
Kybernetika

Juraj Hromkovič
Branching programs provide lower bounds on the area of VLSI circuits

Kybernetika, Vol. 27 (1991), No. 6, 542--550

Persistent URL: http://dml.cz/dmlcz/124289

Terms of use:
© Institute of Information Theory and Automation AS CR, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124289
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 27 (1991), N U M B E R 6

BRANCHING PROGRAMS PROVIDE LOWER BOUNDS
ON THE AREA OF VLSI CIRCUITS

JURAJ HROMKOVIČ

Branching programs that were studied as nonuniform computing model providing lower
bounds on the space of deterministic sequential computations are considered. We show that they
can be used for providing lower bound on the parallel VLSI computations.

1. INTRODUCTION AND DEFINITIONS

The branching programs represent a tool for proving lower bounds on the space
complexity of sequential computations (see [10, 12, 14, 19] for details), and they were
studied in several papers for this reason [1 — 5, 9 — 14, 17 — 21].

In this paper we find a strong connection between the branching programs and
VLSI circuits that represent a model of parallel computations. To be more precise
we prove the following results:

(i) The capacity of the levelled branching programs provides lower bounds on the
area complexity of the multilective VLSI circuits,

(ii) The capacity of the levelled one-time-only branching programs provides lower
bounds on the area complexity of the basic model of VLSI circuits.

These results enables us to regard the several nontrivial lower bounds on the capacity
of branching programs (especially the exponential lower bounds on the size of the
one-time-only branching programs) proved in [1, 9, 11, 13, 17, 21] for lower bounds
on the area complexity of VLSI computations. Thus, we obtain several new, non-
trivial lower bounds on VLSI computation by relating the complexity of branching
programs to VLSI computations.

Usually, an informal or partially formal description of VLSI circuit models is
used in the current literature [15, 16]. We use the definition of the basic VLSI model
in the form of a mathematical structure from [6, 7]. Now, we define the model
of multilective VLSI circuits in this formal way because it helps us to find a clear

542

idea connecting the complexity of multilective VLSI circuits with the capacity
of branching programs.

Definition 1.1. LetX = [xu ..., xn}, Y — {y1, ..., ym} be sets of Boolean variables.
A problem instance P from the input variables X to the output variables Yis a non
empty set of Boolean functions / l s . . . , /m such that ft: (0, 1}" -* {0, 1} and y{ =
= fi(xt, ..., xn) for i = 1, ..., m. The positive integer n is called the size of P.

Definition 1.2. A problem is an infinite sequence of problem instances, where each
two instances in the sequence have a different size parameter n.

The recognition of a language L ^ |0 , 1}+ can be considered as an example of
a problem. To see this fact we associate with each language L £ {0, 1}+ the infinite
sequence of Boolean functions {h^}f=1, where hf: (0, 1}' ~> {0, l}a.ndhf(au ..., a() =
= 1 iff a1a2, ..., ai e Ln (0, 1} . So, the ith problem instance is the Boolean function
hf.

Definition 1.3. A 4-graph is such a directed graph G = (V, E) that, for each v e V,
the sum of the number of output edges of v (the outdegree of v) and of the number
of input edges of v (the indegree of v) is bounded by 4.

Definition 1.4. A grid-graph MG is a 4-graph G embedded in the lattice in such
a way that each square of the lattice has one of the following contents:
(a) a vertex of the graph
(b) a straightforward part of a line going in the horizontal or in the vertical direction

(this line is part of the layout of an edge of the graph)
(c) a broken line coming in the lattice square in one of two vertical (horizontal)

directions and coming out in one of two horizontal (vertical) directions,
(d) a crossing of two lines, one going in the horizontal direction, the other in the

vertical direction (this depicts the place of two crossing edges),
(e) the empty content

Definition 1.5. The area complexity of a grid-graph is the area of a minimal rectangle
involving all non-empty squares of the lattice. The area complexity of a 4-graph
is the minimum of area complexities of all grid-graphs that are embeddings of G
in the lattice.

