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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 6 

SEQUENTIAL IDENTIFICATION ALGORITHM AND 
CONTROLLER CHOICE FOR A CERTAIN CLASS 
OF DISTRIBUTED SYSTEMS 

EWARYST RAFAJLOWICZ 

In the paper a computationally simple and reliable algorithm for parameter estimation in 
stochastic distributed-parameter systems (DPS) is proposed. In opposite to most of earlier 
proposed algorithms it is of noniterative type, but it is applicable to a class of linear DPS with 
eigenfunctions not depending on unknown parameters. Application of the sequential approach 
in the proposed algorithm resulted in nontypical for parameter estimators in DPS properties. 
Namely, the estimators are shown to be unbiased and efficient for a finite but random observation 
time. Extensive simulation studies confirm computational and theoretical advantages of the 
algorithm and indicate that modifications of the sequential approach, proposed in the paper, 
essentially reduce mean value of the observation time. 

1. INTRODUCTION 

In recent years several identification algorithm for distributed parameter systems 
(DPS) have been proposed (see [5], [8], [9] for survey papers). They are designed 
in such a way that they try to cover as large class of systems as possible. Such attempts 
resulted in computationally complicated algorithms of a searching type. For this 
reason they are not always reliable in finding estimates and their properties are 
difficult to investigate. Even if statistical properties of estimators such as obtained 
by output least squares minimization or maximum likelihood estimators are investi
gated (see [2]) it occurs that they are only asymptotically unbiased and efficient. 
However nothing can be said about their behaviour for a finite observation time. 
Also experiment design considerations for such estimators are based on asymptotic 
reasoning, which utilize the inverse of the information matrix instead of covariance 
matrix (see e.g. [4], [7], [10], [11]). 

These circumstance have inspired the author to try to design an easily implement-
able and noniterative identification algorithm for a more narrow class of DPS 
(see Section 2 for details). This resulted in a prototype algorithm based on modal 
decomposition, presented in Section 4. However, finite sample accuracy of this algo-
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rithm is also difficult to investigate. For this reason, the prototype algorithm is 
modified in Section 5 by applying an idea of the sequential estimation. The sequential 
approach to hypothesis testing has been introduced by Wald an then it has been 
developed in a spirit of the decision theory (see [13] and the bibliography therein). 

More recently, Shiryayev [6] for the first time applied the sequential approach 
to the parameter estimation problem in lumped parameter system (LPS), described 
by the first order stochastic differential equation (see Section 6). His theoretically 
appealing results could not find way to practical applications since a random ob
servation time is usually too long for stable systems (see Section 7, where this opinion 
is confirmed by a simulation study). For this reason two modifications of his approach 
are proposed in Section 5. Firstly, nonzero set points of modal controllers allow to 
obtain shorter random observation times for negative feedback gains, and secondly 
identifieries of each mode measurements are allowed to have their own random 
processing times. Combining these modifications with the prototype algorithm 
of Section 4 we get the sequential estimators which are the best in the mean square 
sense in the class of all unbiased estimators with finite variances (see Section 6) 
and these properties hold for a finite but random observation time. Extensive simula
tion studies, partly reported in Section 7, confirm these theoretical advantages. 

2. SYSTEM DESCRIPTION 

Let H be a separable Hilbert space. In the sequel we consider a system described 
by the following abstract stochastic differential equation: 

(2.1) da + A(a) q(t) . dt - u(t) dt = dw , te(0,T) 

with the initial condition a(0) = q0. Above, q(t)eH, u(t)eH, w(t)eH; te(0,T) de
notes a system state, an input signal and a disturbance, respectively. 

