
Kybernetika

Václav Peterka
Control of uncertain processes: applied theory and algorithms

Kybernetika, Vol. 22 (1986), No. Suppl, (1),3--72,73--101

Persistent URL: http://dml.cz/dmlcz/125576

Terms of use:
© Institute of Information Theory and Automation AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125576
http://project.dml.cz


Kybernetika 
CONTROL OF UNCERTAIN PROCESSES: 

APPLIED THEORY AND ALGORITHMS 

VACLAV PETERKA 
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PRAHA 



Some advances in digital control of continuous linear stochastic processes with unknown 
parameters are reported. The theory is developed with emphasis on algorithmic and numerical 
aspects. Stochastic input-output models of AR.MA form, contingently multivariate and with 
time delay, are used to represent the process to be controlled but, for numerical reasons in cases 
of fast sampling rates, also the theoretically equivalent Delta models are considered in parallel. 
PASCAL procedures, suitable for real time computation and microprocessor implementation, 
are given for the main resulting algorithms. 

1. INTRODUCTION 

Most processes met in practice are uncertain in the sense that it is not possible 
to determine what the future output of the process precisely will be. When modelling 
such process for control-design purposes two kinds of uncertainties are encountered. 
The first one is due to stochastic nature of real processes. This uncertainty cannot 
be removed but it can be described by suitable stochastic models and thus taken 
into account. The second kind of uncertainty arises when it is a priori not known 
which stochastic model in the set of possible models is the "true" one. This second 
kind of uncertainty can be removed, at least partially, by identification of the stochastic 
model on the basis of the input-output data observed during its operation. The follow­
ing text deals with direct digital control of processes subject to the both above 
uncertainties. 

The paper is a report on some recent advances in the research of industrial process 
control carried out at the Institute of Information Theory and Automation of the 
Czechoslovak Academy of Sciences. It can be considered as a selfcontained continua­
tion of the survey of former results presented by the author's colleagues in [3], 
(For references see end of each section.) 

1.1. Motivation and layout of the paper 

The LQG control theory appears to be a suitable basis for designing of control 
algorithms. However, when trying to apply practically the available theoretical 
results to industrial control problems difficulties of several kinds arise. The stochastic 
state space models in their general form, as considered in the standard theory, are 
often not available and cannot be identified solely from input-output data. The 
problem formulation often has to be nontrivially modified to meet the practical 
needs. Theoretical results (e.g. the matrix differential or difference equations of 
Riccati type) are not suitable for numerical calculation with limited precision of 
algebraic operations. 

Most but not all of these difficulties can be removed by considering the input-
output models of regression type as described in [3] and [7]. The regression models 
can be easily identified even when their parameters vary in time [4, 5], and all 
successful industrial applications we have been involved in are based on these models. 



However, the choice of a suitable sampling rate still remains to be a problem. Simple 
self-tuning controllers reported in [1] have been designed for relatively long sampling 
period which must be chosen by the user and is important for proper functioning. 
Faster sampling gives, in general, better quality of control but then a higher order 
of the employed regression model is required in order to cover a sufficiently long 
past history of the process. This, of course, leads to higher computational burden 
both for process identification and control law synthesis. In case of very fast sampling 
rates, approaching the continuous control, also numerical difficulties can be expected. 

In order to cope with fast sampling rates attempts have been made to approach 
the problem from the side of optimal continuous control. Unfortunately, the conti­
nuous stochastic control theory based on state space models leads to feasibility 
problems and seems to be rather an interesting academical topic than a useful tool 
for practicing engineers. Until now only asymptotically optimal synthesis based 
on polynomial algebra has been found practicable in real-time computation when 
limited to simple low order cases [6]. It also turns out that a proper discretization 
of the continuous solution, as required for digital implementation, is not a simple 
task as it might seem. 

These unsuccessful, or only partially successful attempts led the author back to 
discrete-time standpoint but with different form of the input-output models. It has 
been found that the input-output relation, when expressed through difference oper­
ators rather than as weighted sum of neighboring samples, is less sensitive with 
respect to rounding errors, especially in case of fast sampling. Independently, the 
same observation has been made by Goodwin [2] who introduced the name "Delta 
models" for such representation of sampled continuous processes and also gives 
some analyses supporting this observation. In case of fast sampling Delta models 
can be considered as a suitable approximation of stochastic differential equations 
while for slower sampling rates they are just an alternative form of standard ARM A 
models with no approximation involved. 

In the present paper the LQG control and estimation theory is revised with emphasis 
on algorithmic and numerical aspects. Both ARM A and Delta models are considered 
in parallel. Numerically robust (insensitive with respect to rounding errors) and 
efficient algorithms for real-time identification and optimum control synthesis, 
suitable for self-tuning control, are developed. The presentation is arranged in the 
following manner. 

In the rest of this Introduction the considered control loop with continuous 
stochastic process and digital controller is described, practical objectives are stated,, 
and the main notational conventions are introduced. 

Section 2 is devoted to basic tools which will be repeatedly applied throughout 
the paper. They are: quantitative description of uncertainties by probability distribu­
tions in Bayesian interpretation, the elementary algorithm of "dyadic reduction", 
and the application of the latter to decomposition and minimization of quadratic 
forms and to operations with multivariate normal probability distribution. 



In Section 3 linear stochastic input-output models of positional and incremental 
types and of ARMA and Delta forms are introduced and transformed into a uniform 
canonical state-space form suitable for numerical solutions. Simple procedures for 
digital simulation of continuous stochastic processes and for transformation 
of models between ARMA and Delta forms are included. 

The special state form of the stochastic input-output models makes it possible 
to derive the filter for real time estimation of the model state which is simpler and 
numerically more robust than the standard Kalman filter. This is shown in Section 4. 

Optimum control synthesis is the topic of Section 5. After general discussion 
of the problem suitable quadratic criteria are introduced and minimized for the above 
stochastic models with known parameters. The special canonical form of the state-
space model is exploited to obtain effective numerical algorithms yielding the optimum 
control law operating on the estimate of the state (more precisely, on the expected 
value of the model state conditioned on the known past data). 

The case of unknown parameters is considered in Section 6, where the problem 
of simultaneous parameter estimation and state estimation (and prediction in case 
of time delay) is solved. It is shown that, for given or suitably chosen c-parameters 
of the ARMA model or its Delta form, the problem can be solved exactly within 
normal distributions. Algorithms are derived which update the statistic which is 
sufficient both for parameter and state estimation and defines the corre3ponding 
joint probability distribution. 

In Section 7 the problem of dual control is discussed and a well feasible numerical 
solution of the LQG self-tuning control is suggested. 

To support proper understanding of what the algorithms really do and what is 
the meaning of each number entering the numerical computation each section starts 
with the conceptual solution of the given problem in terms of conditional probability 
distributions. Then this general solution is specialized for the considered linear 
stochastic models, the corresponding algorithms are derived, and finally if appro­
priate, the PASCAL procedures for immediate use are listed. 

If it will aid to simplify the exposition or to make the main ideas more plain the 
single-input single-output case will be considered first. However, care will be exercised 
so that the extension to multivariate case outlined afterwards may be straightforward. 

1.2. Notational conventions 

The control loop considered in the sequel is schematically sketched in Fig. 1. 
The process P is controlled by a digital controller C generating a sequence of numbers 
u[t); t = 1, 2, 3, ..., vectors in multivariate case, which govern the actuator(s) used 
to manipulate the process. The controlled output yc of the process is assumed to be 
measured and sampled with the same period as the inputs u[t) are generated. The task 
of the controller is to generate the inputs in such a way that the controlled output 
within a given control horizon be as close as possible to its prescribed values w, 



the command signal. To perform this task the controller can make use of an auxiliary 
output ya which is not subject to control but carries an additional piece of information 
about the state of the process. If available for measurement, also the sampled external 
disturbance v can be introduced as a feedforward to improve the performance 
of the controller. 

Fig. 1. Control loop with continuous stochastic process P and digital controller C 

The total process output will be denoted as y = {yc, ya}. All digital signals in the 
control loop can be, in general, multivariate. Of course, the dimension of the con­
trolled output yc is the same as of the command signal w. 

Time indexing. The signal samples to which the same discrete time t is assigned 
are related to the sampling period in which the input u(t) is generated. However, 
within one sampling period it is assumed that u(t) is determined first and then the 
samples v(t) and y(t) follow. This means that when the input u(t) is being decided 
only the signal samples observed on the process up to and including the sampling 
period (t — 1) are available, the samples v(t) and y(t) are not known yet. 

According to the way how the command signal is made available for the controller 
the following operating modes will be considered. 

Regulation. The command signal is a given constant, a fixed setpoint, which can 
be set to zero if the controlled output is measured relatively to this fixed reference 
value. 

Program control. The command signal is preprogrammed in advance for the 
entire control horizon and this prior information is available for the controller. 
This means that the controller when generating u(t) can operate also on w(t + k), 
k>0. 

Positional servo. When u(t) is being generated the future course of the command 
signal w(t + k), k > 0, is uncertain. A suitable model for this case will be introduced 
in Section 5. 

Some abbreviations 
p.f. . . . probability function 
p.d.f. . . . probability density function 



c.p.d.f, 
LT-matrix 
UT-matrix 
monic LT-matrix 
LD-factorization 

Main symbols 

(3) 
(5.3) 
M' 
tr(M) 
det (M) 
\D;Mx\ 

õx 
t 

m 

Ay(t) 
y(j ---k) 

conditional p.d.f. 
lower triangular matrix 
upper triangular matrix 
LT-matrix with l's on the main diagonal 
factorization of a nonnegative definite matrix M = LDL' 
where L is a monic LT-matrix and D is a diagonal matrix 
with nonnegative diagonal elements 

equation (3) in the current section 
equation (3) in Section 5 
transposed matrix M 
trace of a square matrix M, the sum of diagonal elements 
determinant of a square matrix M 
nonnegative definite quadratic form x'M'DMx where M 
is a rectangular matrix, D is a diagonal matrix with non-
negative elements, and x is a column vector 
dimension of the vector x 
discrete time, time index of a sampling period; the observation 
of the process (gathering of data, not necessarily control) 
starts at the sampling period indexed by t = 1 
continuous time 
sample of a signal (here output) related to the sampling 
period with time index t; in general a set, in algebraic ex­
pressions assumed to be ordered into a column vector 
backwards difference, Ay(t) = y(t) — y(t — 1) 
set of all signal samples in the given time span, j fS t fg k; 
for j > k the set is empty 

Model-related variables and parameters 

s(t) . . . state of the process model in canonical form 
x(t) ... model state extended by the process output, x(t) = {y(t), s(t)} 
ah bh cu di . . . coefficients of the input-output stochastic model, matrices 

in multivariate case 
A,b,c,d . . . matrix coefficients of the canonical state model 
n . . . order of the input-output model 
6 . . . set of uncertain model parameters 

Probability distributions 

p(a\b) . . . p.d.f. or p.f., according to the type of the argument a, 
conditioned on b 

p(y(t) | - — 1; «(*)) . • • abbreviation for 

p(y(t)\u{l ... t), y(l ... t - l),v{l ... t - l)); 



t — 1 in the condition alone means conditioning on all 
data observed on the given process up to and including the 
sampling period t — 1, e.g. 

p( * | t ~ 1) . . . abbreviation for 

p(. | a ( l . . f - l),y(l-t- i),v(\ . . * • - 1)) 

E[a] . . . expected (mean) value of a random variable a 
j>(* j t — 1; u(t)) ... abbreviation for the expected value 

E[y(t)\u(l - t), y(l •• t - l),v(l •• t - 1)]; 
similarly for s(t | t — 1) and x(t | t — 1) 

Cov [a, b] . . . covariance E[(a - E[a]) (/J - E[/3])'] 
Var [a] . . . Cov [a, a] 
Rx(t \t — I; u(t)) ... covariance matrix Var [x[t) | t — I; u(t)] 

R E F E R E N C E S  

[1] J. Bohm, A. Halouskova, M. Karny and V. Peterka: Simple LQ self-tuning controllers. 
9th World Congress of IFAC, 1984, Budapest, Hungary, Preprints Vol. VII, 171-176. 

[2] G. G. Goodwin: Some observations on robust estimation and control. 7th IFAC/IFORS 
Symposium on Identification and System Parameter Estimation, 1985, York, UK, Preprints 
Vol. 1, 851-859. 

[3] M. Karny, A. Halouskova, J. Bohm, R. Kulhavy and P. Nedoma; Design of linear quadratic 
adaptive control: theory and algorithms for practice. Supplement to the journal Kybernetika, 
Vol. 27 (1985), No. 3, 4, 5, 6. 

[4] R. Kulhavy and M. Karny: Tracking of slowly varying parameters by directional forgetting. 
9th World Congress of IFAC, 1984, Budapest, Hungary, Preprints Vol. X, 78-83. 

[5] R. Kulhavy: Restricted exponential forgetting in real-time identification. 7th IFAC/IFORS 
Symposium on Identification and System Parameter Estimation, 1985, York, UK, Preprints 
Vol. 2, 1143-1148. 

[6] I. Nagy and V. Peterka: A hybrid LQ self-tuning controller. 7th IFAC/IFORS Symposium 
on Identification and System Parameter Estimation, 1985, York, UK, Preprints Vol. 1, 
1025-1030. 

[7] V. Peterka: Predictor-based self-tuning control. Automatica 11 (1981), 39—50. 

2. BASIC TOOLS 

In this section the tools are introduced which will be repeatedly applied in the 
following sections. 

First the Bayesian methodology for dealing with uncertainties and for solving 
statistical problems will be expounded. This will be the main tool in conceptual 
solutions of particular problems each section will start with. 