Definition 1.6. A multilective VLSI circuit is a 6-tuple R = <MG, P, p,X, Y, r},
where:

(1) MG is a grid-graph which is an embedding if the graph G = (V, E),
(2) P is a finite, nonempty set (called a processor set) of the functions from [0, l}1

to {0, 1}J', where i + j ^ 4, i,j e (0, 1, ..., 4},
(3) X = {xlt ..., xn} is the set of input variables
(4) Y = {yt, ...,ym} is the set of output variables
(5) r is a function (called an I/O function) from X u Y to the set of nonempty,

543

finite subsets of V x N such that for all x, y e X u Y, |r(v)| _• 1; x #= y implies
r(x) n r(y) = 0; and if (y, t) e r(x) for an x ex (Y) then v is called an input
(output) vertex and v has the indegree (outdegree) zero and the outdegree (in-
degree) at most three.

(6) p is a function from Vto P such that:

(i) for each v EV which is not an input or output vertex, if v has the indegree i
and the outdegree/ then p(v) = fv, where fv: {0, l}1 -+ {0, \}J;

(ii) for each input vertex veV, p(v) = fv, where fv: {0, 1} -> {0, l}7 and j is
the outdegree of v;

(iii) for each output vertex ve V, p(v) = fv, where fv: {0, 1}' -+ {0, 1} and i is
the indegree of v.

The vertices with functions assigned from P are called processors.

Definition 1.7. A VLSI circuit is a multilective VLSI circuit R = <MG, P, p, X, Y, r>
with the property |r(x)| = 1 for any xeX (each input variable is available exactly
ones).

Now, let us define the computation of a multilective VLSI ciscuit R =
= <MG, P, p, X, Y, r> with G = (V, E). Let vx, ..., vm be a fixed order of all vertices
in V. Let, for/- e {1, 2, 3, 4}, en, ..., e(7. be the sequence of all input edges of vt from
E for all Vi*s that are not input vertices, and let en be an "input edge" (not in E)
if vt is an input processor. For each time unit t one can associate a Boolean value
a-fcto each eik, i e (1, . . . ,m} , k e {1, . . . , / • } . Thus, we can define a state s, of the
VLSI circuit R in the time unit t as the sequence

fln, . . . , atjt, fl22> •••> a2j2-> •••> flm»i! • ••> amjm

of values on the edges

e l l 5 . . . , eijj, ^22> • • •> e2y2> • • •> erara> • • •> emjm '

The subsequence of sr consiststing only from the values on the edges from E is called
the internal state of R. In the time unit t = 0 all input edges from E have the value 0.
For all x e X, if (vu 0) e r(x), the en has the value of the input variable x. If for all
x's (vt, 0) £ r(x) then en has the value 0 (an = 0).

Clearly, knowing the values of all input edges in the time unit t we obtain values
on edges from E in the time unit t + 1 as output values of all processors (vertices)
with given inputs. The input edge of the input processor (vertex) v has in the time
unit t + 1 either the value 0 (if no input variable is inputing in v in the time unit
t + l) or the value of an input variable comming in v in the time unit t.

The computation of R on an input a is a sequence of states s0, sl5 ..., st, s r+1 , ...
such that for each t, st is the state of R working on a in the time unit t. Taking the
output values from output processors in the time units determined by r one can
associate exactly one problem instance to R.

Definition 1.8. The time complexity l(R) of a multilective VLSI circuit R =

544

= <MG, P, p, X, Y, r> is max {t \ (v, t) e r(y) for a y e Y}. The area complexity
A(R) of R is the area complexity of MG. The time (area) complexity T(P) (A(P))
of a problem instance P is the time (area) complexity of an R solving P with minimal
time (area) complexity.

2. RESULTS

We shall show that the branching programs provide lower bounds on the area
complexity of VLSI computations. To do it we define m-branching programs (m-BP)
as a generalization of branching programs (BP). We use m-BPs to simulate the work
of multilective VLSI circuits. Then simulating m-BP by the original BP we obtain
the connection between the complexity of VLSI computations and the complexity
of BPs.