We shall use the same framework as in [3] in understanding the meaning of 
a solution of (2.1). In (2.1), A(a) is a closed, densely defined linear operator A(a): 
DA -> H. It is assumed that A(a) is of the form: 

r 

(2.2) A(a)h= Qoh + ^at.Qth, heDA 
i = l 

where o,: DA->H, i — 0 ,1 , 2 , . . . , r, are given linearly independent operators, 
while a = [alf a2, •.., a ,] ' is a vector of unknown constant parameters to be estimat
ed. Furthermore, we assume that A(a) is the infinitesimal generator of a strongly 
continuous semigroup Tt(a) and that A(a) is selfadjoint with compact resolvent (see 
e.g. [1] for definitions), which imply (see e.g. [1]) that .4(a) possesses, orthonormal 
and complete in H, set of eigenfunctions vkeH; k = 1, 2, .... These assumptions 
also imply that Tt(a) has the representation 

CO 

(2.3) TXa)h = V V - ^ > ' l .<%./.> 
t = i " 
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where Xk(a), k = 1, 2, ..., are the eigenvalues of A(a) associated with vk, k = 1,2,...; 
i.e. A(a) vk = Xk(a) vk, while <•, •> denotes the inner product in H. 

In general, the eigenfunctions of A(a) may depend on a, but we restrict a class 
of considered systems to those, for which vk, k = 1, 2, ..., do not depend on the 
vector a in the sense that 

(2.4) - ^ = 0 , Z = l , 2 , ...,r; k = \, 2, .... 
da{ 

The disturbance w(-) is assumed to be an //-valued Wiener process (see [3] for 
definitions) which has the representation: 

00 

(2.5) w(t) = £ pk{t) . vk with probability 1 , 
k=l 

where fik(t), k= 1,2,..., are mutually independent real Wiener processes with 
incremental covariances y,.., k = 1, 2, ..., and 

00 

(2.6) X yk . Xk(a) < co . 
k = l 

The initial condition q0 and vv(*) are required to be independent and the coefficients 
q0k, k = 1, 2, ..., in the following representation 

00 

<7o = E 9o*»* 
k=l 

are assumed to be mutually independent random variables. Concerning the input 
signal u(') it is assumed that for every s, t > 0, (Tt(a) u(s)) e DA and 

(2.7) £ Xk(a) \щ(s)\ ds < 
k=l 

00 

0 

where uk(t), k = 1,2,..., are the coefficients in the representation 

00 

(2.8) u(i) = £ uk(t) . vk . 
k=l 

Using the above assumptions it is easy to verify that (2.6) and (2.7) imply conditions 
(5.41), (5.42) of Theorem 5.35 in [3] to hold. This means that the unique strong 
solution of (2.1) exists and it is of the form 

(2.9) q(t) = Tt(a) q0 + Tt_s(a) u(s) ds + Tt_s(a) dw(s) . 

Remark 1. Taking into account that a is unknown we must require the above 
conditions to hold for every vector a from a certain set of admissible parameters. 
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3. EXPERIMENT CONDITIONS 

We assume that the vector a is estimated from measurements of the form 

(3.1) yk(t) = <g(t),vky, k = l,2,...,K, te[0,T] 

where K < oo is a given number. This form of measurements implicitly assumes 
that all measurement and modelling errors are included in the disturbance w(-) 
in (2.1). 

In practice, measurements are possible in a finite number of spatial points and 
thus integrals in (3.1) have to be approximated by a quadrature type formulas. 
Taking into account that, for carefully selected measurement points and weights, 
quadrature formulas are very accurate, we take measurements (3.1) for further 
considerations. 

Concerning the input signal u(-) we assume that if it is an open loop control 
then at least the functions uk(t) = <w(f), vk}, k = 1, 2 , . . . , K, t e (0, T) are precisely 
known (possible errors being again included into w(')). In Sections 5, 6, 7 we also 
consider a feedback type control. In this case we assume that the feedback law is 
exactly known and it is nonanticipating, i.e. u(t) is measurable with respect to sigma 
field generated by q(s), 0 _ s _ t. 

4. PROTOTYPE OF THE IDENTIFICATION ALGORITHM 

From (2.2), (2.9) and (3.1) one can see that application of the output least squares 
as an identification criterion would lead to a complicated, iterative type optimization 
algorithm. Also application of the maximum likelihood approach, although possible, 
yields an estimator, which is difficult to investigate. For this reason a simple, non-
iterative type algorithm is proposed. 