The elementary algorithm of dyadic reduction, derived and coded in the second 
paragraph, forms the basis for numerical solution of optimum control synthesis as 
well as of state and parameter estimation. To make its later applications straight­
forward it is shown in the third and fourth paragraphs how the dyadic reduction 



can be used to decomposition and minimization of quadratic forms and to operations 
with normal multivariate probability distributions. 

The last of basic operations introduced in this section is the linear composition 
of normal probability distributions. 

2.1. Uncertainty and probability, Bayesian methodology 

Only the main features of the Bayesian philosophy can be briefly surveyed here, 
A more detailed explanation with applications to system identification is given in [10] 
where also further references can be found. 

The Bayesian methodology as applied here rests on the fact that uncertainty has 
the probability structure. The meaning of this statement is that the mathematical 
discipline called probability theory, in which the concept of probability is defined 
axiomatically without any relation to reality, can be employed to operate with 
subjective probability distributions which are used to describe quantitatively the 
uncertain relation between a rationally and consistently reasoning person (e.g. a 
control system designer) and the external world (the process to be controlled). 
This can be proved on the basis of a few simple and sound principles. 

In Bayesian view random means uncertain. Not only data but also uncertain 
constants like model parameters are random. Similarly, a hypothesis which is not 
known to be true is a random event and probability can be assigned to it. 

Bayesian standpoint is that a random variable can take on just one true value. 
Act of observation changes the status of the quantity from a random variable to 
a number, a random event is changed, when observed, into a fact, 

It should be stressed that the Bayesian interpretation of probability as a rational 
measure of belief is in no contradiction with initutive conception of probability as 
the limit of relative frequences the stationarity of which may appear to an outer 
observer, with a given observation ability, as an objective property of the external 
world. On the contrary, the idea of such limits can be very helpful when constructing 
stochastic models (see Section 3). Bayesian statistics can serve as a means for finding 
out what these, so-called 'objective', probabilities are. However, its applicability, as 
exploited in this paper, is much wider. 

Basic operations on probability distributions 

It can be said that the following two relations determine the structure of the Baye­
sian system of consistent reasoning. 

(1) p(b | c) = p(a, b | c) da 

(2) p(a, b\c)= p(a \ b, c) p(b | c) 

The first relation determines the marginal distribution for b from the joint probability 
distribution of a and b where a is an auxiliary uncertain quantity which is to be 

9 



eliminated. The integration in (1) is taken over the entire set of possible values of a. 
If a is of discrete type the integration in (l) has to be replaced by the appropriate 
summation. The relation (2) gives the rule how a joint probability distribution can 
be decomposed. When read from right to left it shows how a joint probability distribu­
tion can be constructed if required. When rewritten in the following way 

(3) P(a | b, c) = fc^ = P ( " ' » I C) 
p ( * l c ) \p(a,b\c)dc 

it describes the operation of conditioning. If in (3) the decomposition (2) with inter­
changed roles of a and b is applied the famous Bayes formula is obtained 

(4) P(a | b, c) = P(» I «. ") K - I c) 

p(b | a, c) p(a | c) da 

which can be understood as a rule how a prior probability distribution p(a | c) can 
be corrected by incorporating a newly observed quantity b. Note that p(/3 J a, c) 
must be given in order to be able to perform this task. Note also that the integral 
in the denominator is just a normalizing factor which does not depend on a. 

It is true that all practicable probability distributions are conditioned, at least 
on the prior information on the basis of which they have been constructed. However, 
it is a good usage not to state explicitly and repeatedly the conditions which are 
permanent during the solution of a given problem. 

Actually, all conceptual solutions of particular problems we shall deal with in 
the following sections are nothing else than a systematic applications of the relations 
(1) and (2). However, to be able to apply them consistently in a closed control loop 
with an adaptive controller it is necessary to define conditions under which the 
controller operates. 

Natural conditions of control 

Suppose that q is a quantity on the process which is uncertain but its c.p.d.f. 
p(q | t — 1) conditioned on all data given a priori and observed on the process up 
to and including the sampling period (t — 1) is available. The question is how this 
probability distribution has to be modified when a new input u(t) has been generated 
and incorporated into the condition. 

In adaptive control the controller when generating the new input u(t) can make 
use only of that information about the uncertain quantity q which is given a priori 
and which is contained in the observed data. If this information is already reflected 
in the condition of the probability distribution for q then the mere generation 
of u(t) cannot bring any new piece of information and it must hold 

(5) p(q\t-l;u(t)) = p(q\t-i) 

10 



The relation (5) cannot be derived mathematically, it must be introduced exogeneously 
as an assumption defining the "natural conditions of control" [10]. 

To throw more light on these conditions let us consider the joint probability 
distribution p(q, u(t) \t — i) and let us decompose it in the following two ways. 

p(q\t- 1; u(t)) p(u(t) | t - 1) = p(u(t) \t-l;q)p(q\t - 1) 

From this relation it is clear that if (5) holds then also the equality 

(6) p(u(t)\t-l;q) = p(u(t)\t-l) 

must hold, and vice versa. The equality (6) reflects the fact that a realizable control 
law cannot operate on the quantity q which is not known. 

Transformation of random variables 

When operating with probabilistic models it is often suitable to transform random 
variables in order to obtain the probability distribution of interest. For our purposes 
it is sufficient to consider only linear regular transformations. 

Suppose that the c.p.d.f. for a multivariate random variable e is given as a function 
f of e and of the condition c. 

p(e | c) = f(e, c) 

The question is how the c.p.d.f. of a random variable x can be determined if the 
following relation holds 

(7) e = T(c) x + q(c) 

where T{c) is a nonsingular square matrix possibly dependent on the condition c, 
and q(c) is a vector. The answer follows from the theory of multiple integrals and is 

p(x\c) = f(e,c)\dQt(T(c))\ 

where e is to be substituted from (7). 

2.2. Algorithm of dyadic reduction 

The elementary algorithm which will be introduced now is due to the author's 
colleague K. Smuk. It makes it possible to construct elegant and numerically save 
procedures for decompositions and minimizations of nonnegative definite quadratic 
forms and therefore has been chosen as the algorithmic basis for optimum control 
synthesis as well as for numerical operations with normal probability distributions 
in real-time estimation. 

Consider a symmetric nonnegative definite matrix M of rank at most 2 expressed 
as a weighted sum of two symmetric dyads 

(8) M - f'Dff + r'Drr 

11 



where / and r are row-vectors 

/ = [ l , / i , / a , . . - , / J 

r = [r0,ri,r2i..„rn] 

while Df and Dr are nonnegative scalar weights. Note that the element f0 is 1. Of 
course, such a representation of the matrix M is not unique and can be modified. 

(9) M = f'Djf + r'Drr = f'DJ + r'Drr 

Let us consider the modification by which the element/0 remains to be equal to 1, 
but the element in the same position in r is zeroed. 

/o = 1 ; r0 = 0 

It will be proved that the following simple algorithm performs this modification and 
reduces the dimension of the nonzero part of the row-vector r by one. 

Algorithm of dyadic reduction 

(10) Df = Df + Drr
2

0 

(11) 3r=(DfJDf)Dr 

(12) kr = (Dr\Df) r0 

(13) j = 1,2, ...,n:fj = rj - r0fj 

(14) fj=fj + Krj 

It is easily seen that in all cases when the reduction has sense Df > 0 and the divisions 
in (11) and (12) can be performed. For Df = 0 the reduction can be simply skipped 
as in such a case, besides Df = 0, either r0 is already zero or the entire dyad r'Drr 
has a zero weight Dr and can be omitted. 

Proof. From (9) it is seen that the following relation must hold for any i and j . 

(15) fflffj + rtDrr} = ffij) + fflf, 

By setting i - j - 0 and r0 = 0 the formula (10) is obtained. For i = 0 and j > 0 
it follows that 

06) J) = (Dffj + r0Drrj)\Df 

After substitution for/- and for/,- from (16) the relation (15) for i > 0 and j > 0 
can be rearranged in the following way. 

ffirfj = r ;Dr(l - Drr
2
0jDf) rj+ftD%(\ - Df\Df)fj -

- ft(Drr0DfIDj) rj - rt(Drr0DfJDf) j) = 

= (rt-r0ft)(DrDfIDf)(rj-r0fj) 

12 



r of type row 
f of type row 
Dr, Df of type REAL 
jr of type INTEGER 
jl, jh of type INTEGER 

This proves (13) and (11). The proof is completed by substituting r,- from (13) into 
(16) which then gets the simplified form (14) with the coefficient kr determined 
according to (12). 

Remark(a). It is apparent from the derivation that instead of (14) it would be 
possible to use (16). 7 , , , , „ ,-. 

{ J Jj= tyj + Krj ; kf = Df\Df 

However this would mean n multiplications more for one dyadic reduction. 

Procedure DYDR 

The PASCAL procedure DYDR listed below performs one dyadic reduction. 
Type introduced: 
TYPE row = ARRAY [jmin .. jmax] OF REAL; 
where jmin and jmax are suitable integer constants. 
Parameters: 

reduced row 
reducing row 
weights of corresponding dyads 
index of the element r\jr\ which is to be zeroed 
lower and upper bounds of the range within which 
the both rows are modified 

PROCEDURE DYDR (VAR r,f: row; VAR Dr, Df: REAL; jrjljh: INTEGER); 
CONST mzro = 1E-20; {see Remark (b)} 
VAR j : INTEGER; kr, kD, rO: REAL; 
BEGIN 
IF Dr < mzro THEN Dr := 0; 
rO : = r[jir]; 
kD : = Df; 
kr := rO * Dr; 
Df:=kD + rO* kr; 
IF Df > mzro 

THEN BEGIN kD := kDJDf; kr := /cr/D/END 
ELSE BEGIN kD : = 1; kr : = 0 END; 

Dr := kD * Dr; 
FORj :=jl TO jh DO 

BEGIN 
* ] : = r [ j ] - r O * / [ / ] ; 
/[1] ; = / M + kr*r[7] 
END 

END; 
Remark (b). The constant mzro ("machine zero"), which is used to check very 

small numbers, has to be chosen with respect to the accuracy of the computing device. 
The value 1E-20 has been found suitable for 4 bytes floating point arithmetic. 

see Remark (c)} 

[see Remark (d)} 

13 



Remark (c). In applications in which the procedure DYDR will be used it may well 
happen that the weight Dr converges to zero and the possible underflow must be 
checked. If it is done automatically by the compiler then the marked statement 
can be omitted. 

Remark (d). As mentioned before, in all cases when the updated weight Df is zero 
the dyadic reduction could theoretically be skipped. However, for numerical reasons 
it is advantageous to process the rows using the same algorithm with kD = 1 and 
kr = 0. Then the row r is normalized so that r\_jr] be zero even when the row has 
zero or very small weight Dr. 

2,3. Decomposition and minimization of nonnegative definite quadratic forms 

A classical problem which is, in various modifications, repeatedly met in both LQ 
optimum control synthesis and estimation is decomposition of a nonnegative definite 
quadratic form in the following sense. Consider the quadratic form 

(17) q(x) = x'Qx = 
x b и 

where x is a vector-valued variable, xa and xb are its components, x' = [x'a, x£] 
and Q is a numerically given matrix. It is assumed that the quadratic form (17), and 
thus also the matrix Q, are nonnegative definite, i.e. it holds q(x) ^ 0 for any x. 
The problem is to decompose the quadratic form into two quadratic terms in such 
a way that one of these terms depends only on the second component xb of the 
vector x. 
(18) q(x) = (ya + Fxb)' Qx(xa + Fxb) + x'bQ2xb 

If we succeed to perform this decomposition then, at the same time, also the problem 
of minimization of the quadratic form with respect to the first component xfl is 
solved. 

If the original quadratic form (17) is nonnegative definite then, according to 
Sylvester's law of inertia (see e.g. [9]), the both quadratic forms on the right-hand 
side of (18) must be also nonnegative definite. The second one does not depend 
on the variable component xa while the first one can be zeroed by its choice. Since 
zero is the minimum value which a nonnegative definite quadratic form can achieve 
it holds for any xb 

min q(x) = x'bQ2xb 
Xa 

and the minimizing argument (not necessarily unique since F and Qt are not necess­
arily unique) is 

arg min q(x) = x* — — Fxb 
Xa 

Standard procedures of matrix algebra commonly used to determine the matrices 
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Qu Q2 and F are not suitable for numerical computation. They require an inversion 
(or some generalized inversion) of a certain submatrix and, namely, do not guarantee 
the nonnegative definiteness of the matrices Qx and Q2. 

From the physical nature of the problems we are going to solve it follows that all 
quadratic forms we shall deal with are nonnegative definite. Quadratic criteria as 
well as exponents in normal probability distributions cannot be negative. When 
calculating numerically it is necessary to design the algorithms in such a way that 
this important property be maintained also when the rounding errors are present, 
otherwise the sense of the solved problem could be lost and the computation could 
collapse. For instance, when the rounding errors cause that a quadratic criterion 
becomes indefinite then its minimum is minus infinity and the minimizing procedure 
diverges accordingly if the nonnegative definiteness is not rectified. This is of extreme 
importance when the matrices of quadratic forms are singular or almost singular, 
which is often the case, and particularly when the computation is performed on 
microprocessors with a short word length. 

Even with reduced precision of arithmetic operations the nonnegatige definiteness 
of quadratic forms can be quaranteed when their matrices are systematically con­
sidered in factorized forms 

(19) Q - M'DM 

and when all numerical calculations are performed only on the factors D and M. 
The matrix D is diagonal and can be stored as a vector of dimension dD, while M is, 
in general, a rectangular matrix of dimensions dD x dx. 

