now, let us introduce some special types of branching programs. 

Definition 2.3. Let m be a positive integer. Let U be an m-BP. If, for each path 
v1} ...,vk of vertices in U and each i =t= j , l(vt) n l(vj) 4= 0 then we say the U is 
a one-time-only m-BP, shortly m-BPj. 

A m-BP (m-BP^ U is levelled if the vertices of U are partitioned into some blocks 
Aj, ..., Ak so that every edge goes from A; to Ai+ j for some i £ k — 1. If, for each 
z e {1, ..., k}, the vertices in A2 are labelled by the same subset of input variables 
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then we say that U is a well-levelled m-BP (m-BP^. W(U) = max {|A,| | / = 1, ..., k} 
is the width of levelled m-BP U. 

Definition 2.4. Le t / be a Boolean function from {0, 1}" to {0, 1}. Let m be a posi
tive integer. m-BP (f) [m-BPt (/)] denotes the minimum of sizes of m-branching 
programs [one-time-only m-branching programs] which compute / 1-BP (/) 
[l-BPi (/)] will be denoted by BP(/) [BPi(/)] in what follows too. 

Now, let us establish the relation between m-BPs and VLSI computations. 

Lemma 2.5. Let, for a Boolean function / : {0, 1}" -> {0, 1}, P = {/} be a problem 
instance with the set of input variables X. Let R be a multilective VLSI circuit 
[VLSI circuit] solving P. There is an A(R)-BP [A(R)-BPi] U such that 

(i) U computes / , 
(ii) U is well levelled, 

(iii) the depth of U is at most T(R), 
(iv) the size of U is at most 22A{R) T(R), 
(v) the width of U is at most 22A(R). 

Proof. Let R = <MG, P, p,X, Y, r>, G = (V, E). Since R has the area A(R), 
|E| = 2A(R). So, there are at most 22A(R) internal states of R. Let tl, ...,tk be time 
in which R "reads" some input values. 

We construct the m-BP U simulating the work of R in the following way. U will 
have k + 1 levels, each level containing at most 22A(R) nodes. Every node in the /th 
level (for / e { l , ..., k}) will correspond to an internal state of R that is reachable 
in the time unit tt. 

The first level of U contains only one node that is labelled by the subset of input 
variables that contains exactly the variables read by R in the time unit tv Clearly, 
the cardinality of this subset is at most A(R) because the number of input vertices 
of R is bounded by A(R). For i e {2, ..., /<}, the ith level contains exactly one node 
for each internal state of R reachable in the time unit t-r All nodes in the /th level 
are labelled with the same set of at most A(R) input variables inputting in the circuit 
R in the time unit t{. The last level contains only two nodes. One labelled by 1 corre
sponds to states of R in which R gives output 1, the other labelled by 0 corresponds 
to states of R in which R gives output 0 in the time unit T(R). Let v labelled by 
{xit, ...,xik] be a node of the/th level for some j e { l , ..., k], and let v correspond 
to an internal state sv of R. Then, for each (ax, ..., ak) e {0, 1},C, U contains an edge 
leading from » to a node u in the (j + l)th level that corresponds to an internal 
state su that is the internal state of R reached in the time unit tJ+i from the state sv 

by inputing the values at, ..., ak of input variables xit, ..., xik in the time unit tj. 

Clearly, U fulfils (i), (ii), (iii), (iv), and (v), and if R is a VLSI circuit then U is 
a one-time-only A(R)-BP. • 

Now, we simulate m-BPs by BPs. 
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Lemma 2.6. Let, for a Boolean function/: {0, 1}» --> {0, 1}, U be an well-levelled 
m-BP computing/ Then there is a well-levelled BP Vcomputing/such that 

c(V) = 2m c(U) . 

Proof. Let U be an m-BP. Starting from the source and going from one level 
to the next one we replace each node and the edges leading from it by a tree of the 
depth at most m — 1, and some futher edges leading from the leaves of the tree. 
If v is labelled by {xh, ..., xik} the tree Tv is the full binary tree of the depth k — 1. 
The root of Tv is labelled by {xtl}, and each node of an rth level of Tv is labelled 
by {xir}. Two edges labelled by 0 and 1 lead from any node of Tv. If the path from 
the root of Tv to a leaf z of Tv is labelled (on edges) by als a2,..., ak_ x then we give 
an edge labelled by 0 from z to a node u connected by the edge (als a2, ..., ak_1, 0) 
with v in U, and an edge labelled by 1 from z to a node vv connected by the edge 
(flj, a2, ..., ak_1, 1) with v in Ll. 

Clearly, the constructed BP is well-levelled and it computes the same Boolean 
function as U. • 

Combining Lemmas 2.5 and 2.6 we obtain the main results of this paper. 

Theorem 2.7. Let R be a multilective VLSI circuit computing a Boolean function 
/ T h e n : 

3A(R) + log2 T(R) __ log2 (BP (/)) 

Proof. Let us prove this assertion by contradiction. Let 3 A(R) + log2 T(R) < 
< log2 (BP (/)) for a multilective VLSI circuit R computing / . Using Lemma 2.5 
we can construct an A(R)-BP U computing / and fulfilling BP (U) = 22A(R) T(R). 
Applying Lemma 2.6 we can construct a BP (V) computing/ such that 

BP (V) < 2A(R) BP (U) < 23AW T(R) . 