Definition 2.1. LetX = [xx, ..., xn} be a set of Boolean variables. The m-branching
program, m-BP, for a X and a positive integer m ^ n, is an acyclic directed graph
with the following properties:
1) there is exactly one source,
2) every node has the outdegree 2k for a k e {0, 1, ..., m},
3) every node v is labelled by a set {xtl, ..., xir} ^ X for an r ^ m, each edge e

of 2r edges leading from v is labelled by /(e) = (kx, ..., kr), kie{0, 1} for i e,
e {1, ..., r}, and /(e) =H l(e') for different e and e' leading from v

4) every sink is labelled by 0 or 1.

Definition 2.2. Let U be an m-BP for X = {xl5 . . . ,x„}. Given an input a =
= (ait..., a„) e (0, 1}", U computes a function value fu(a) in the following way.
The computation starts at the source. If the computation has reached a node v
labelled by {x(1, ..., xir} then computation proceeds via the edge labelled by
(ait, ..., air). Once the computation reaches a sink, the computation ends and/„(a)
is defined to be the label of that sink.

The length of an m-BP Ll is the length of the longest path in U, and the complexity
of U, BP(ll) is the number of nodes in U. The capacity of U is log2 BP (Ll).

It is easy to see that 1-BPs are the original BPs as defined in [10, 12], and that each
Boolean function can be computed by an m-BP of length njm and complexity 0(2").

Now, let us introduce some special types of branching programs.

Definition 2.3. Let m be a positive integer. Let U be an m-BP. If, for each path
v1} ...,vk of vertices in U and each i =t= j , l(vt) n l(vj) 4= 0 then we say the U is
a one-time-only m-BP, shortly m-BPj.

A m-BP (m-BP^ U is levelled if the vertices of U are partitioned into some blocks
Aj, ..., Ak so that every edge goes from A; to Ai+ j for some i £ k — 1. If, for each
z e {1, ..., k}, the vertices in A2 are labelled by the same subset of input variables

545

then we say that U is a well-levelled m-BP (m-BP^. W(U) = max {|A,| | / = 1, ..., k}
is the width of levelled m-BP U.

Definition 2.4. Le t / be a Boolean function from {0, 1}" to {0, 1}. Let m be a posi
tive integer. m-BP (f) [m-BPt (/)] denotes the minimum of sizes of m-branching
programs [one-time-only m-branching programs] which compute / 1-BP (/)
[l-BPi (/)] will be denoted by BP(/) [BPi(/)] in what follows too.

Now, let us establish the relation between m-BPs and VLSI computations.

Lemma 2.5. Let, for a Boolean function / : {0, 1}" -> {0, 1}, P = {/} be a problem
instance with the set of input variables X. Let R be a multilective VLSI circuit
[VLSI circuit] solving P. There is an A(R)-BP [A(R)-BPi] U such that

(i) U computes / ,
(ii) U is well levelled,

(iii) the depth of U is at most T(R),
(iv) the size of U is at most 22A{R) T(R),
(v) the width of U is at most 22A(R).

Proof. Let R = <MG, P, p,X, Y, r>, G = (V, E). Since R has the area A(R),
|E| = 2A(R). So, there are at most 22A(R) internal states of R. Let tl, ...,tk be time
in which R "reads" some input values.

We construct the m-BP U simulating the work of R in the following way. U will
have k + 1 levels, each level containing at most 22A(R) nodes. Every node in the /th
level (for / e { l , ..., k}) will correspond to an internal state of R that is reachable
in the time unit tt.

The first level of U contains only one node that is labelled by the subset of input
variables that contains exactly the variables read by R in the time unit tv Clearly,
the cardinality of this subset is at most A(R) because the number of input vertices
of R is bounded by A(R). For i e {2, ..., /<}, the ith level contains exactly one node
for each internal state of R reachable in the time unit t-r All nodes in the /th level
are labelled with the same set of at most A(R) input variables inputting in the circuit
R in the time unit t{. The last level contains only two nodes. One labelled by 1 corre
sponds to states of R in which R gives output 1, the other labelled by 0 corresponds
to states of R in which R gives output 0 in the time unit T(R). Let v labelled by
{xit, ...,xik] be a node of the/th level for some j e { l , ..., k], and let v correspond
to an internal state sv of R. Then, for each (ax, ..., ak) e {0, 1},C, U contains an edge
leading from » to a node u in the (j + l)th level that corresponds to an internal
state su that is the internal state of R reached in the time unit tJ+i from the state sv

by inputing the values at, ..., ak of input variables xit, ..., xik in the time unit tj.