If Mt is a row-vector introduced as the ith row of the matrix M then (19) can be 
expressed as a sum of weighted dyads 

dD 

(20) Q = YjM'iDiMi 

i=i 

and the quadratic form (17) can be expressed as a sum of squares 
eD dD dx 

(21) q(x) = I DjMfiY = TH1 MijXj)2 

< = i j = i j = i 

If all weights Dt are nonnegative then also the quadratic form is nonnegative. The 
algorithms we shall use cannot produce negative weights and therefore the non-
negativity even does not need to be checked. 

Note that D has been introduced as a diagonal matrix only because of the compat­
ibility of the matrix product on the right-hand side of (19). Equally well D could be 
interpreted as a column-vector the element Dt of which gives the weight to the 
square produced by the row of M with the same index. To emphasize this inter­
pretation and to shorten the writing the following notation will be often used for 
quadratic forms. 

q(x) = |D; Mx\ 

The factorization (19) is not unique and can be modified in various ways leaving 
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the value of the quadratic form unchanged for any variable vector x. This opens 

the possibility for direct and elegant numerical solutions of our problems. As the 

full matrix of any nonnegative quadratic form can be expressed as a weighted sum 

of dyads (20) the above described algorithm of dyadic reduction is an excellent tool 

foi this purpose. 

Consider, for instance, the quadratic form 

*••»•>- ICSG- t - i i r l M 
and let us perform its decomposition (18). The algorithm of dyadic reduction, as 

described in the foregoing paragraph, assumes that the reducing row, called f, 

has the element f0 — 1 in the proper place. In later applications we shall organize 

the computations so that this condition will airways be fulfilled. Here, when consider­

ing a general situation, we have to apply the following trick. The quadratic form 

does not change if it is extended by a term with zero weight. 

q(xa,
 xb) = <l(xa, xb) + |0; Ixa\ = 

0 / 0 

Da ? м a м a b 

Dь мbaмb 

и 
Now it is possible to use the dyadic reduction so that the first row of the extended 

matrix is used to reduce to zero the first columns of submatrices Ma und Mba. Using 

the second row the second columns of these submatrices are zeroed, and so on until 

the both submatrices Ma and Mba are zeroed. After this repeated application of the 

procedure DYDR the quadratic form is modified as follows. 

«(*«. *») = 

ßo 
Ђ. 
Ђ„ 

? 

~U G 

o м a b 

0 мb 

ы 
= \D0;Uxa + Gxb\ + [*]• [Sri xb 

In this way the quadratic form is decomposed as required. The second term deter­

mines the minimum with respect to xa and the minimizing argument can be deter­

mined from the equation 

(22) Ux* + Gxb = 0 

which, if required, can be easily solved without using the operation of division since U 

is a monic UT-matrix (upper triangular with unit diagonal elements). 

Note that the solution of (22) is unique even when the problem is singular and more 

than one minimizing arguments exist. However, in such a case one or more weights 

in Do a r e zeros and the corresponding equations in the system of linear equations 

(22) do not need to be satisfied since their residua do not influence the quadratic 
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form. Practically it means that when the zero weighted equation is met during the 
solution of (22) then the component of xa which is being determined by this equation 
can be chosen arbitrarily. 

2.4. Integration and conditioning in normal probability distributions 

Integration and conditioning in multivariate normal probability distributions are 
standard steps in real-time estimation, filtering, and prediction. Again, it can be 
stated that the classical solutions of these steps, as given e.g. in [8] and as implicitly 
contained in the Riccati equation of the Kalman filter or in standard recursive least 
squares estimation, are not suitable for practical computation as they do not guarantee 
numerically the positive definiteness of computed covariance matrices. For these 
numerical reasons all covariance matrices will be propagated in factorized forms. 

The present paragraph will be devoted to the proof of the following 

Result (2A): Conditional and marginal distributions for given normal joint prob­
ability distributions. 

Consider a normal p.d.f. p(x) of a random vector x with an expected (mean) 
value x and with a covariance matrix Var [x] = R given as the matrix product 

(23) R = MDM' 

where D is a diagonal matrix with nonnegative diagonal elements Dh i = 1, 2, ..., dD, 
and M is a rectangular matrix of dimensions (dx x dD), dD _ dx. Suppose that D 
and M are given numerically and that the dyadic reduction is applied to modify the 
factorization (23) 

(24) MDM' = LDL' 

so that D is again diagonal, dD = dx S dD, but Lis a monic LT-matrix. 

If the random vector x is partitioned into two subvectors 

•-£]•*-[«;] 
and correspondingly also the matrices L and D 

••-[n} »-[»nj 
then the c.p.d.f. p(xb | xa) is normal with the expected value given by 

(26) E[xb | x j = xb[a = xb + Ge , Lae = xa - xa 

The covariance matrix of xb conditioned on the given (observed) value of xa is 

(27) Var [xb | x j = LbDbLb 

17 



The marginal p.d.f. p(xB) has the expected value xa and the covariance matrix 

(28) Var[xf l] = LaDV; 

Remark (e). Note that the both resulting covariance matrices are obtained in 
factorized forms with numerically guaranteed nonnegative definiteness as the algo­
rithm of dyadic reduction used to perform the modification (24) cannot produce 
negative weights D if the original ones D are nonnegative. Since L is a monic LT-
matrix e in (26) can be calculated without employing numerical division. Frequently 
dxa = 1, then La = 1 and e is the prediction error, e = xa — xfl. 

Proof. Since the modification of the factorization (24) does not change the given 
matrix R (23) it is sufficient to consider only the modified factorization R = LDL\ 
where the monic LT-matrix Lis always invertible and det (L) = 1. Clearly 

det(R) = f l ^ 
£ = 1 

For the sake of simplicity the proof will be given only for the regular case when all 
Dt are arbitrarily small but finite. The degenerate case when one or more Dt are zero 
could be handled using characteristic functions instead of p.d.f/s. However, the 
result would remain the same. 

Using our notation for quadratic forms the normal p.d.f. can be rewritten in the 
following way. 

p(x) = (2n)~8x/2 (det(R))"1 / 2 exp { - i (x - *)' R~\x - x)} = 
dx 

= (2«rw2 ( n A-r "2 e*p i-w-1; ^ ( * - *)ii 
i = l 

' It can be easily verified that for L1, when partitioned similarly to (25), it holds 

. ГL;1 o ] 

Then the quadratic form in the exponent of the p.d.f. can be decomposed as follows 

| D ' - 1 ; L - 1 ( x - x ) | = | 5 ; 1 ; L ; 1 ( x f l - x f l ) | + 

+ I V ; ~L-1GL-\xa - xa) + L-b\xb - xb)\ = 

- l A T 1 ; ! ^ * . - xa)\ + \Db';L-\xb - xbla)\ 

where in agreement with (26) 

%b\a — %b + GLa (xa — xa) 

This decomposition is the main step in the proof as it enables the following factoriza­
tion of the joint p.d.f. 

dxa 

?(xa, xb) = (2n)~^2 ( 0 Da^
m exp { - p ; 1 ; L~\xa - xa)\] . 

i = i 
dxb 

(2K)-^ ( n Du)-1'2 exp {-i |5; ' ; L~b>(x„ - xbla)\} 
y = l 
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To prove that this factorization corresponds to the relation 

P(*«> xb) =- p(xfl) p(xb I xa) 

it is sufficient to perform the integration 

?(xa) = P(xa, xb) dx6 

The transformation z = L~b~
1(xb — xb\a) with the Jacobian de t (L^ 1 ) = 1 reduces 

the multivariate integral into the product of univariate integrals. 

f dXb f f - 2 1 a*b 

1/2 

j=ij I 2DbJ) j=i 

To complete the proof is now trivial. 

2.5. Linear composition of normal probability distributions 

Suppose that the normal p.d.f.'s p(x) and p(y | x) are given by their expected 

values and covariance matrices possibly LD-factorized. 

(29) E[x] = x , Var [x] = Rx = LXDXHX 

(30) E[y | x] = Mx + fc , Var [y | x ] = R„* = Ly]xDy]xLy]x 

One of standard steps repeatedly met when solving LQG problems is determination 

of the joint p.d.f. 

(40) p(x, y) = p(y \ x) p(x) 

Result (2B): Linear composition of normal probability distributions. 

The joint p.d.f. (40) is normal with the expected value 

w E E1- [M - + J 
and with the covariance matrix 

determined by the relations 

(43) Var [y] = Rylx + MRXM' 

(44) Cov [y, x] = Cov [x, yj = MRX 

'-1-i.U-fMJ 
Proof. When substituting 

p(x) = (2n)-^2det(Dxy^exp{^\D;i;L-x\x - x)|} 

p > | x) = (2n)^2 det (Dylx)~V2 exp { - | | D ^ ; L~lx(y - Mx - fc)|} 
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into (40) it is clear that the quadratic forms in the exponents are added. The following 
rearrangement of this sum of quadratic forms yields the proof. 

I D ; 1 ; ! ^ * - x)\ + |D^;L;,yj - Mx - k)\ = 

= \D;1;L~X\X - *)| + \D;i;L;i/y -Mx-k)- L~ylxM(x - x)\ = 

jrD;1 o f r L; 1 o ifx-x 11 
\l° D^\' l-L-ylxM L-ylxJly-Mx-ky 

Apparently 

[ L;1 O •)-» [X o 1 

This proves (41) and (45). The relations (43) and (44) are obtained by substituting 
(45) into the right-hand side of (42). 
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3. LINEAR STOCHASTIC MODELS 

In this section models are introduced which will be used to represent the process 
to be controlled. 

The section commences by general discussion of the question: What mathematical 
models are needed for control-design purposes? The question is answered in terms 
of conditional probability distributions and on this basis the concept of a linear 
stochastic model of the controlled process is introduced. Also the concept of the 
state of the process model is discussed in terms of conditional probability distribu­
tions in the first paragraph. 

In the second paragraph the nonparametric input-output model is suitably para­
metrized to obtain the ARMA form of the model. Both positional and incremental 
(ARIMA) types of the model are considered. 

The Delta form of the input-output model is introduced in the third paragraph 
where also PASCAL procedures for transformations of the ARMA form into the 
Delta form and vice versa can be found. 

The ARMA and Delta input-output models of both positional and incremental 
types are transformed into a canonical state-space model in the fourth paragraph. 
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In the last paragraph of this section the relation between Delta models and sto­
chastic differential equations is discussed and a simple PASCAL procedure for 
digital simulation of a linear continuous stochastic process is given. 

3.1. Process model in general 

Suppose that, starting with t — 1, a control-system designer has the possibility 
to observe the process up to and including the sampling period indexed by t0 ^ 0. 
His task is to design a control strategy for the next Tsampling periods in some optimal 
sense. Note that for t0 = 0 no prior observation is made. If the designer picked 
a particular strategy and performed the experiment he could judge the control 
performance according to the actual values of the data he can observe 

(1) 
{y(t0 + 1 • • t0 + T), v{t0 + 1 • • t0 + T), u(t0 + 1 • • t0 + T), w(t0 + .1 • • t0 + T)} 

However, since the control strategy has to be chosen optimally and in advance the 
designer must have models available which make it possible to compare all admissible 
strategies before the input u(t0 + 1) is applied. The choice of a suitable criterion 
for this comparizon will be discussed in Section 5. Here, it is important to note that 
for any criterion which contains only the observable data it is sufficient to be able 
to determine the probability distribution of the future data (1) conditioned on the 
data available up to the sampling period t0 for any control strategy which might be 
applied. In case of program control or of a given fixed setpoint the future command 
signal w(t0 + k), k > 0, is a priori given and can be put into the condition. Here 
the more general servo case will be considered in which the future command signal 
is also uncertain. 

By suitably repeated application of the decomposition rule (2.2) the joint c.p.d.f. 
of the future data (l) can be written as follows 

(2) 
p(y(t0 + 1 • • t0 + T), v(t0 + 1 • • t0 + T), w(t0 + 1 • • t0 + T), w;t0 + 1 • • to + T)| 

| (y(l •• t0),v(l •• t0), w(l •• to), w(\ •• t0)) = 

='ff P(V(') I y(i - • - - i), <i • • t), u(i • • t), v/i • • t)) 

p(v(t)\y(l*-t~l),v(l-'t-l),u{\ . . t ) ,w( l -- t)) 

p(u(t) | X I ' 't - 1), v(l • • t - 1), i<l • • t - 1), w(l • • t)) 

p(w(t) | y(l • • t - l),v(l • • t - 1), u{l • • t - 1), < 1 • • t - 1)) 

The particular factors in this multiple product have the following interpretation. 

Control strategy 

The c.p.d.f. 

(3) p(u(t) | v(l •• t - 1),Y(1 •• t - 1), u(l •• t - 1), w(l •• t)) 
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represents the transformation, in general stochastic, by which each u(t) for t = 
= t0 + 1, . . . , t(j + T is generated on the basis of the data which are available at 
the given time instant. In fact, the decomposition in (2) has been made in such 
a way that the condition part of (3) contains all data on which an admissible control 
strategy can operate. Hence, the set of c.p.d.f.'s (3) is what the designer has to de­
termine when solving the control problem. In Section 5 it will be proved that under 
very general conditions the optimal control strategies are deterministic, i.e. that the 
optimal input u(t) has to be determined as a deterministic function of the available 
data 

u(f) = f,(u(l . • t - 1), y(\ • • t - 1), v(\ • • t - 1), < 1 • • t)) 

Then the c.p.d.f. (3) degenerates into a Dirac <5-function 

8(u(t) - ftu(\ • • t - 1), y(\ • • t - 1), v(\ • • t - 1), w{\ • • t))) 

and the control problem is reduced into determination of the function ft for each t. 