So, we obtain BP (V) < BP (/) which is a contradiction. • 

Theorem 2.8. Let R be a VLSI circuit computing a Boolean function / . Then 

3 A(R) = log2 (BP, (/)) - log2 n . 

Proof. The proof is similar to that of the previous theorem. The only difference 
is that every BPX has at most n levels (i.e. there are at most n time units in which R 
reads an input). • 

Now, let us consider the usefulness of the introduced lower bound technique. 
It is very hard to prove a nonlinear lower bound on a given Boolean function. The 
highest known lower bound on BPs computing a Boolean function sequence 0> = 
= {/;}"= i is .Q(n2/(log2 n)2) due to Neciporuk [11]. So, using BPs were able to give 
only logarithmic lower bounds on the area and log2 T(R) of multilective VLSI 
circuit. But, note that we do not know any other lower bound technique that is able 
to bring more for multilective VLSI circuits. 

On the other hand there are many results providing exponential lower bounds 
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on EPts computing specific Boolean functions (see for example Jukna [9], Wegener 
[17], Zak [21], Babai et. al. [1]). The highest 2cn (for some constant c) lower bounds 
on one-time-only branching programs computing [h*}™=1 for 

A = {w G {0, 1} + | |w| = (2) for a keN , w codes and undirected graph 

with k vertices having an odd number of triangles} 

was obtained in Babai et al. [1]. All lower bounds on BPjS in [9, 17, 21] bring new 
lower bounds of the form £l(na), 0 < a ^ 1, for VLSI circuits. An interesting fact 
follows from il(n) lower bound on the area of VLSI circuits recognizing the language 
A. One can simply construct a sequence of multilective VLSI circuits recognizing A 
in constant space and 0(n3/2) time (one after other — each triple of vertices is checked) 
and we see that there is no efficient area simulation of multilective VLSI circuits 
by VLSI circuits in some sense. 

Open problem 2.9. Is there an efficient area simulation of multilective VLSI 
circuits with bounded multilectivity by VLSI circuits? We note that we have assumed 
the use of each input variable 0(n1/2) times for the recognition of A. 

An argument for a negative answer is the following result of Zak [21]. He proved 
an exponential lower bound on BPxs recognizing a specific language that can be 
recognized by two-time-only BP (each input variable occurs at most two times at 
any path of BP) with polynomial size. 

3. CONCLUSION 

We have found a simple way how to show that a well-known tool (BPs) for proving 
lower bounds on sequential computations can be used for proving lower bounds 
on VLSI circuits — a model of parallel computations. In fact we have introduced 
the well-levelled BPs as a special type of BPs that provides lower bounds on VLSI 
computations. We note that our lower bound technique is independent on the area-
layout of VLSI circuits, i.e., the complexity of BPs is related directly to the number 
of processors working in parallel (not to the topology of circuits). Thus, some lower 
bounds for one-time-only branching programs can be interpreted as lower bounds 
for VLSI circuits. Unfortunaly, there are no lower bounds on general BPs which 
can bring something for proving lower bounds on the area complexity of multi
lective VLSI circuits. On the other hand there are already known, successful techni
ques [6, 7, 8, 15, 16] for sublinear and linear lower bounds on the area complexity 
of VLSI circuits. So, the method presented in this paper brings a new point of view 
on proving lower bounds for VLSI circuits, but it provides no break in proving 
Sower bounds for VLSI computations. These facts imply that the main problem 
formulated in this paper has to be the following one. 

Open problem 3.1. Improve the BP-method for proving lower bounds on VLSI 
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computations in such a way that it brings a break in proving lower bounds for some-
VLSI computation model. 

To solve the above stated problem we have at least two ways. One very hard 
way is to prove exponential lower bounds on the general BPs. Another way, which 
may be easier than the above mentioned one, is to find a new connection between 
a special type of branching programs and a special type of VLSI computation model, 
for which no fl(na) lower bounds are known, and to prove an exponential lower 
bound for the given, special type of branching programs. 

For example, one can conjecture that there is a connection between branching 
programs and where-and-when-indeterminite VLSI circuits. To find such a connec
tion is of importance because there is no lower bound technique providing lower 
bounds on area of where- and when-indeterminite VLSI circuits. We have tried 
to find such a connection without any success. We conjecture that the indeterminism 
in reading input in BPs is of another nature (state dependent) as the where- and 
when-indeterminism in VLSI computations. More about where- and when-indeter-
minism and about lower bounds techniques for it can be found in Hromkovic [8]. 

Finally, we call attention to the fact that our contribution brings something new 
in the understanding of hardness of some problems in complexity theory. We know 
that to prove an exponential lower bound on BPs and to prove £l(na), a > 0, lower 
bound on the area of multilective VLSI circuits are very hard problems. Now, we 
know that these problems have a similar nature (we see better why they are so hard), 
and that the first problem is at least so hard as the second one. The question whether 
lower bounds on multilective VLSI circuits can bring some lower bounds on BPs 
remains open. 
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