The suggested algorithm uses minimization of the least squares twice. At the first 
step the estimates Xk, k = 1,2,..., K, of the values Xk(a), k = 1,2,..., K, are obtained. 
At the second step, the least square criterion is used to derive the estimate a by 
minimizing 

(4.1) I2(a) = i(Xk-Xk(a))2 

jt = i 

with respect to a e Wr. 

A crucial point in performing the second step lies in the fact that (2.4) implies the 
affine dependence of Xk(a) on the vector a. More precisely, we have: 

Lernma 1. If condition (2.4) holds and the eigenfunctions of A(a) are such that 

(4.2) —QiVk=Q4-^; i,j = l , 2 , . . . , r , fe = l , 2 , . . . 
oaj ooj 

then there exists a sequence of vectors ock = [aj^, a[2), ..., «jr)]', and numbers a^0), 

474 



k = 1, 2 , . . . , for which 

(4.3) Xk(a) = a[0) + a'k . a , k = l,2,..., 

where prime " ' , ' denotes transposition. 
Furthermore, every vk is simultaneously the eigenfunction of all the operators 

Qh i = 0, 1, ..., r, and 

(4.4) Qfik = *[%k , i = 0,\,...,r; k = 1, 2 , . . . . 

Proof. Assumption (4.2) allows us to differentiate both sides of the equality 
A(a) vk = Xk(a) vk with respect to a}, j = 1, 2, ..., r. These yield 

(4.5) A(a) & = Xk(a) & + %& vk - Q}vk , j = 1, 2, ..., r 
ca} oa} oa} 

and together with (2.4) we obtain 

(4.6) ~vk= Q}vk, j= l , 2 , . . . , r . 
da} 

Taking into account that neither Q}, nor vk depend on a, we conclude from (4.6) 
that dkj£a} is a constant not depending on a. 

Denoting a[j) = d,Jda} one can see from (4.6) that (4.4) holds for j = 1, 2, ..., r. 
Using this fact we get from the definition of vk and 

(4.7) Q0vk = (Xk(a) - £ ajj> . at) vk. 
i = i 

Again Q0 and vk do not depend on a and thus ock
0) = Xk(a) — a'ka must be a constant, 

which does not depend on a. This statement proves (4.4) for i = 0 and simultaneously 
justifies (4.3). • 

In order to present the identification algorithm let us take inner products of (2.1) 
and vk, k = 1, 2, ...,K (existence of and uniqueness of the solution of (2.1) justifies 
these operations). Using (2.5), (2.8) and the data (3.1) these yield: 

(4.8) dyk + Xk(a) . yk . dt = uk . dt + dpk , k=i,2,...,K 

with given initial conditions yk(6) = qk0, k = 1, 2, ...,K. 

Remark 2. The assumptions made in Section 2 imply that yk(t), t e [0, T] are 
mutually independent stochastic processes. 

Formulas (4.3) and (4.8) are crucial for the following prototype of the proposed 
identification algorithm. 

Step 1: Basing on (4.8) find estimates XJ of Xk(a) according to the formulas: 

(4.9) 11 = Уk àyk + 
o 

ykuk dř 
o í 

Jo 

yl
kdt, k= \,2,...,K. 
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Step 2: Using Xk, k = 1,2, ..., K, and (4.3) find the estimate aT by solving the system 
of normal equations 

(4-10) - t o - i ( £ - c C K 
k= 1 

K 

with respect to a e W, where £ = £ aka'k 
t = i 

One can notice that (4.9) are the maximum likelihood estimates of Xk(a) (see [6] 
for a derivation of the likelihood ratio), which coincide with the least squares estima
tes due to the Gaussian distributions of the Wiener processes fik('), k = 1, 2, ..., K. 
We also remark that the system (4.10) always has a solution, since dT minimizes 
I2(a). Uniqueness of dT can be assured if the matrix [a,, a2, ..., aK~\ is of the rank r 
(see [12] for the proof), what can be achieved by suitable choice of the modes vu u2, ... 
..., vK and it is further assumed. 