Command signal 

As mentioned above, if the command signal is predetermined for the entire control 
horizon it can be considered as a given condition for all c.p.d.f.'s involved. However, 
if it is a priori uncertain its evolution within the considered time span (t0 + 1, • • t0 + 
+ T) must be modelled. When formulating the control problem it is natural to 
assume that there does not exist any hidden feedback or feedforward from other 
signals in the control loop in Fig. 1 which might influence the evolution of the com­
mand signal w. This mean that 

(4) p(w(t) | X I • * t - 1), v(X • - t - 1), u(l • • t - 1), w(\ • • t - 1)) « 

= ?{w(t)\w(\ - t - \ ) ) 

To define this c.p.d.f. for all t of interest a simple model suitable for the case of 
positional servo will be introduced when it will be needed in Section 5. 

Measurable external disturbance 

The digital controller in Fig. 1 can operate on the disturbance v if it is available 
for measurement. Assuming that the disturbance v is external means that 

(5) p(v(t) | X1 • * t - 1), v(X • • t - 1), u(\ • • t), w(\ • • t)) -

-P&OK-•• ' - - ) ) 
According to this prior information the evolution of the external disturbance can 
be considered as an autonomous process, i.e. as the measurable output of the un­
controllable part of the external world sometimes called the enviroment. A suitable 
model for this external process defining the c.p.d.f. (5) will be introduced in Section 5. 
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Controlled process 

The c.p.d.f. which remains to be interpreted in the product on the right-hand side 
of (2) describes the stochastic transformation performed by the controlled process 
itself. Since there does not exist any direct connection between the command signal 
w and the controlled process output y it can beassumed that 

(6) ?(y(t) | y(l • • t - 1), v(l • • t), u(l • • t), w(l • • t)) = 

= ?(y(t)\y(l -• t - l),v(l >- t),u(l ~ t)) = 

= P M O I ' - i;v{t),u(t)) 

The first equality says that the conditioning on w{l • • t) is superfluous as the given 
history of the command signal w can influence the output y(t) only through the data 
which are already present in the condition. The second equality in (6) just recalls 
the abbreviated notation introduced in the paragraph 1.2. By t — 1 in the condition 
part the conditioning on all data observed on the controlled process up to and 
including the sampling period t — 1 is indicated. 

Process model. Any mathematical model which defines the family of the c.p.d.f.'s 

?(y(t)\t-l;v{t),u(t)) for t = t0 + 1, t0 + 2, ...,t0 + T 

will be called the process model. 

Linear process model. The process model is called linear if the mean value of the 
c.p.d.f. (6), i.e. the expected value of y(t), can be expressed as a linear function of the 
data in the condition, and if the variance of y(t) does not depend on these data. 

(7) E[y(t) 11 - 1; v(t), u(t)] = y(t 11 - 1; v(t), u(t)) = 

= ky(t) + g0(t) u(t) + h0(t) v(t) + 

+ E [-/*(') y(t - k) + gk(t) u(t ~k) + hk(t) V - fc)] 

(8) Var [y(t)\t - l;v(t),u(i)] - R/t) 

The linear model will be called normal if in addition to (7) and (8) it is also assumed 
that the c.p.d.f. (6) is Gaussian (normal). 

If e(t) is introduced as the difference between the true value y[t) and its expected 
value (7) 

e(t) = y(t)~ y(t\t- l;v(t),u(t)) 

then the model can be written in the form 

(9) IfM y(t - k) =*£ [gk(i] u(t -* k) + hk(t) v(t - fc)] + ky(t) + e(t) 
k=0 k=0 

where f0(t) = I. The stochastic term e(t) has the variance (8) and its expected value 
is, as readily seen, zero. 
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Multi-output case. The general form of a linear model (9) can hold for a single-
input single-output process as well as for a process with more outputs and more 
inputs. The only difference is that in the latter case the coefficients (in general time 
varying) are matrices of appropriate dimensions. However, in multivariate case 
it will appear convenient to modify the model in the following way. 

Suppose that the covariance matrix (8), which must be nonnegative definite, is 
available in the factorized form 

Ry(t)^Ly(t)De(t)Ly(t) 

where Ly(t) is a monic LT-matrix (always and simply invertible) and Dji) is diagonal 
with nonnegative diagonal entries. Let us multiply by L'1^) both sides of the model 
equation (9). This, in general, changes all the coefficients. We shall not change 
the notation but from now on the coefficient f0(t) will be a monic LT-matrix 

(10) /„(<) = L'/(t) 

which is reduced into/0(t) = 1 only in the single-output case. The advantage of this 
modification is that the stochastic term e(t), now redefined as 

(11) e(t) = L~\t) (y(t) ~y(t\t-l; v[t), u(t))) 

has not only the zero mean, both conditional and unconditional 

(12) £[e{t)\t-Uv(t),u(t)] = E[e(t)]~Q 

but also uncorrected components 

(13) VaxM.)] = E[e(0e'(0] = 4,W 

It can be easily proved (see e.g. [10] § 3.1) that it also holds 

(14) E[e(t) e'(t - k)] = 0 for k * 0 

(15) E[e(t) y'(t - k)] = 0 for k > 0 

(16) E[e(t) u'(t - k)] = 0 for k = 0 

(17) E[e(r) v'(t - k)] = 0 for k = 0 

Process delay (dead time, transport lag). In many practical cases the response 
to a change of the input u(t) does not influence the successive sample y(t) but it 
appears at the output only after Tu sampling periods. Then it holds 

p(y(t) | t - 1; v(t), u(t)) « ?(y(t) \ y(X • • t - 1), v(l • • t), u(l • • t - Tu)) 

In the linear model (9) this means that the leading coefficients gk(t), k < Tu, are 
zero. Similar delay Tv can exist also in the channel from the measurable external 
disturbance v. 
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State-space model 

If there exist a quantity s(t) of finite and fixed dimension (not necessarily accessible 
to measurement) such that 

(18) p(y(t), s(t) \y(l..t- 1), v(l ..t),u(.. t), s(t - 1)) = 

= p(y(t), s(t) | v(t), u(t), s(t - 1)) 
and 

(19) p(s(t)\t;v(t+l),u(t+i)) = p(s(t)\t) 

then s(t) is called the state of the controlled process. 
The condition (19) restricts the general definition of a state (18) to the state of just 

the controlled process itself. This can be shown using the definition of the external 
measurable disturbance (5) and the natural conditions of control discussed in para­
graph 2.1 (see (2.5)). The possible state of the generator of the external disturbance 
is not included in s(t). 

By integrating out the output y(t) in (18) the c.p.d.f. 

(20) p(s(t) | v(t), u(t), s(t - 1)) 

is obtained which describes the evolution of the state itself. The c.p.d.f. 

(21) p(y(t)\v(t),u(t),s(t-l)) 

obtainable by integrating out s[t) in (18) relates the process output to the state 
of the model. 

Introduction of a suitable state, if it exists, can reduce the computational load 
significantly. Later on a linear state-space model of special (canonical) form will be 
constructed which defines the joint c.p.d.f. (18). 

Given the state-space model the c.p.d.f. (6) is determined by the formula 

(22) p«0l'-M0.«(0) = 

= [ P W O I »(0. »(0. <* - i)) P « < - i) I * - 1 ) <K. - i) 
which shows that when operating with a state-space model it is necessary to evolve 
p(s(t) | t). This is the problem of state estimation which will be solved in Section 4. 

3.2. Regression models and ARMA models 

The general form of a linear input-output model (9) is not of much practical value. 
To make it practicable it is necessary to express its increasing number of coefficients, 
in general time varying, through a finite and possibly low number of constant 
(or at least temporarily constant) parameters. This parametrization can be done 
in different ways and is subject to some additional assumptions. Since any mathemat­
ical model can be only a simplified image of the modelled reality the same process 
can be described, more or less accurately, by different models. The point of the 
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modeling effort is to choose the model structure so that the model be as simple 
as possible, easy to handle (including parameter estimation), and at the same time it 
should cover sufficiently broad class of practical cases. These requirements are, 
of course, contradictory and some compromise has to be accepted. We shall proceed 
so that simple and intuitively well understandable regression models of positional 
and incremental type will be introduced first and then they will be extended to the 
more general model ARMA. 

Regression model of positional type 

Often it can be assumed that only a finite and fixed length of the past input-output 
history is significant for the prediction of the process output y(t). Then 

p(y(t) \t-U v(t), u(t)) = p(y(t) | y(t -N.J- 1), v(t - N . .t), u(t - N..t)) 

where N determines the past history considered. The corresponding linear time 
invariant process model (9) can be written for t > N in the form 

(23) ifky(t -k) = igku(t-k) + i hkv(t - k) + ky + e(t) 
K = 0 fc=0 fc=0 

It is important to note that in practical applications, when the regression model 
is identified from real data, a sufficiently long past history must be incorporated 
into the process model, i.e. N must be chosen sufficiently large (dependent on the 
sampling period). Only under this condition it can be assumed that p(e(t) t — 1; 
v(t), u(t)) = p(e(t)) and the model can define p(y(t) \ t — 1; v(t), u(t)) for t > N as, 
for the given condition, the transformation between e(t) and y(t) is one-to-one. 
(See Section 2 for transformation of random variables.) 

Recall that in multi-output case/0 is a monic LT-matrix (10) and the components 
of e(t) are mutually uncorrelated, Var [e(t)J = De. When the both sides of (23) are 
multiplied by f$ 1 = Ly the model can be rewritten into the standard regression 
form 

(24) y(t) - - £ at y(t - 0 + £ bt u(t - i) + £ dt v(t - i) + ky + s(t) 
i = 0 i = 0 

where 
fli - Lyfi > bi = Lygt, dt = Lyhi, ky -= Lyky 

and 
(25) Vax[e(i) = Ry = LyDeLy 

Incremental regression model 

Many practical processes are contaminated by stochastic disturbances which are 
nonstationary like drifts, unpredictable and unmeasurable load changes. Then 
the reference level in the stochastic input-output relation (24) cannot be considered 
as a constant ky. In such cases it is more appropriate to relate the predicted output 

26 



y(t) to the previous, already known, output y(t — 1) and to consider the incremental 
regression model 

(26) y(t) = y(t - 1) + 

£ at Av(t - 0 + £ bt Ai*(* " 0 + I di M* ~ 0 + eW 
i = l i = 0 i = 0 

Then, instead of (23) we have 

(27) £ A Ay(* - k) -= £ ^ Au(t - k) + £ fc* Ai>(. - fc) + e(t) 
fc=0 fc=0 fc=0 

Model ARM A 

It is apparent that the larger is the memory size N of the regression models (23) 
or (27) the broader is the class of processes which can be described by these models. 
However, the larger is also the number of parameters which have to be determined. 
This may be critical in cases of very fast sampling rates when N must be chosen 
relatively large in order to incorporate a sufficiently long history of the process into 
the model and to guarantee the white noise properties of e(t). To reduce the number 
of model parameters in such cases it is possible to proceed as follows. 

Consider N -* GO in the regression model (23) and introduce, for generality, also 
the possible process delays Tu and Tv. Then, with obvious reindexing of the coeffi­
cients, the model can be written as follows. 

(28) f fky(t - k) = fgku(t - Tu - k) + fhkv(t - Tv - k) + ky + e(i) 
fc = 0 fc = 0 fc = 0 

In order to meet certain regularity conditions the coefficients in (28) have to satisfy 
the relations ^ 

E j fc 2 < c o> E 0 f c 2 < o o > E ^ 2 < 0 0 

fc=0 fc=0 fc=0 

To express these infinitely many coefficients through a finite number of parameters 
suppose that only the first m + 1 cofficients fk, gk, hk (k = 0, . . , m) can be arbitrary 
while the rest of them for k > m (the "tails") can be approximately described as 
a weighted sum of nc suitably chosen exponentials so that for k > m 

(29) A = i>A-fe> 0fc = EIAr*> fcfc = i > A f c 

; = i j=i i = i 

where |£,] > 1 for all; . Note that in multivariate case the weights $Jt Tj and Yj are 
matrices of appropriate dimensions while Cj are scalars determining the base of 
exponentials. 

Consider further the following weighted sum of neighboring cofficients fk for 
k> m + nc 

A + EcJ*-. = £#A~*(i + Ec#) 
i = i j = i i = i 
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The rearrangement on the right-hand side shows that the weighted sum can be made 
equal to zero if the scalar weights ct are chosen so that £t (j = 1, 2, .. , nc) are roots 
of the polynomial n n 

(30) «<o-i+:s«iC-ri(i-«7 ,o 
i - i j = i 

Hence with this choice and c0 = 1 it holds for k > m + nc 

(31) !>J*- i = 0, "fctdk-i = 0, f > A ~ i = 0 
i = 0 i = 0 i = 0 

To simplify the exposition it has been tacitly assumed that the roots Cj are distinct 
and real. However, from the theory of linear difference equations it is well known 
that the base of functions which satisfy the relations (31) and which are used to 
approximate fk, gk, hk for k > m can be made somewhat more general if also complex 
and multiple roots are admitted. 