Clearly, U fulfils (i), (ii), (iii), (iv), and (v), and if R is a VLSI circuit then U is
a one-time-only A(R)-BP. •

Now, we simulate m-BPs by BPs.

546

Lemma 2.6. Let, for a Boolean function/: {0, 1}» --> {0, 1}, U be an well-levelled
m-BP computing/ Then there is a well-levelled BP Vcomputing/such that

c(V) = 2m c(U) .

Proof. Let U be an m-BP. Starting from the source and going from one level
to the next one we replace each node and the edges leading from it by a tree of the
depth at most m — 1, and some futher edges leading from the leaves of the tree.
If v is labelled by {xh, ..., xik} the tree Tv is the full binary tree of the depth k — 1.
The root of Tv is labelled by {xtl}, and each node of an rth level of Tv is labelled
by {xir}. Two edges labelled by 0 and 1 lead from any node of Tv. If the path from
the root of Tv to a leaf z of Tv is labelled (on edges) by als a2,..., ak_ x then we give
an edge labelled by 0 from z to a node u connected by the edge (als a2, ..., ak_1, 0)
with v in U, and an edge labelled by 1 from z to a node vv connected by the edge
(flj, a2, ..., ak_1, 1) with v in Ll.

Clearly, the constructed BP is well-levelled and it computes the same Boolean
function as U. •

Combining Lemmas 2.5 and 2.6 we obtain the main results of this paper.

Theorem 2.7. Let R be a multilective VLSI circuit computing a Boolean function
/ T h e n :

3A(R) + log2 T(R) __ log2 (BP (/))

Proof. Let us prove this assertion by contradiction. Let 3 A(R) + log2 T(R) <
< log2 (BP (/)) for a multilective VLSI circuit R computing / . Using Lemma 2.5
we can construct an A(R)-BP U computing / and fulfilling BP (U) = 22A(R) T(R).
Applying Lemma 2.6 we can construct a BP (V) computing/ such that

BP (V) < 2A(R) BP (U) < 23AW T(R) .

So, we obtain BP (V) < BP (/) which is a contradiction. •

Theorem 2.8. Let R be a VLSI circuit computing a Boolean function / . Then

3 A(R) = log2 (BP, (/)) - log2 n .

Proof. The proof is similar to that of the previous theorem. The only difference
is that every BPX has at most n levels (i.e. there are at most n time units in which R
reads an input). •

Now, let us consider the usefulness of the introduced lower bound technique.
It is very hard to prove a nonlinear lower bound on a given Boolean function. The
highest known lower bound on BPs computing a Boolean function sequence 0> =
= {/;}"= i is .Q(n2/(log2 n)2) due to Neciporuk [11]. So, using BPs were able to give
only logarithmic lower bounds on the area and log2 T(R) of multilective VLSI
circuit. But, note that we do not know any other lower bound technique that is able
to bring more for multilective VLSI circuits.

On the other hand there are many results providing exponential lower bounds

547

on EPts computing specific Boolean functions (see for example Jukna [9], Wegener
[17], Zak [21], Babai et. al. [1]). The highest 2cn (for some constant c) lower bounds
on one-time-only branching programs computing [h*}™=1 for

A = {w G {0, 1} + | |w| = (2) for a keN , w codes and undirected graph

with k vertices having an odd number of triangles}

was obtained in Babai et al. [1]. All lower bounds on BPjS in [9, 17, 21] bring new
lower bounds of the form £l(na), 0 < a ^ 1, for VLSI circuits. An interesting fact
follows from il(n) lower bound on the area of VLSI circuits recognizing the language
A. One can simply construct a sequence of multilective VLSI circuits recognizing A
in constant space and 0(n3/2) time (one after other — each triple of vertices is checked)
and we see that there is no efficient area simulation of multilective VLSI circuits
by VLSI circuits in some sense.