5. ESTIMATION ACCURACY AND SEQUENTIAL IDENTIFICATION 
ALGORITHM 

From Remark 2 and (4.9) it follows that the estimators Xk, k = 1,2, ...,K, are 
mutually independent random variables. For this reason the covariance matrix 
of dT is given by 

K 

(5.1) cov (dT) = C X ^ '[(11 - Ull) (11 - - £ ) ] C = 
k ,m = 1 

= C [ ^ a X v a r ( i J ) ] C , 
t = i 

where C = B~', while var (•) means the variance. Taking the arithmetic mean of 
parameter estimate variances as a global measure of the estimation accuracy we 
obtain (5.1): 

K 

(5.2) JT(u) = tr [cov (dT)\\ = X ck var (1J) , 
k=L 

where the symbol JT(u) is used in order to indicate the dependence of the estimation 
accuracy on the input signal u and the observation time T. In (5.2) ck = a'kC

2ak, k = 
= 1,2, ...,K, are positive constants depending only on the numbers of modes 
that are measured. 

It is a common practice in experiment design for identification of LPS (see e.g. 
[4], [7]) as of DPS (see e.g. [10], [11]) to use the Cramer-Rao lower bound (CRLB) 
for evaluation of an estimation accuracy instead of exact but complicated expressions. 
We shall adopt the same approach here. Assuming that for a large observation 
time Tthe estimation bias is negligible we have the following CRLB (see [6] for its 
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derivation) 

(5.3) v a r ( l [ ) ^ l/E 

Hence, (5.2) yieid 

fT 

/ 
o 

y2

k(t)dt, k= \,2,...,K. 

(5.4) j r ( « ) > y : ^ / E 
г 

y2

k(t) dř 
o 

and one can see that input signals which produce high energies of the modes 1, 2, ... 
...,K are desirable from the estimation accuracy point of view. On the other hand, 
behaviour of higher modes does not influence the estimation accuracy and thus we 
shall exclude them from further consideration assuming that they are controlled 
in a certain way, e.g. by the minimum variance control law or uncontrolled but 
stable. However, high energy outputs are usually not admissible in practice and for 
this reason the following expression is proposed as the experiment design criterion: 

(5.5) JT(u) = i ejE f [y2
k(tj] dt + v £ E f [ # , ) ] dt . 

«"-i Jo t = 1 Jo 

In (5.5), v > 0 is a given constant, which can be interpreted as a cost per unit of the 
average output energy (given by the last term in (5.5)). 

Minimization of JT(u) with respect to u(-), under constraints (2.8) and (4.8), can 
be performed in two steps. Namely, by finding the values E J*Q [_vjt(0] df> lc = L 2 , . . . , 
minimizing (5.5) and then synthetizing an input signal, which assure these values. 
Realization of the first step yields 

(5.6) E [ [yt(t)]2 dt = V(cjv) , k = 1, 2, ..., K , 
Jo 

where }'*(•). k = 1,2, ...,K, denote stochastic processes minimizing (5.5). For 
these processes the minimum value of (5.5) equals 

(5.6') /J-2EVM, 
k=l 

while 

(5.6") JT(u) ^ iJ* . 

It remains to show that such processes can be generated by (4.8) using nonanticipat-
ing control laws. For this purpose let us try to find the constants 8k, k = 1,2, ..., K, 
in feedback laws of the form: 

(5.7) uk(t) = Sk(wk(t) - yk(t)), k=\.2,...,K 

where vvfc(-), k = 1, 2, ...,K, are set point functions of the modal controllers that 
can be chosen by an experimenter. 
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A traditional approach to this problem would be as follows. Substituting (5.7) 
into (4.8), solving the obtained equations and calculating E ("J y\(t) dt in terms of 
8k one can convert (5.6) into nonlinear equations with respect to Sk. Sufficient condi
tions for existence of solutions of these equations can be given, at least for a large T 
and wk(') = 0. This approach, however, has an important drawback. Namely, it is 
difficult, if ever possible, to show that the equality sign in (5.4) can be attained for 
finite T, and thus, only simulation experiments can confirm advantages of such 
a choice of 8k. For this reason another approach is proposed here. It is based on cer
tain properties of sequential estimators established in [6] (see also Section 6). 