The important point is that if the coefficients of the linear nonparametric input-
output model (28) satisfy the difference equations (31) then the moving average 
with scalar weights cv taken over (28) for t, t — 1,.., t — nc has only n + 1 terms, 
n = m + nc. For instance 

nc oo nc oo 

Z "j ZM< - J - k) = £ cj 1/,-jyit - o = 
j = o fc=o j = o i=j 

- _ ( I Vi-j) y(> - 0 + Z ( I cj,.,) y(t - o - 1 -. X' - 0 
i = 0 j ' = 0 i = n c + l j = 0 i = 0 

For the entire input-output relation (28) it is obtained 

(32) iaiy[t-i) = 
i = 0 

= ^bi u(t -Tu- i) + tdtv{t -Tu- i) + "tcte(t - i) + kc 
i = 0 i = 0 i = 0 

where, with inc = min (i, nc), 
inc inc inn 

(33) at = £ Cjfi-j , bt = £ c,.^.,-, ^ = £ c,-/V; 
J = 0 j = 0 j = 0 

(34) kc = (£<!,) fc, 
i = 0 

The model of this form was given the name ARM A [12] indicating that autoregressive 
(AR) and moving average (MA) terms are present. The way how the model has been 
introduced here was chosen to support interpretation of c-parameters suitable for 
our purposes. Later on it will be seen that these parameters are difficult to estimate 
in real time and a proper understanding of their role can facilitate their suitable 
prior choice. 

In a similar way also the incremental ARMA model (ARIMA) can be introduced 
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as an extension of the incremental regression model. 

(35) ffliAX.-O-
i = 0 

= t btAu(t - Tu - 0 + f d i Ao(t -Tv- i) + "tCie(t - i) 
i = 0 i = 0 i = 0 

If t, is interpreted as backwards shift operator 

(36) U(t) = / ( < - ! ) 

then the positional ARMA model can be written in the form 

(37) a(Q y(t) = b(Q u(t - Tu) + d(Q v(t - Tv) + kc + c%) e(t) 

and the incremental ARMA model in the form 

(38) a(QAy(t) = b(Q Au{t - Tu) + d(Q Av't - Tv) + c(Q e(t) 

where in both cases 

(39) a(Q-iaff, KQ = Z W . A'O « I <*£' 
i = 0 i = 0 i = 0 

and c(C) is the polynomial (30) of order nc = n. 
It is important to bear in mind that in multivariate cases ah bh and d( are matrices 

but c,- are scalars. Recall also that the covariance matrix of e(t) is diagonal 

(40) Var [e(tj] = Dc 

and a0, according to (33), is a monic LT-matrix 

(41) a0=f0^L-y
l 

while c0 = 1. 
We have constructed the ARMA models as an extension of regression models 

for N -> oo assuming that an infinitely long past history of the process was available 
for observation. This is the reason why the condition of stability had to be imposed 
on the polynomial c(Q, viz. |£j| > 1 in (30). However, if the ARMA model is under­
stood as a generator of the process driven by a white noise e(t) then the stability 
of c(Q does not need to be required. In Section 5 it will be shown that for a finite 
and growing length of observation the c-parameters have to be recalculated and 
updated in real time so that the truly applied c-parameters are time varying and 
converge to the coefficients of a stable polynomial (reflection of c(Q) even when the 
original polynomial c(Q is unstable. Hence the assumption on stability of c(Q can 
be relaxed and a root of c(t) can lie also at the stability boundary. This favorable 
fact makes it posible to get rid of the constant ky in the positional ARMA (37) by 
taking the difference 

(42) fl(Q Ay(t) = /3(C) Au(t - Tu) +,dg) Av(t - Tv) + (1 - Q c(Q e(t) 
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Thus the positional ARM A can be considered as an incremental ARM A with the 
^-polynomial having one unit root. 

Remark (a). Strictly taken the two above interpretations of the model ARMA 
are conceptually rather different namely in the meaning of the random variable 
e(t). In the interpretation taken as the basis for our treatment e(t) is understood 
as the difference between the true and expected value of y(t) (suitable transformed 
in multivariate case) which can be eventually achieved after an infinitely long ob­
servation of the process. In the other interpretation e(t) is understood as a fictitions, 
unobservable, and actually nonexisting driving white noise introduced as a useful 
modeling tool. Unlike e(t) defined by (11) the driving white noise can never be re­
constructed from the observed data (neither asymptotically) if the ^-polynomial 
in the ARMA model is unstable. In the sequel we shall handle the ARMA models 
in such a way that these two cases do not need to be distinguished. We based our 
construction of the ARMA model on the former interpretation in order to show 
that a prior choice of scalar c-parameters actually means a choice of a base of ex­
ponentials used to approximate the "tails" in the general nonparametric linear 
time-invariant input-output model (28). 

3.3. Delta models 

Delta models, we are going to introduce, are theoretically equivalent to ARMA 
models. They are just an other form of ARMA models which appears to be numeric­
ally more robust especially in cases of fast sampling rates. We shall start the discus­
sion by a very simple illustrative example. 

Consider a deterministic continuous system of first order 

dy/dr + a v = fiu 

Suppose that the input u is manipulated digitally with a zero order hold as shown in 
Fig. 2. Let the continuous output v be sampled with the sampling period Ts in such 

Fig. 2. Continuous process digitally controlled. 
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a way that Td is the time interval between the time instants when the digital input u(t) 
is applied and when the sample y(t) is taken. Note that the fraction of the sampling 
period Tc = Ts — Td is available for computing the next digital input u(t + 1). 
Clearly, 0 < Tc S Ts. For such a simple example it is easy to derive that the sampled 
output and the digital input are related by the difference equation 

y(t) + aLy(t - 1) = b0 u(t) + bLu(t - 1) 
where 

a, = - e x p ( - a T s ) , b0 = ^(1 - exp (-aTd)) , bL = •? (exp (-aTd) - e x p (-aT s)) 
a a 

In case of fast sampling exp ( —aTs) « 1 — aTs and 

aL « - ( 1 - aTs), b0 * $Td, bL « /jTc 

This clearly shows that the system dynamics is encoded in the small difference 
between aL and 1 and that for a short sampling period aL must be numerically 
represented with a high relative accuracy in order to distinguish different first order 
systems. 

To obtain the Delta form of the same model rewrite it in the following way 

y(t) - y(t - 1) + (aL + 1) y(t - 1) = b0(u(t) - u(t - 1)) + 

+ (b0 + bL) u(t - 1) 
and equivalently 

Ay(t) + a*L y(t - 1) = b* Au(t) + b*L u(t - 1) 

where 

a* = aL + 1 , b* = b0, b* = b0 + bL 

For fast sampling the parameters of the Delta model are 

a ? ^ a T s , b*0*fiTd, b* * 0TS. 

In contrast to aL the relative accuracy of a* in case of fast sampling does not need 
to be high. Note also that b*Ja* is the static gain of the system. 

To proceed towards higher-order and stochastic cases consider the following 
equality 

(43) iaiy(t-i) = ia*A»-iy(t-i) 
i = 0 i = 0 

It is important to note that the lower is the order of the difference on the right-hand 
side of (43) the more it is shifted backwards in time. Only under this condition the 
equality (43) can be fulfilled for any parameter values and the mapping between 
{at:i = l..n}and{a*:i -= ! . , «} is one-to-one. To establish this mapping it is 
convenient to employ the algebra of operator polynomials. However, due to the 
important time shift it is not possible to express the right-hand side of (43) using 
a polynomial in operator A. Therefore it is suitable to introduce the forward-differ-
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ence operator. 

(44) 8/(t) = f(t + 1) - /(f), 5'/(f) = 8 ' - ty( ' + 1) - 5f-l/(f) 

(45) 8 = r 1 - l , A = 1 - C = C8 

and to rewrite the right-hand side of (43) as follows 

ia*A"-y(t-i) = C(ia*b"-i)yit). 
i = 0 i = 0 

Hence, instead of (43) we now can consider 

(46) iai^-» = ia*b»-' 
i = 0 i = 0 

Substitution ^ - 1 = 5 + 1 gives the identity 

£ a,<8+ l ) » - ' - - £ a* 8«-< 
i = 0 i = 0 

which determines [a*: i = 0. ,n} for given {at: i = 0..«} 

(47) a* = tBn{i,j)aj 
j=o 

where Bn(i,j) are the binomial coefficients 

(48) ЧJM = 
n - y 
1 -J 

which can be easily calculated using the recursion 

(49) Bn(ij) = Bn(i + 1, j + 1) + B„(i,i + 1) , t>] 

which starts with Bn(k, k) = 1 and #„(«, fc) = 1 for k = 0, .., n. 
Similarly the substitution 8 = £ - 1 — 1 into the right-hand side of (46) determines 

the inverse transformation 

(50) 

(51) 

-iv-1 "-} -i-Z-CM-;. tfM-(-i) 
j = 0 \ ř — j 

-tf(u) = -tf(* + w +1) - itf(u +1), i > j 
starting with B*(fc, fc) = 1 and 5*(w, fc) = (-1)" * for fc = 0, .., n. For example, 
for « = 4 the transformation matrices are 

BA = 

From the way how the transformations (47) and (50) have been derived it is evident 
that in multivariate cases each matrix position of the model parameters is transformed 

1 0 0 0 0" - 1 0 0 0 0" 
4 1 0 0 0 - 4 1 0 0 0 
6 3 1 0 0 , вt = вi1^ 6 - 3 1 0 0 
4 3 2 1 0 - 4 3 - 2 1 0 
1 1 1 1 1 1 - 1 1 - 1 1 
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separately. Note that a0 = a0 and remains to be a monic LT-matrix. Of course, 
the c-parameters are again scalars and c0 = c0 = 1. Note also that the coefficients 
of the transformations are integers which can be calculated exactly with no rounding 
errors involved. However, in case of fast sampling, subtraction of numbers of very 
different orders can be critical namely in (47). PASCAL procedures performing 
these transformations will be listed below. 

In this way any ARMA model can be recalculated into a Delta form. Using for 
brevity the operator notation 

(52) .P*(8)-Irf-,5( 

; = o 
where n is the order of the corresponding backwards-shift operator polynomial p{Q, 
we obtain: (Note the time shifts ensuring exact matching.) 

— Positional Delta model replacing the ARMA form (37) 

(53) fl*(5) y{t - n) = b*(8) u(t - Tu - n) + d*(ti) v(t - Tv - n) + 

+ c*(5) e(t - nc) + ke 

where 

(54) kc = c*nky 

or its modification according to (42) 

(55) a*(h)Ay{t-n) = 

b*(5) Au(t - Tu-n) + d*(5) Av{t - T0 - n) + 5c*(5) e(t - nc - 1) 

— Incremental Delta model replacing the ARMA form (38) 

(56) a*(6)Ay(t - n) = 

= b*(b) Au(t - Tu- n) + d*(6) Av{t - Tv - n) + c*(5) e(t - nc) 

Extension of the 8-polynomial c 

If the random variable e(t) is interpreted as the unpredictable part of y(t) in the 
sense of (11) for t -> oo then it is natural and suitable (but not necessary) to rearrange 
the Delta model so that the highest difference of e(t) be the same as that of y(t) 
(or of Ay(t) in incremental models). This extension of the polynomial c*(5) can be 
done in the following way. 

From the definition of the 5-operator (45) it is easily seen that 

C(5 + 1) = 1 
Hence 

(57) c*(5) e(t - nc) = C"""c(5 + l)"-"c c*(5) e(t - nc) = 

= (5 + I)"'"* c*(8) e(t - n) 

Applying this extension (see PASCAL procedure EXTEND below) we can assume 
from now on that all 5-polynomials in a Delta model are of the same order n. The 
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same effect is achieved if the polynomial c(C) in the ARMA form of the model is 
extended to order n by adding zero term 

(58) c(0 - 1 + c& + ... + cnc^ + 0 ^ + 1 + ... + Of," 

and then transformed, using (47) or PASCAL procedure ARMAtoDELTA listed 
below, into a 5-polynomial. 

Remark (b). The extension of the c-polynomial is, actually, not necessary. However, 
if it is not done beforehand it will be performed automatically by the algorithm for 
the evolution of the predictive c.p.d.f. p(y(t) | t — l;u(t)) which will be derived 
in Section 4. 

PASCAL procedures 

The following three PASCAL procedures operate on a polynomial, maximally 
of order (CONST) rnnax, represented by the variable parameter p (VAR) of TYPE 
poly = ARRAY [0 , . nmax] OF REAL and perform the transformation indicated 
by the procedure identifier. The result is returned in the place of the original poly­
nomial. 

PROCEDURE ARMAtoDELTA (VAR pipoly; {of order} ^INTEGER); 
VAR i, j INTEGER; 

B :ARRAY [0. .wmax, 0. .rnnax] OF INTEGER; 
BEGIN 

FOR i := 0 TO n DO BEGIN B[i, i] := 1; B[n, i] := 1 END; 
FOR j := n -2 DOWNTO 0 DO 

FOR i := j + 1 TO n - 1 DO B[i,j] := B[i + 1, j + 1] + B[i,j + 1]; 
FOR i:= n DOWNTO 0 DO 

FOR j := 0 TO i - 1 DO p[q := p[i] + B[i,j] *p[j] 
END; 

PROCEDURE DELTAtoARMA (VAR p.poly; {of order} M : I N T E G E R ) ; 
VAR i , j :INTEGER; 

B rARRAY [0. .nmax, 0. .nmax] OF INTEGER; 
BEGIN 

B[n,n]:=l; 

FOR i := n - 1 DOWNTO 0 DO BEGIN B[i, i] := 1; 
B[n,i]:= -B[n,i + 1] END; 

FOR j := n - 2 DOWNTO 0 DO 
FOR i ;= j + 1 TO n - 1 DO B[i,j] := B[i + 1, j + 1] - B[i,j + 1]; 

FOR i = nDOWNTO 0 DO 
FOR j : - 0 TO i - 1 DO p[Q := p[i] + B[i,j] *p[f] 

END; 
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PROCEDURE EXTEND (VAR p:poly; {of order} np, {to order} ^INTEGER); 
VAR iJJIJu, Dn .INTEGER; 

B :ARRAY [0. .nmax] OF INTEGER; 
sum :REAL; 

BEGIN 
Dn := n — np; 
FOR i := 0 TO Dn DO B[i] := 1; 
F O R i : = 1TO Dn - 1 DO 

F O R ; := i DOWNTO 1 DO B[j] := B[j] + B[j - 1]; 
FOR i := n DOWNTO 0 DO 
BEGIN 

sum := 0; 
jl := i - Dn; IF jl < 0 THEN;/ := 0; 
ju := i; IF ju > np T H E N ; M := np; 

F O R ; ; = ;7 TO;u DO sum := sum + p[j] *B[i - ; ] ; 
p[i] := sum 

END 
END; 

3.4. Canonical state models 

In this paragraph both ARMA and Delta models will be transformed into canonical 
state forms. The main reason for this representation of input-output models is that 
it makes the algorithms for control, prediction and system identification compact 
and uniform for both univariate and multivariate cases and, moreover, saves the 
computer storage as well as the number of arithmetic operations required. 