Open problem 2.9. Is there an efficient area simulation of multilective VLSI
circuits with bounded multilectivity by VLSI circuits? We note that we have assumed
the use of each input variable 0(n1/2) times for the recognition of A.

An argument for a negative answer is the following result of Zak [21]. He proved
an exponential lower bound on BPxs recognizing a specific language that can be
recognized by two-time-only BP (each input variable occurs at most two times at
any path of BP) with polynomial size.

3. CONCLUSION

We have found a simple way how to show that a well-known tool (BPs) for proving
lower bounds on sequential computations can be used for proving lower bounds
on VLSI circuits — a model of parallel computations. In fact we have introduced
the well-levelled BPs as a special type of BPs that provides lower bounds on VLSI
computations. We note that our lower bound technique is independent on the area-
layout of VLSI circuits, i.e., the complexity of BPs is related directly to the number
of processors working in parallel (not to the topology of circuits). Thus, some lower
bounds for one-time-only branching programs can be interpreted as lower bounds
for VLSI circuits. Unfortunaly, there are no lower bounds on general BPs which
can bring something for proving lower bounds on the area complexity of multi
lective VLSI circuits. On the other hand there are already known, successful techni
ques [6, 7, 8, 15, 16] for sublinear and linear lower bounds on the area complexity
of VLSI circuits. So, the method presented in this paper brings a new point of view
on proving lower bounds for VLSI circuits, but it provides no break in proving
Sower bounds for VLSI computations. These facts imply that the main problem
formulated in this paper has to be the following one.

Open problem 3.1. Improve the BP-method for proving lower bounds on VLSI

548

computations in such a way that it brings a break in proving lower bounds for some-
VLSI computation model.

To solve the above stated problem we have at least two ways. One very hard
way is to prove exponential lower bounds on the general BPs. Another way, which
may be easier than the above mentioned one, is to find a new connection between
a special type of branching programs and a special type of VLSI computation model,
for which no fl(na) lower bounds are known, and to prove an exponential lower
bound for the given, special type of branching programs.

For example, one can conjecture that there is a connection between branching
programs and where-and-when-indeterminite VLSI circuits. To find such a connec
tion is of importance because there is no lower bound technique providing lower
bounds on area of where- and when-indeterminite VLSI circuits. We have tried
to find such a connection without any success. We conjecture that the indeterminism
in reading input in BPs is of another nature (state dependent) as the where- and
when-indeterminism in VLSI computations. More about where- and when-indeter-
minism and about lower bounds techniques for it can be found in Hromkovic [8].

Finally, we call attention to the fact that our contribution brings something new
in the understanding of hardness of some problems in complexity theory. We know
that to prove an exponential lower bound on BPs and to prove £l(na), a > 0, lower
bound on the area of multilective VLSI circuits are very hard problems. Now, we
know that these problems have a similar nature (we see better why they are so hard),
and that the first problem is at least so hard as the second one. The question whether
lower bounds on multilective VLSI circuits can bring some lower bounds on BPs
remains open.

ACKNOWLEDGEMENT

I would like to thank Ondrej Sykora for a few interesting discussions.

(Received March 28, 1989.)

R E F E R E N C E S

[1] L. Babai, P. Hajnal, E. Szemeredi and G. Turan: A lower bound for read-once only branch
ing programs. J. Computer System Sci. 35 (1987), 153—162.

[2] D. A. Barrington: Bounded width polynomial-size branching programs recognize exactly
those languages in NC1. In: Proc. 18th ACM STOC, ACM 1986, pp. 1 - 5 .

[3] A. Borodin, D . Dolev, F. E. Fich and W. Paul: Bounds for width two branching programs.
In: Proc. 15th ACM STOC, ACM 1983, pp. 8 7 - 9 3 .

[4] A. K. Chandra, M. L. Furst and R. J. Lipton: Multiparty protocols. In: Proc. 15th ACM
STOC, ACM 1983, pp. 9 4 - 9 9 .