We need, however, to extend slightly a notion of the stopping time (see [6] for 
definitions). Let Ek(t) be the sigma-field of events generated by the process yk(s), 
se [0, t], k = 1, 2, ...,K. Any nonnegative random variable xk, which is such that 
V(t[o,oo){co: rk(0)) = t} e Ek(t) will be further called the kth processing time. 

The above condition means that a decision to stop processing of kth measurement 
yk(') or to continue its observation and processing should be based on observations 
prior to time f only. In the above terms the stopping time x, defined as x = max xk, 

is a random variable, which defines end of all the observations processing. For our 
purposes we define the following processing times xk, k = 1, 2, ...,K 

(5.8) Tk = infh:f y*(t)dt = vWv) 

Remark 3. From (5.8) it is clear that if processing of the feth measurement is 
stopped when for the first time J0 yl(t) dt = sj(ck\v) then condition (5.6) is fulfilled. 
This is true for every value of gain constants 8k, k = 1,2, ...,K, provided that 
xk, k = l,2,...,K, are finite almost surely (see Section 6). These definitions and 
substitution of (5.7) into (4.8) and (4.9) yield the following sequential identification 
algorithm with random processing times: 

Step 1. Basing on measurements of the system 

(5.9) dyk = ~(Xk(a) + Sk) yk dt + dkwk dt + dpk, k = 1, 2, ..., K , 

find the estimates Xk of Xk(a) according to the formulas 

(5.10) Ãk = -v
;(v/c,) 

— fï/í ' í k 

Уk dУk ' ~àk ЩУk d t 
— í. 0 % 0 

ðk, k=í,2,...,K 

where xk are defined by (5.8). 

Step 2. Find the estimate a by solving the system of equations: 

(5.11) Ba = I ( 4 - < 4 0 ) K 
k = l 
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Performance of the above algorithm together with the control law is shown in Fig. 
1, where Iu ...,IK denote the eigenvalue identifiers (5.10). 

Fig. 1. Scheme of the sequential identification algorithm and the control law. 

Computer implementation of this algorithm will be discussed in Section 7, while 
its theoretical advantages are shown in the next section. 

6. PROPERTIES OF THE SEQUENTIAL IDENTIFICATION 

ALGORITHMS 

Properties of the above algorithm can easily be deduced from the following result 

of Shiryayev [6]. Shiryayev has considered the system 

(6.1) dy = ay dt + d/?(f) , t > 0 , 

where a is a parameter to be estimated from the process y(t), t e(0, t), while /?(•) 
is a Wiener process with unknown incremental variance. As the estimator a of a 
he has proposed 

,.., . 1 [? 

Jo 

where the stopping time T is defined by 

V dv 
H ' 

(6-3) T = inf <̂  s y2(t)dt = HІ, 
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for a given H > 0. The following properties of a have been proved in [6]: 

P 1) Unbiasedness; Ea = a. 

P2) E(a - a)2 = \\H . 

P 3) The probability distribution of a is Gaussian. 

P 4) The stopping time Tis finite, i.e. 

P{ t < oo} = 1 for every a . 

P 5) Let si be a class of all unbiased estimators of a, which are such that its stopping 
times Tare finite and 

n-
(6.4) E y2(t) dt ^ H. 

Jo 

The estimator a e «c/ is the best in this class in the sense that 
(6.5) E(a — a)2 rg E(a — a)2 for any a e s/ . 

P 6) The following bounds hold for the expected value of the stopping time: 

(6.6) Ef < 2 . (|a| . H + 2 VII) + (34// + 8 . a2 . H2)1'2 

and 

(6.7) ET^-2.a.H for a < 0 . 