State representation of ARMA models 

Consider the positional ARMA model (32) with c-part extended, for uniformity, 
to order n by adding zero terms according to (58). The model can be written in the 
following way 

(59) a0 y(t) = b0 u(t - Tu) + d0 v(t - T0) + e(t) + sx(t - 1) 

where we denoted 

si(t - 1) = 
n 

= I [-«; y(t - J) + bJ u(f ~Tu- f) + dj v(t -Tv- j) + Cj e(t - ;)] + kc 
j = i 

Shifting the time index forwards by one the relation for sx(t) can be expressed as 
follows 

<*i y(t) + sx(t) = bx u(t - T„) + dx v(t - Tv) + cx e(t) + s2(t - 1) 
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where 

s2(t ~ 1) = .£[-«-' y(t + 1 ^ J) + &; «( ' + 1 - 2_ - j) + 

+ ^ »(* + 1 - Tv-j) + Cj e(t + 1 - j')] + fcc 

Continuing in this way we obtain for i < n 

(60) a, y(t) + Si(t) = bt u(t - Ttt) + dt v(t - Tv) + c{ e(t) + s.+1(t _ _) 

(61) st(t) = £ [~aj y(t + i - j) + bj u(t - Tu + i - /) + 
j = i 

+ dj v(t - Tv+ i~ j) + Cj e(t + i - I)] + fcc 

and finally for i = n 

(62) a„ XO + sn(t) = bn u(t - Tu) + d„ v(t - Tv) + cn e(t) + kc 

Summing up it is seen that the system of equations (59), (60) for i = 1 . . n — 1, 
and (62) can be written in the following matrix form which will be called the canonical 
state model. 

(63) A x(t) = bu(t - Tu) + d v{t - Tv) + c e(t) + H s(t - 1) + kx 

where 

(64) 4 0 = [/(«), S'(03. m = [>;(<)> «,(* • •. <(')] 

(65) Я = 

7 0 0 . 0 " 
0 / 0 . 0 
0 0 / . 0 

0 0 0 . / 
0 0 0 . 0 

(66) A = 

a0 

UІ I 

aг I 

an-i 

[bo ~ ~d0 1 " 0 " 

h dг 0 

bг 
d2 0 

, ь = , d = , fc* = • 

Ь.-! -*-_ 0 

л _ Л _ Л 
and, since in multivariate case the parameters ct- remain scalars 

r 

(67) c = 

cj 
C2I 

iA-_ 
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where 1 is a unit matrix of dimension dy. Recall that in multivariate case a0 is a monic 
LT-matrix. Consequently, also the matrix A, where only the structurally nonzero 
elements are indicated, is a monic LT-matrix of dimension (n + 1) dy. The a-par-
ameters of the model are placed in the first dy columns of this matrix. 

For zero time delays Tu and Tv the model (63) defines the conditional mean value 

(68) E[x(t) | v(t), u(t), s(t - 1)] = A~\b u(t) + d v[t) + H s[t - 1) + kx) 

and the conditional covariance matrix (singular) 

(69) Var [x(t) \ v(t), u(t), s[t - 1)] == A~xcDe c'(A~x) 

If, in addition, e(t) is assumed to be normal then the entire c.p.d.f. p(x(t) | v(t), u[t), 
s(t - 1)) = p(y(t), s(t) | v(t), u(t), s(t - 1)) (18) is defined. Hence, s(t) is a state 
of the model. If the delays Tu and/or Tv are present then the state must be extended 
by {u(t - i): i = 1. .Tu] and {v(t - i): i = l..Tv}. However, this part of the total 
state can be handled separately and when we shall speak about a state we shall 
mean just s(t). 

In the same way the canonical state form can be obtained for the incremental 
ARMA model. 

(70) A x(t) = b Au(t - Tu) + d Av(t - Tv) + H s(t - 1) + c e(t) 

where now the absolute term kx is missing and 

(71) x'(») = [A/(<),s'(0] 

Recall that this form can represent also the positional ARMA model if a unit root 
is inserted into the polynomial c(Q. 

State representation of Delta models 

Consider the positional Delta model (53) but expressed in backward differences. 

(71) fjaiA"-iy(t-i) = 
i = 0 

= £ [bt An"lu(t -Tu-i) + dt A"-'i<- -Tv-i) + Ci A"'1 e(t - ij] +kc 
j = 0 

To simplify writting we omit the stars distinguishing the parameters of ARMA and 
of Delta models as no confusion can occur any more. However, the reader has to 
baer in his mind that they are different. We also assume that the c-part of the model 
has been extended to order n (see Remark (c) below). 

In order to transform (71) into a canonical state model it is suitable to introduce 
the operation which is inversed with respect to the backward difference A. Clearly 

A/(r)= f(t)-f(t-i) 

f(t) = Af(t)+f(t-l) 
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and recursively 

f(t) = Af(t) + Af(t - i) + f(t - 2) = 'E Af(t - 0 + /(O) 
k = 0 

where /(O) is an arbitrary constant. 
Hence, it is possible to write 

(73) A^f(t) Jj:f(t - k) + A-%0) 
k = 0 

A"!j(0 = E A - 0 " 1 ^ - - fc) + A- ' / (O) 
fc = 0 

Application of A"" to the relation (71) gives 

(74) £ a , A - ^ - 0 = 
i = 0 

= £ A-'[foi «(- - Tu - 0 + dt v(t -Tv- i) + ct e(t - 0] + f0(t) 
i = 0 

where f0(t) is a function reflecting, according to (73), the effect of posibly nonzero 
initial conditions. For our purpose it is important to know about this function that 
its nth difference is 

A%(t) = kc, t>0 

The relation (74) can be written similarly to (59) 

(75) aQ y(t) = bQ u(t - Tu) + d0 v(t - Tv) + e(t) + st(t - 1) 

where „ 
*-(' - i) = Z *~J[-«j y(t - i) + bj u(t -TU- j) + 

/ = i 

+ dj v(t - Tv - j) + cj e(t - ;)] + fQ(t) 

Shifting the time index by one ahead and taking the difference we have 

Ast(t) = st(t) - st(t - 1) = 

= t A-J + 1[-aj y(t+l- j) + bj u(t -Tu+l-j) + dj v(t - Tv + 1 - j) + 

+ cj e(t + l - j)] + AfQ(t + 1) 

a, y(t) + ASl(t) = bt u(t - Tu) + dt v(t - Tv) + ct e(t) + s2(t - 1) 

This shows that it is possible to continue similarly to ARMA case if in each step 
also the difference is applied. In this way it is obtained for i < n 

(76) a, y(t) + As//) = b{ u(t - Tu) + dt v(t - Tv) + ct e(t) + si+1(t - 1) 

and for i = n 

(11) an y(t) + Asn(t) - bn u(t - Tu) + dn v(t - Tv) + cn e(t) + kc 

The matrix form of the canonical state model (75), (76), (77) can be left the same 
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as (63) 

(78) A x(t) = bu(t - Tu) + dv(t - Tv) + c e(t) + H s(t - 1) + kx 

with matrices introduced by (65), (66), and (67) but in this positional Delta case 

(79) *'(<) = [/(<), _*'(<)] 

In the same way the canonical state representation of an incremental Delta model 
can be obtained in the form (70) 

(80) A x(t) = b Au(t - Tu) + d Av(t - Tv) + c e(t) + H s(t - 1) 

but with 

(81) *'(<) = [A/(<),AS'(<)] 

As discussed before, by this incremental model also the positional Delta model 
can be represented if instead of the original polynomial c(8) of order nc the poly­
nomial 5c(5) is considered and then extended to order n according to (57). 

Remark (c). If the extension of the c-part of the Delta model has not been done 
beforehand (see Remark (b)) then the leading coefficients {ct: i = 0. ,n — nc — 1} 
in (72) must be set to zero, c„_„c = 1, and the time index of e should be shifted 
accordingly, i.e. by n — nc steps ahead. In a state representation this means that the 
first n — nc elements of the matrix c (67) are zero and e(t + n — nc) should stay 
instead of e(t). Note that e{t + n — nc) will influence the output only after n — nc 

steps, i.e. it will meet the output y(t + n — nc) with the same time index. However, 
if e(t) is interpreted, or simulated on a digital computer, as an external driving 
white noise then its time shift is insignificant. 

3.5. Digital simulation of continuous stochastic processes 

Digital simulation of continuous stochastic processes is not the main topic of this 
paper. However, it is believed that an interested reader might appreciate a simple 
tool which makes it possible for him to experiment with the presented algorithms 
and to investigate their sensitivity with respect to violation of theoretical assumptions 
on which they are based. The purpose of this paragraph is to show that Delta models 
can serve this purpose, and to give a simple and fast PASCAL function performing 
this task. 

To avoid the theory of stochastic differential equations of higher order consider 
first the ordinary differential equation 

d-r" i=i dr" ' i=o d-c" l 

When simulating a continuously operating system described by such an equation 
on a digital computer it is necessary to admit some kind of approximate discretization. 
Since our interest is to simulate the evolution of the output y in natural time, i.e. 
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(83) 

in the direction of positive T, it is suitable and convenient to consider the following 
discretization 

ABY(Q A A - V f t - Q = -A A - ' I I ( . - Q 

(AT)" ik \ (AT)"-£ , 4 , . (AT)" - ' 

where AT is a sufficiently small increment of time T. The time shift of lower order 
differences guarantees that y(t) appears in the relation only once and that, given 
{y(t — 0* '' — 1- -n} an<^ {M(* — 0* l ~ 0- •«}, y(0 is determined uniquely for any 
values of the coefficients. For AT -> 0 this time shift disappears and in the limit 
the relation (83) approaches the original differential equation (82). Multiplying the 
relation (83) by (AT)" > 0 the following Delta model is obtained. 

YJalA
n-íy{t-i) = YjbiA"-iu(t-i) 

/ = o í = 0 

where 

(84) a ř = ( A т ) Ч , ^-(AтУßi 

Now consider the state-space representation of a single-output Delta model 
of positional type (78) 

(85) 

It is easy to verify that 

A^Å
УЩ=bu(t) + ce(t) + Hs(t-l) 

(86) A'1 = 

1 

at 1 
a2 1 

- 1 
— ax 1 
— a2 1 

l-a„ 
Applying this inverse 

[ 4 . 1 ] = A ~ ' н s { t ~1)+л"bu{г)+A~,ce{t) 

the canonical state model can be written as the state equation 

(87) As(t) = As s(t - 1) + bs u(t) + cs e(t) 

and the output equation 

(88) y(t) - Sl(t - 1) + b0 u(t) + e(t) 

where 

-a, 1 
— a2 1 

(89) A. = 1 

— a, 

Ъx - Ü^ЪQ cj - ax 

b2 - a2b0 C2 ~ "2 

. ъs = • > cs = 

1 
0_ J>„ - anb0_ Jn ~ a„_ 
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The ("th row in (87) is 

(90) As/*) = -a, s_(t - 1) + s ; + 1(f - 1) + (bt - a;b0) u{t) + (c, - a,) e(.) 

If the state components are rescaled so that 

(91) trj(f) = s i(()/(AT) i-1, er^) = s.(.) 

and if the parameters are expressed according to (84) 

(92) A; = a;(AT);, 6, = /?;(AT); , c, = y^A.)1 

then we have instead of (90) 

halt) 

Aт 
= — a i a_(t - 1) + ai+1(t - 1) + (0, - a;jS0) и(í) + (y, - a:) e(í) 

and the state-space model (87) —(88) now is 

(93) 
Zi 

y(t) = «r..(í - 1) + p0 u(t) + e(f) 

^ ) = Ф cт(ř - 1) + V м(ř) + Г e(ŕ) 
Aт 

(94) 

where 

(95) Ф 

— â  1 

— a„ 

Ч> = 

Bi - ^i/^o- ľl -- a_ 

ßг ~ <*2ßo 
, г = 

ľ2 " - «2 

ßn ~ «и/V _ľ„ " - a«_ 

Comparing (93) and (94) with the continuous-time stochastic model (in the in­
novations representation [11]) 

(96) dajdx = <P a(x) + W u(x) + r e(x) 

(97) y(x) = a_(x) + P0 u(x) + e(x) 

it is seen that the Delta model (85) can be used to approximate the continuous-time 
model if the continuous time T is scaled so that its chosen increment AT (small but 
finite) is a time unit. This scaling of time appears suitable both algoritmically and 
numerically. 