[5] M. Ftacnik and J. Hromkovic: Nonlinear lower bounds for real-time branching programs.
Comput. Artificial Intelligence 4 (1985), 3, 3 5 3 - 3 5 9 .

[6] J. Hromkovic: Some complexity aspects of VLSI computations. Part 1. A framework
for the study of information transfer in VLSI circuits. Comput. Artificial Intelligence 7
(1988), 3, 2 2 9 - 2 5 2 .

549

[7] J. Hromkovic": Some complexity aspects of VLSI computations. Part 2. Topology of circuits
and information transfer. Comput. Artificial Intelligence 7 (1988), 4, 289—302,

[8] J. Hromkovic: Some complexity aspects of VLSI computations. Part 5. Nondeterministic
and probabilistic VLSI circuits. Comput. Artificial Intelligence 8 (1989), 2, 169—188.

[9] S. P. Jukna: Lower bounds on the complexity of local circuits. In: Mathematical Foundation
of Computer Science — Proc. 12th Symposium, Bratislava, Czechoslovakia, August 25—29,
1986 (J. Gruska, B. Rovan, J. Wiedermann, eds.). (Lecture Notes in Computer Science 233.)
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo 1986, pp. 440—448.

[10] W. Masek: A Fast Algorithm for String Editing Problem and Decision Graph Complexity.
M. Sc. Thesis, MIT, May 1976.

[11] E. I. Neciporuk: On a Boolean function. Dokl. Akad. Nauk SSSR 169 (1966), 4, 7 6 5 - 7 6 6 .
English translation: Soviet Math. Dokl. 7 (1966), 999-1000 .

[12] P. Pudlak and S. Zak: Space complexity of computations. Unpublished manuscript, 1982.
[13] P. Pudlak: A lower bound on complexity of branching programs. In: Mathematical Fouda-

tions of Computer Science — Proc. 11th Symposium, Prague, Czechoslovakia, September
3 - 7 , 1984 (M. P. Chytil, V. Koubek, eds.). (Lecture Notes in Computer Science 176.)
Springer-Verlag, Berlin—Heidelberg—New York—Tokyo 1984, pp. 480—489.

[14] P. Pudlak: The hierarchy of Boolean circuits. Comput. Artificial Intelligence 6 (1987), 5,
4 4 9 - 4 6 8 .

[15] C D. Thompson: A Complexity Theory for VLSI. Doctoral Dissertation, CMU-CS-88-140,
Computer Science Dept., Carnegie-Mellon University, Pittsburg, August 1980, 131 p.

[16] J. D. Ullman: Computational Aspects of VLSI. Computer Science Press, New York 1984.
[17] I. Wegener: On the Complexity of Branching Programs and Decision Trees for Qlique

Functions. Universitat Frankfurt, Fachbereich Informatik, Int. Rept. 5/84, 1984.
[18] I. Wegener: Time-space trade-offs for branching programs. J. Comput. System. Sci. 32

(1986), 1 , 9 1 - 9 6 .
[19] I. Wegener: Optimal decision trees and one-time only branching programs for symmetric

Boolean functions. Inform. Control 62 (1984), 129—143.
[20] I. Wegener: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer

Science, B. G. Teubner, Stuttgart, John Wiley and Sons, New York 1987.
[21] S. Zak: An exponential lower bound for one-time-only branching programs. In: Mathe

matical Foundations of Computer Science — Proc. 11th Symposium, Prague, Czechoslova
kia, September 3 — 7, 1984 (M. P. Chytil, V. Koubek, eds.). (Lecture Notes in Computer
Science 176.) Springer-Verlag, Berlin—Heidelberg—New York—Tokyo 1984, pp. 562—566.

Doc. RNDr. Juraj Hromkovic, DrSc, katedra informatiky, Matematicko-fyzikdlna fakulta
Univerzity Komenskeho (Department of Computer Science, Faculty of Mathematics and Physics,
Comenius University), 842 15 Bratislava. Czechoslovakia.

550

		webmaster@dml.cz
	2012-06-05T23:15:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