Proofs of P l ) - P 6) are based on the equality 

(6.8) a = « + — | % d£(f) 
II Jo 

and on the fact that the integral in (6.8) is a zero mean Gaussial random variable 
with the variance H (see [6]). Let us note that for theoretical purposes (5.10) can be 
rewritten as follows: 

(6.9) Xk = Xk(a) - V(v/et) ykdftk, k=l,2,...,K. 

Comparison of (6.8) and (6.9) shows that statistical properties of Xk are analogous 
to P 1) — P 6) although the systems (5.9) and (6.1) are different. In particular, we have 

R I) EXk = Ak(a) , k=\,2,...,K. 
R 2) E(4 - Ak(a))2 = V(v/d.) , k=l,2,...,K. 
R3) Xk, k = 1, 2, ...,K, are mutually independent Gaussian random variables. 
R 4) P{xk < oo} = 1 , k = 1, 2,...,K. 
R 5) Xk is the best unbiased estimate of Xk(a) (in the same sense as in P 5). 

In order to investigate properties of a let us note that from R 1), R 2), R 3) and 
(4.3) it follows that X.k can be expressed as follows 

(6.10) Xk-a{°> = x'k.a + ek, k=\,2,...,K, 
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where sk, k = 1,2, ...,K, are mutually independent zero mean Gaussian random 
variables with the variances 

(6.H) var(8t) = V(<fc/v), k=\,2,...,K. 

These facts and (5.11) imply that 

(6.12) a = C.^(Xk-a^).ak 
j t = i 

is the least squares estimate of a and all assumptions of the Gauss-Markov linear 
regression scheme are fulfilled (see e.g. [12]) if (Xk — a[0)), k = \,2, ..., K, are 
treated as observations. Thus, all the following properties of a follow at once from 
the theory of a regression function parameters estimation (see e.g. [12]): 

T 1) Unbiasedness: Ea = a . 
T 2) Estimator a possesses Gaussian distribution with the covariance matrix 

K 

cov (a) = C . [ £ ak . a'k . y/(vjck)] . C . 
t = i 

T 3) Estimator a is efficient in the sense that the Cramer-Rao lower bound in (5.6") 
is attained. 

T 4) The sequential identification algorithm of Section 5 ensures the minimum value 
of the JT(u) criterion given by (5.6'). 

Remark 4. Concerning T 3) it is to be noted that the Cramer-Rao lower bound 
(5.4) is valid also for sequential estimates (see [6] for the proof). 

It should be stressed that T 1) -r T 4) hold for finite observation time, since from 
R 4) it follows that max tk is almost surely finite. This is in contrast with estimators 

1 SkgK 

proposed so far for parameter estimation in DPS, which can be only asymptotically 
unbiased and efficient. 

It is also worthy to notice that the estimation accuracy, given by (5.6"), does not 
depend on system parameters such as unknown parameters a, initial conditions, 
variance of disturbances etc., In particular, the estimation accuracy does not 
depend on feedback gains Sk and set points wk, k = 1, 2, ...,K. These robust type 
properties are also in contrast with properties of estimators used so far and they 
put an experiment design problem in a new light. Namely, the stopping time x can 
be large if the above mentioned variables are not properly chosen as it is confirmed 
by simulation studies in the next section. Thus, the experiment design problem is 
to minimize ET rather then the estimation accuracy, since the last one is determined 
by v and the measured modes. 

Using the same technique as in [6] bounds on ETfc, similar to P 6), can also be deri
ved in our case. This will not be done here, since bounds P 6) applied to our problem 
with wk = 0, k = 1,2, ..., K, occurred to be very rough in comparison with simulation 
results. 
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7. SIMULATION EXPERIMENTS 

In this section results of extensive simulation studies are reported. Their aims are 
twofold. Namely, to verify experimentally robust properties of the sequential esti
mator with respect to system parameters and, what is more important, to investigate 
their influence on expected value of the stopping time. 