In a similar way it is possible to show that the incremental Delta model (80) 
can be used to simulate the continuous-time process described by the model [11] 

(98) da = <Pa dx + V du + F dw 

(99) dy = a_ dx + J?0 dw + dw 

where dw = e dt is the increment of the Wiener process. 
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PASCAL procedure and function 

The following PASCAL procedure CONTbyDELTA recalculates, according to 
(92), the parameters of a continuous-time linear process model to the parameters 
of the Delta model by which it can be approximated. The function PROCESS 
generates the process output performing one step of its digital simulation. The 
nonstandard types of their parameters are 

TYPE 
poly = ARRAY [0. ./.max] OF REAL; 
system = RECORD 

n : INTEGER {order} ; 
a, b, c, s : poly {parameters and state} 
END; 

PROCEDURE CONTbyDELTA (VAR p:poly; rc:INTEGER; df.REAL); 
VAR/, ^INTEGER; 
BEGIN 

FOR / : = 1 TO n DO 
FOR j : = i TO n DO p[j] : = p[j] * dt 

END; 

FUNCTION PROCESS (VAR S: system; u, e:REAL): REAL; 
VAR ^INTEGER; 
BEGIN 

WITH S DO 
BEGIN 

s[0] := s[l] + b[0] * u + c[0] * e; 
FOR i := 1 TO n - 1 DO s[i] := s[i] + s[i + 1] - a[i] * s[0] + b[i] *u + 

+ c[i] * e; 
s[n] := s[n] — a[n] * s[0] + b[n] * u + c[n] * e; 
PROCESS := s[0] 

END 
END; 

Remark (d). The discrete-time process, by which the continuous-time process 
is approximated, is slightly less stable than the original one. This is due to the fact 
that the region of stability for the roots of a 5-polynomial is a disk of radius 1 centered 
on the point ( — 1, 0) in 5-plane. (The relation (45) maps the region outside the unit 
circle in ^-plane on the above disk in 5-plane.) In the original continuous-time scale 
this disk has radius 1/AT and the center on the point ( —1/AT, 0), see Fig. 3. This 
means that stable continuous-time systems with poles of their Laplace transfer 
function /?(s)/a(s) lying between the circle and the vertical axis in Fig. 3 are simulated 
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as unstable. To see that this defect is, as a rule, well negligible the reader is re­
commended to simulate the system described by the differential equation d2j>/dT2 + 
+ (2TC)2 y = (2TT)2 U which, for zero initial state and M(T) = 1 for t > 0, should 

Im(s) 

0 Re(s) 

Fig. 3. Stability region in complex j-plane for Dslta approximation of continuous systems. 

produce the output y(r) = 1 — cos T. Choosing AT = 0001 the approximating 

Delta model has the parameters according to (84): 

1 , ax = 0 , aг = (2тt)2 . 10" 0 , Ьx = 0, bг = (2тt)2 . 10 - 6 

The instability of the discrete model starts to be visible on the computer screen only 
after about 4 periods of the output (after 4000 integration steps realized by the func­
tion PROCESS). Otherwise, both the amplitude and the phase of the output are 
simulated very precisely. 
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4. STATE ESTIMATION AND OUTPUT PREDICTION 

In order to be able to control a given process in a rational way it is necessary 
to be able to predict its future motion. If the process is described by a state model 
then the prediction requires to propagate the conditional probability distribution 
p{s[t) | t) by which the uncertainty of the model state s[t) is described. This can be 
seen from the formula (3.22). 

In this section the solution of the classical problem of state estimation and output 
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prediction will be revised with emphasis on algorithmic and numerical aspects. 
To provide a general view on the problem the first paragraph is devoted to its con­
ceptual solution in terms of conditional probability distributions. Such a solution 
does not yield practical algorithms but facilitates a deeper rooted understanding 
of the problem. In the succeeding paragraphs the conceptual solution is specialized 
for the linear models introduced in Section 3. 

In the second paragraph it will be shown that for canonical state forms of input-
output models it is possible to derive algorithms which are simpler and numerically 
more robust than the standard Kalman filter. They are uniform for both ARMA 
and Delta models and can solve also continuous cases with good approximation. 
To make the main ideas of the algorithmic solution as transparent as possible the 
single-output case is considered first. 

The kernel of the presented solution is the algorithm for propagation of the state 
covariance matrix which replaces the Riccati equation of the Kalman filter. This 
algorithm and the corresponding PASCAL procedure are discussed in detail in the 
third paragraph. 

In the fourth paragraph it is shown that the effectivity and numerical reliability 
of the algorithmic solution can be well maintained also in multi-output case. 

In the last paragraph the prediction of the process output and of the model state 
for more than one steps ahead is considered. It will appear useful in control synthesis 
for processes with time delay. 

In the given problem the external measurable disturbance v does not need to be 
considered explicitly. It can be regarded as an additional process input and as such 
can be easily incorporated into the final results. The fact that this external input 
cannot be manipulated is not essential here. However, it is essential that v(t) as well 
as u(t) influence the model state s(t) but, under natural conditions of control (see 
paragraphs 2.1 and 3.1), they alone do not bring a new piece of information about 
s(t — 1) in addition to the information contained in the past input-output history. 
Recall that s(t — 1) is the state of the controlled process itself, not of the generator 
of v(t). 

Throughout this section it is assumed that the parameters of the model are known. 
Since this condition is permanent for all probability distributions involved it is not 
explicitly stated. The simultaneous estimation of the model parameters and of the 
state will be considered in Section 6. 

4.1. Conceptual solution 

Suppose that the inputs u(k) and the outputs y(k) of a particular process, possibly 
multivariate, have been observed for k= 1,2, ...,t— 1 and that the c.p.d.f. 
p(s(t — 1) | t — 1) has been determined. The problem is: Given the state space 
model defining the c.p.d.f. (3.18) p(y(t), s(t) \ s(t — 1), u(t)) find the predictive 
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c.p.d.f. for the next output p(y(t) 11 - 1; u{t)) and, after the output is observed, 
determine p(s(t) | t) to prepare the next step of the recursion. 

The solution of the given problem can be decomposed into three stages. In the 
first stage the joint probability distribution for y(t) and s(t), given u(t) and the past 
input-output history, is determined. Employing just the elementary operations with 
c.p.d.f.'s (2.1) and (2.2) it is possible to write 

p(y(t), s(t) \ t - l ; u(t)) = f p(y(t), s(t), s(t - 1) \ t - l;u(ij) ds(t - 1) = 

= f p(y(t), s(t) 11 - l;s(t - 1), u't)) p(s(t - 1) 11 - I; »(*)) d<* - 1) 

From the definition (3.18) of the state we have 

p(y(t), s(t) | t - 1; s(t - 1), u(t)) = p(y(t), s(t) | s(r - 1), u(t)) 

and under natural conditions of control it also holds according to (3.19) 

p(s(t - l)\t - l;u(t)) - p(s(t - l)\t - 1) 
Hence 

(1) p(y(t),s(t)\t-l;u(t))-

p(y(t), s(t) | s(t - 1), u(t)) p(s(t - 1) 11 - 1) ds(t - 1) 

In the second stage the marginal distribution for the prediction of the process 
output is determined. 

(2) p{y(t) \ t - l ; u(t)) = !p(y{t), s(t) \ t - l ; u{t)) ds(t) 

In the third stage the recursion is concluded by conditioning the probability 
distribution for the state s(t) with respect to the newly observed output y(t). 

(3) P(s(oit) = ^ ; ^ ' f - 1 ; f ) 
p(y(t) \t -1; u(t)) 

Thus the problem of state estimation and output prediction is conceptually solved. 
The inspection of the relations (1) to (3) shows that if the model defining p(y(t), 

s(t) | s(t — 1), u(t)) is linear and normal, and if p(s(t — l)\t — 1) is assumed to be 
normal then the piedictive c.p.d.f.'s (1) and (2) are normal and also p« t ) | t), up­
dated according to (3), is normal, i.e. the normality is reproduced. This means that 
for a linear normal state-space model it is sufficient to express the prior uncertainty 
of the initial state s(0) by a normal c.p.d.f. p(s(0)) and the problem can be solved 
considering only first and second moments (expected values and covariances). This 
observation is of fundamental importance for further applications of this conceptual 
solution. 
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4.2. Algorithmic solution for canonical state representation of linear normal 
input-output models 

In order to cover aJl models discussed in Section 3 at the same time and by the same 
algorithms it is suitable to rearrange slightely the state representation of Delta models. 
The relation (3.76) for the ;th component of the canonical state can be rewritten 
in the following way 

(4) at y(t) + Si(t) = s{t - 1) + si+1(t - 1) + b, u(t - T„) + c, e(t) 

where the term with v(t) has been omitted for brevity. (As discussed above this 
simplification does not restrict the generality.) Recall that in multi-output case each 
component of the state st(t) is a vector of dimension dy. Comparing (4) with (3.60) 
it is easily seen that both Delta and ARM A models can be described by the relation 

(5) Ars^\^Hs(t-l) + bu(t-Tu) + kx + ce(t) 

if the matrix H of dimensions (n + 1) dy x n dy introduced by (3.65) is redefined 
in the following way 

(6) H ыa 
where / is a unit matrix of dimension n dy and n is the model-type indicator 

(7) n = 1 for Delta models, 
H = 0 for ARMA models. 

The matrix coefficients A, b, c in (5) and the possible absolute term kx have the same 
structure (3.66 — 67) for both cases but, as discussed in detail in paragraph 3.3, their 
parameter entries are, in general, different. 

By comparing (5) with (3.70—71) and with (3-80 — 81) it is seen that if y(t) and 
u(t — Tu) are replaced by their increments Ay(t) and Au(t — Tu), respectively, then 
(5) with kx = 0 covers also incremental models. As discussed in connection with 
equations (3.70) and (3.80) by incremental form also positional models can be 
represented if the corresponding root (1 in ARMA case and 0 in Delta case) is inserted 
into the c-polynomial. If also the Remark (3c), concerning the c-part of a Delta model, 
is recalled then we are prepared to solve our problem with rather broad generality. 
However, in order not to hide the main ideas of the algorithmic solution in technica­
lities the single-output case will be considered first. 

Single-output case 

The white-noise component e(t) of linear input-output models introduced in Section 
3 has the same dimension as the output y(t). Thus in single-output case the diagonal 
covariance matrix De (3.40) is reduced to a nonnegative scalar which will be denoted 
here as Q. 

(8) Var [<r)] = Q 
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Suppose that the c.p.d.f. p(s(t — 1) | t — 1) is normal with the mean values 
s(t — 1 | t — 1) and with the covariance matrix factorized as follows 

(9) Var [s(t - 1) | t - 1] = Q Ls(t - 1) Ds(t - 1) Ls(t - 1) 

where Ls(t — 1) is a monic LT-matrix and Ds(t — 1) is a diagonal matrix with 
nonnegative diagonal entries. These factors are supposed to be given numerically. 
Note that the scalar Q is extracted in (9) and does not need to be given numerically. 

Taking the expectation conditioned on the observed input-output data up to t — 1 
and on u(t) the model (5) yields 

(Ю) Лч ř 
i;ц(0) 

Šyt j t - 1; u(t)) 
= Я ś(t - 11 ř - 1) + b u(t - Tu) + kx 

The first row in (10) determines the expected value (the prediction) of the output 

(11) y(t\t - 1; u(t)) = st(t - 111 - 1) + b0 u(t - Tu) 

and the remaining rows in (10) determine the prediction of the state 

(12) st(t [ if — 1; u(t)) = -fl ; j)(f | f - I; w(f)) + /(i;(f - 1 | t - 1) + 

+ ,?, + 1(z - 1 | f - 1) + b-, u(t - Tu), / < n 

(12') 5„(f | t - 1; w(*)) = -a„ y(t\t - 1; u{t)) + fi s„(t - 1 | t - 1) + 

+ 6„ u(t - Tu) + /cc 

From (5) and (10) we also have 

A\f-^jt~!;U:
i
t)^\ = H(s(t-l) 

[s(t) - šKt\ t - 1; w(ř)) j v v 7 l(ř 1 í \)) + ceU) 

Hence the joint covariance matrix is 

(13) v„[y[t) 
) 

Var Глť 1; u(t) 

= ^ ~ ] [ / / L / l - 1) Ds(t - 1) Lsl( - 1) H' + cc'1 (A~1)' = 

= ^-[c,HZ,][i0J[LfH,](A-)' 

where the time argument has been omitted for brevity 
The mean values (11) and (12) and the covariance matrix (13) determine the normal 

joint probability distribution (1). The remaining stages (2) and (3) of the general 
recursion can be accomplished at the same time by applying the Result (2A). For 
this purpose it is sufficient to modify the factorization of the joint covariance matrix 
(13) so that it gets the form 

(14) 
Ls(0 i ;ц(0 = QLĎL 
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where Lis a monic LT-matrix and D is diagonal. Since, according to (3.86), A 1 is 
already a monic LT-matrix 

(15) A'1 = _ _ . , a' = [aua2,...,a„] 

it suffices to modify only the inner matrix product on the right-hand side of (13). 

(i6) fc*-j[jy[i.>]--'-' 
Since the left-hand side of (16) can be considered as a weignted sum of dyads with 
the weights given by the diagonal nonnegaiive entries of the inner diagonal matrix, 
the modification can be performed by a suitable application of dyadic reduction. 
The algorithm performing this task will be described in detail in the following 
paragraph 4.3. At this place let us assume that the modification has been performed 
and let us partition the resulting monic LT-matrix L and the diagonal matrix D 
in the following way 

(17) L = 
1 0 
č L. 

Ď = dy 0 
0 Ď. 

where c is a column vector of dimension n, Ls is a monic LT-matrix, and dy is, in this 
single-output case, a nonnegative scalar number. 