For simulation purposes the following system has been modelled 

dq(x, t) _ 82q(x, t) 
- —— - — Q . 

dt dx2 

(7.1) U-Ц^> = ӣ i --ŞŞ-У - a2 . q(x, t) + u(x, t) + s{x, t) , 
~-.Z 

for x e (0, K) with the boundary conditions 

(7.2) q(0,t) = q(.,t) = 0. 

In (7.1) e(x, t) denotes zero mean Gaussian noise uncorrelated in space and time. 

The operators A(a) h = —ai(d2hldx2) + a2h, defined on the Sobolev space H0 

(see e.g. [3] for definition), possesses all the properties required in Section 2. In 
particular, its eigenfunctions and eigenvalues are as follows: 

(7.3) vk(x) = 7(2/") s 'n kx , Xk(a) = aLk2 + a2 , k = 1, 2,.... 

The system (7.1), (7.2) is assumed to be controlled by the memoryless, time-
invariant feedback: 

K 

(7.4) u(x, t) = }_ vk(x) . Sk. (wk - yk(t)), 

where the constant wk and 8k, k = 1,2, ...,K, are the set points and the amplification 
factors of each mode and they can be chosen by an experimenter. In (7.4), yk(t), 
k = 1,2, ...,K, denote available output signals defined as follows 

(7-5) Уk(t) q(x, t) vk{x) dx , k = 1, 2,..., K . 

Using (7.1) and (7.4) we infer that they are governed by: 

(7-6) yk(t) = -Xk(a) yk(t) + 8k(wk - yk(t)) + sk(t), 

where sk(t) = §0z(x,t)vk(x) dx, k=l,2,...,K. The equations (7.6) have been 
solved by the simplest scheme: 

(7-7) yk(t„+1) - yk(t„) = h\_-Xk(a) . yk(tn) + Sk(wk - yk(t„) + ek(tn)] 

where tn+1 — tn = h, t0 = 0, n = 1,2, Estimators of eigenvalues defined by 
(5.10) have been replaced by their discrete analogs 

Nk Nk 

(7.8) Xk = - 5k - U(ylck) _Z yk(t„) [yk(tn+1) - yk(tn)_ -8k.wk.__ yk(tn) . h) . 
n = 0 n = 0 
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Remark 5. According to (5.8) the number of steps Nk in (7.8) should be chosen 
such that Tk = Nk.h. This,however, requires a large computational burden and there
fore the following simplified condition were used instead of (5.8). The number of 
processing steps of the kth mode — Nk is the smallest integer, for which 

(7.9) 
Nk 

0-9V(c»/v)š£j#O-*-W(c*/v) 

During all the simulations reported below the step size h = 005, while other 
system parameters were changes around the following — nominal — values: ax = 1, 
a2 =0-1 , v = 10~6, K = 5, yk(0) = 10 + h . zk, k = 1, 2, ...,K, where zk are zero 
mean Gaussian random variables with the variances equal to 100. Also variances 
of the system disturbances var (e7c(f„)) = 100, k = 1,2,...,K, for all n. Each run 
reported below has been obtained from averaging results of 20simulations performed 
for the same set of system parameters. Empirical mean values and variances obtained 
by averaging 20 realizations are denoted by E~au E~<~2, var~ (a,) etc. 

Simulation runs have been divided into the following groups: 

Group I. In this group all the parameters have their nominal values, while the set 
points wk = 0, k = 1,2,..., 5. This means that each mode, has been controlled 

20 

-5 гe 

Fig. 2. Empirical means of the number o 
processing steps: E~JV, , 

-0) -05 -4 - г -5 æ 
Fig. 3. Empirical means of the number of pro
cessing steps: E~7V3  

E~;V, x (Group I) . 
' J V 3 - X—X—X , 

E/V5 - o -o (Group I). 

exactly in a way proposed in [6]. Simulations have been performed for x = 
= — 1, — 2, ..., —5 where x = bk\Xk-, k = 1, 2, ..., 5, i.e. for positive feedback gains 
of each mode. Results for negative feedback gains were not obtained since for x = 
= 01 we had E~N = 410, where N = max TV,.. 

i s u p 

Group II. The aim of these experiments was to investigate the influence of nonzero 
set points on mean stopping time and the estimation accuracy, keeping other para-
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Oí •05 ae 

Fig. 4. Empirical variances of the estimates 
var~ ( o , ) - x — x—x , var~ (d 2) 

(Group I). 

Fig. 5. Empirical means of the estimates 
E đ, - — . E ~ „ 2 

(Group I). 
X x — X 

meters at their nominal values. Results are reported for x = 1,2, ...,5 (i.e. for 
negative feedback gains) with the same value of each mode set point w = vv1 = ... 
... = vv5 equal to: a) vv = 10, b) vv = 15, c) w = 20, d) w = 30. 

Group III. Simulations have been performed for different values of the control 

0.0U 

0,02 

«-S 

M-Һ 

«20 

ыoo\ 

lï 

\ 2 i ': 5 X 

Fig. 6. Empirical variances of the estimates 
- set points w = 10, 

x—x—x - set points w = 15 (Group II). 

5 00 

200 

J0Û 

50 f 

20 

< 2 3 A 5 £ 

Fig. 7. Empirical means of the stopping times 
for different set points: w =- 10, 

X — X — X _ w = 15 , O—O—O - w — 2 0 , 

A — A —A - w — 30 (Group II). 
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Fig. 8. Empirical means of the estimate 
w --- 10, x—x—x - w - 15 

(Group II). 

Fig. 9. Empirical variances of the estimates 
versus energy price v. o—o—o - var~ (dt), 

A — A — A - v a r ~ (a-,). 

cost v, while the system parameters retain their nominal values. Results are reported 
for x = 1 and w. = ... = ws = 20. 

Group IV. The aim of these experiments was to illustrate that the estimation 
accuracy does not depend on "true" values of the unknown parameters. The rest 
of the system parameters was as in Group III with v = 10 - 6 . These results are not 
drawn in figures, since the estimates variances were almost perfectly constant. 

Remark. In Fig. 6 the empirical mean S of the following values 

is drawn. k = 1 « = 0 

The obtained results would suggest the following conclusions: 

C 1) From Fig. 2 and Fig. 3 it follows that sequential estimators of eigenvalues 
in the form proposed in [6] (i.e. with zero set points) can be recommended in practice 
only in cases when positive feedback is admissible. For negative feedback expected 
processing times can be too long. 

C 2) The proposed here, sequential estimator with nonzero modal set points has 
sufficiently short expected stopping time also for negative feedback. This time is 
smaller for larger set points (see Fig. 7). Also greater feedback gains are desirable 
in order to achieve set points faster. 

C 3) From Fig. 6 and Fig. 8 it follows that empirical mean and variance of the 
estimates are almost independent of 5k, k = 1, 2, ...,K. Observed fluctuations are 
rather caused by difficulties in keeping S constant (see Remark 5). 

C 4) Fig. 9 shows that the estimation accuracy depends strongly on the energy 
cost v. Small values of v are desirable from this viewpoint but one should take into 
account related increase of ET. 
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8. CONCLUDING REMARKS 

In the paper a sequential parameter estimation algorithm has been proposed 
and investigated. The estimators possess all good statistical properties usually required 
and they are proved for observations of finite expected duration. It was shown that 
this duration can be decreased by suitable choice of modal controllers set points 
and gains without influencing the estimation accuracy. The algorithm is of non-
searching (noniterative) type what results in its high reliability in finding exact 
estimates. In the form presented here it is applicable to the class of linear DPS 
with eigenfunctions independent on unknown parameters. This limitation can be 
partly overcome by using linearization of eigenvalues with respect to a and repeated 
application of the algorithm. Further efforts seems to be desirable in order to obtain 
bounds on the expected stopping time of the algorithms and to investigate an in
fluence of PI and PD control laws on it. (Received June 6, 1985.) 
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