After substituting the right-hand side of (16) into (13) it is seen that the monic 
LT-matrix L in (14) is 

1 0" 
18) A~'L = •a I 

p° j=r i ° 
[č Lsj \_č - a Ls 

The application of the Result (2A) is now straightforward. Restoring the time argu­
ment 

(19) ~c(t) = ~c, LJt) = Ls, Ds(t) = Ds, d/yt) = dy 

we obtain 
(20) s(t | /) = S(t | / - 1; «(/)) + (c(t) - a) (y[t) - y[t\t - \; «(/))) 

(21) Var [</) | /] = Q Ls(t) D/t) Ls(t) 

(22) Var[y'yt)\t-l;u(t)] = 6dy(t) 

This concludes the recursion. 
It is important to note that the multiplication by A-1 in (18) does not influence 

Ls = Ls(t). This means that the evolution of the state covariance matrix (21), of the 
prediction variance (22), and of the time varying component c[t) of the Kalman gain 
(c(t) — a) is determined solely by the parameters c of the model, by the observation 
time /, and by the initial state covariance matrix which us used to characterize the 
prior uncertainty of the state s(0) before any data are observed. No other parameters 
neither data enter this evolution. 

Instead of calculating the estimate (the conditional mean) of the state s(t) according 
to (11), (12), and (20) it is more suitable to proceed as follows. For the ith component 

48 



of the state the relation (20) gives 

Sjt | /) = S,{t [ t - 1; u(t)) + (ct(t) - a,) (y(t) - p(t | t - 1; u(r))) 

When s,(f | f — 1; u( )) is substituted from (12) the term at y(t \ t — 1; u(t)) is 
cancelled. Making use also of (11) it is finally obtained 

(23) St(t | r) = pi s/j - 1 | t - 1) + s ; + 1(f - 1 | f - 1) -

- ct(t) St(t - 111 - 1) - (at - c,[t)) y(t) + (b, - ct(t) b0) u(t - Tu), 

i < n 

(23') Sn(t \t) = fi Sn(t - 1 | t - 1) - c„(r) s.(.* - 1 | f - 1) -

- K - c„(0) y(t) + (b„ - c„(t) b0) u(t - Tu) + kc 

Summing up we come to the following 

Result (4A): State estimation in single-output case. 
If the white-noise component e{t) of the canonical state-space model (5) is normally 

distributed with zero mean and with the variance Q (8), and if the probability distribu­
tion p(s(0)) describing the prior uncertainty of the initial state ŝ O) is also normal 
then the c.p.d.f. p(s(t) | t) is normal for all f > 0 and the evolution of its mean value 
is governed by the difference equation 

(24) 

where 

(25) 

S(t | f) = (џl + C(t)) S(t - 1 | t - 1) - (a - č(t)) y(t) + 

+ (b- č(t) b0) u't - Tu) + ks 

C(t) 

C ( ( ř ) 
c2(t) 

1 0 0 
0 1 0 
0 0 1 

b„] 

c„_l(f) 0 0 0 . 1 
_cn(t) 0 0 0 . 0 

(26) c'(f) = [c1(f),c2(f),...,c„(f)] 

(27) a' = [al,a2, ...,an], b' = [bl,b2, 

(28) k's = [0,0,...,0,kc] 

The coefficients c,(f), in general time varying, as well as the factors Ls(f) and Ds(t) 
of the state covariance matrix (21), and the variance of the output prediction (22) 
can be propagated simultaneously by the modification of the matrix factorization 
(16) which, with partitioning (17) and time indexing (19), reads 

"1 0 
(29) [c,HLjt- 1)] 0 ű s ( ř - l ) J L Ľ s ( ŕ - l ) Я ' J 

1 0 lГdy(t) 0 lГ l c'(t)l 
c(t)Ls(t)JІ0 Ds(t)Цo Ľs(t)j 
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The one-step-ahead prediction of the output y(t\t — 1; u(t)) is given by (11) and 
the prediction of the state s(t | t — 1; u(t)), if required, can be calculated according 
to (12). 

Remark (a). Note that the variance Q (8) of the white-noise component of the model 
does not enter the evolution of conditional means and of time-varying factors of 
covariances. Therefore it does not need to be known if the prior covariance matrix 
of the initial state s(0) is chosen in proportion to this possibly unknown parameter. 

(30) Var [.<0)] = Q LjO) DJO) LJ.O) 

Remark (b). The vector difference equation (24) clearly shows that the dynamics 
of the filter generating the state estimate s(t | t) is given by the matrix (/il + C(t)) 
and by the evolution of the coefficients c(t) (26) which determine this matrix. To get 
a deeper insight it is advantageous to consider the stochastic difference equation 
by which the difference between the true but unknown state and its estimate 

(35) s(t) = s(t) - sj | t) 

is governed. By simple algebraic manipulation with the model (5) and the difference 
equation (24) of the estimation filter it is possible to derive 

(36) s(t) = (ill + C(t)) s{t ~ I) + (c - at)) e(t) 

where 
(37) c' = [cuc2,.... c„] 

Two important observations can be drawn from this stochastic difference equation: 
(i) Suppose that the algorithm performing the modification (29), converges for 

t -*• oo producing c(oo) = c, Lj oo) = Ls, Ds(co) = Ds, and C(oo) = C. Since the 
estimation of the state is optimal (in the sense that it extracts all relevant information 
about the state contained in the observed data) the stochastic difference equation 
(36) cannot be unstable for t -> oo. This means that none of the roots {/t;: i = 1, .... ft} 
of the characteristic equation det ((A — n)l — C) = 0 can lie outside the unit circle. 
The characteristic equation with the matrix C of structure (25) reads 

i = l 

Hence, in ARMA case (n = 0) the polynomial 

c(X) = X" + j^CiX"-1 

; = i 

has no roots outside the unit circle even when the polynomial c(Q of the ARMA 
model is unstable. Similarly, in Delta case (fi = 1) the polynomial 

c(8) = 5" + £c;5"-«' 
i = l 

has no roots outside the circle of radius 1 centered on the point (— 1, 0) in 5-plane. 
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(ii) If the c-polynomial of the model is stable and c = c then, according to (36), 
s[t) converges to zero. Asymptotically, the state of the model can be reconstructed 
exactly and the state covariance matrix converges to a zero matrix, Dj co) = 0. 

These observations will be supported by examples in the following paragraph 
where the algorithm performing the modification (29) will be described in detail. 

4.3. Algorithm for propagating the state covariance matrix and generating c(t) 

An algorithm will be designed which performs the modification of the matrix 
factorization (16) and in this way, according to (29), propagates the factors Ls(t) 
and Ds(t) of the state covariance matrix (21), and simultaneously generates c(t) (26) 
and the factor dy(t) of the prediction variance (22). This algorithm replaces, for the 
canonical state model (5), the Riccati equation of the standard Kalman filter. Unlike 
the Riccati equation it guarantees numerically the nonnegative definitness of the 
propagated covariance matrix. This is of extraordinary importance for practical 
computation particularly in often met cases when the state covariance matrix con­
verges to a zero matrix (see Remark (b)). The basic idea of the algorithm rests on 
the fact that the left-hand side of (16) can be considered as a sum of weighted dyads 
and therefore can be modified using the dyadic reduction. 

To design the algorithm it is sufficient to consider only the rows of the right-hand 
factor on the left-hand side of (16) and their weights as shown in the scheme Fig. 4 
where each row represents one dayd and its weight. Note that the last row, 

1 

Djj - 1) 

Dsi 

Ds2 

D. 

0 

C 0 Cl C2 C 3 -лl 

1 . . 

1 1 • 
1 . 

Ľ/t - 1) 

1 
Fig. 4. First stage of the algorithm CGEN. 

containing just a single nonzero entry (one), is added but the zero weight is assigned 
to it. This trick makes the algorithm compact. In most cases c0 = 1, but as discussed 
in Remarks (b) and (c) in Section 3, it can also be c0 = 0 if the c-polynomial of a 
Delta model is not extended to the full order n. 

The goal is to perform the modification (16) so that the right-hand factor depicted 
in Fig. 4 be a monic upper triangular matrix L'. This can be achieved when the first 
row c0, Cj, ..., c„ is totally zeroed by sequential application of the dyadic reduction. 
The row having the weight Dsl is used to zero the first entry c0, the next row is used 
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to zero the second entry (cj modified by the first step), and so on until the situation 

Ds(t) 

Dsl 

Ds2 

D, 

0 0 0 0 0 0 
1 č. . • č„ 

1 . 
1 1 

1 
1 . 

1 1 

č'(t) 

m 

Fig. 5. Final stage of the algorithm CGEN. 

depicted in Fig. 5 is reached. Note that c' appears in the second row and that both 
Ls(t) and Ds(t) are shifted by one row lower. This must be respected when coding the 
algorithm. 

PASCAL PROCEDURE CGEN 

The above described algorithm is realized by the following procedure CGEN. 
The nonstandard types of its parameters are 
TYPE row = ARRAY [0. .nmax] OF REAL; 

matrix = ARRAY [0. .nmax] OF row; 
where nmax is a suitably chosen integer constant. Since CGEN makes use of the 
procedure DYDR (see paragraph 2.2) the type row must be the same for the both 
procedures. 

Parameters: 
L . . . type matrix; factor Ls of the state covariance matrix to be updated, L[z',j] = 

= Lsji; must be initialized including L[i, i] = 1; the part under the main 
diagonal not used; Lis extended by row L[0] which can be arbitrary when 
the procedure is called. 

. . type row; factor Ds (its diagonal elements) of the updated state covariance 
matrix, D[i] = Ds ;; D[0] can be arbitrary when the procedure is called. 

. . type row; parameters c of the model, c[i] = c ; (i = 0, ..., n). 

. . type INTEGER; model order. 

. . type INTEGER; model-type indicator (in the text denoted by fi); set inti =-- 0 
for ARMA, mti = 1 for Delta model. 

The generated c appears in the row L[0], c ; = L[0, {]; dy appears in D[0], 
-a 

PROCEDURE CGEN (VAR L matrix; VAR D:row; crow; n,mti. INTEGER); 
VAR i, j : INTEGER; 

£>e:REAL; 
BEGIN 
De:= 1; 
FOR i:= 1 TO n DO 

D 

c 
n 
mti 

52 



BEGIN 
FOR j := i + 1 TO n DO L[i - l , j - 1] := L[i,j~\ + mti * L[i,j - 1]; 
L[i — 1, «] := mti * L[i, n\; 
D[i - 1] : = D[i] 
END; 

D[n] : = 0; 
FOR i := 0 TO n DO DY£>R(c, L[i], De, D[i], i, i + 1, n) 
END; 

Example (4.1). For a first-order process model (« = 1,L= 1) simple formulae 
for the evolution of the scalars Ds(t) and ct(t) can be derived. They can help to under­
stand what the algorithm actually does. Going through the algorithm step by step 
it is found that for c0 = 1 

(38) Dh) = °^ ~ ^ ( c - fif 
K J W Djt - 1) + 1 V ' 

(39) Cl(t) - /i + 
Z)s(* - 1) + 1 

(40) cL/*) = Dsl* - 1) + 1 

If, for Ds(0) > 0, Ds
_1(t) is considered as the dependent variable then the difference 

equation (38) is transformed into the following linear difference equation of first 
order. 

D;Xt) = (Cl-n)-2D;\t-\) + (Cl-ny2 

Hence, for (ct — /if =j= 1 we have 

(41) D;\t) = D;\O)(CI - /z)-2 ' + ((c. - nf - l ) " 1 

and for the interesting special case when the c-polynomial has its root at the sta­
bility boundary, (ct — /if = 1 

(42) D;\t) = D;1(O) + t 

The explicit solutions (41) or (42) determine cx(r) and dy(t) for any t > 0 according 
to (39) and (40). Of particular interest are the values to which the algorithm con­
verges for growing t. From (41) and (42) it is seen that 
for (c. - nf ^ 1 

(43) D;\co) = GO , Ds(co) = 0 , ct(co) = c, , dy(co) = 1 

while for (c t — [if > 1 

(44) Ds(co) = (c. - /i)2 - 1 , c.(oo) - / . = (cj - n)'1 , dy{co) = (Cl - nf 

Hence, for t -> co the algorithm returns the polynomial c which is always stable. 
Note also that according to (39) for all finite t 

\ci(t) - p\ < |c, - n\ 
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For an ARMA model (H * 0) with c. = - 1 the relations (39) and (42) give 

for n = 0, c. = — 1 

~cA']"_1 + Lvwr. 
which clearly shows that cx(<) is approaching its asymptotic value ct(oo) = — 1 
from the stable side. If such a first order model is transformed into the Delta form 
(fi = 1) then C} = 0 and 

for n = 1, Cj = 0 

' «i(0 = 
-VҶ0) + Í 

which again shows that also in the Delta case the stability boundary (the pure 
summation in the state estimator (24)) is approached in a cautious way. 

Example (4.2). To demonstrate that also in higher order cases, which cannot be 
analysed so easily, the algorithm behaves in a similar way let us consider an ARMA 
model (n = 0) of order /? = 3 with the polynomial c(£) having two roots outside 
the stability region 

c(C) = 1 - 3-35C + 2-825J;2 - 0-25^3 = (1 - 1-25Q(1 - 2Q(1 - 0-1Q 

Since all roots lie rather far from the stability boundary the procedure CGEN reaches 
the stationary solution very fast. With D(0) = [1, 1, 1] and L(0) = I only after 
about 30 steps (for t = 30) it is obtained with precision of 4 significant digits 

c(C) = 1 - 1-400? + 0-5300C2 - 0-0400C3 = (1 - 0-8£)(l - 0-5Q(l - 0-lQ 

Thus the unstable roots are reflected into the stability region. However, the prediction 
variance is dy(co) = 6-250 times larger than the variance of the white-noise component 
e of the model. 

If the ARMA model is tranformed into the Delta form (using, for instance, the 
procedure ARMAtoDELTA listed in Section 3) the equivalent 5-polynomial c is 

c(5) = 53 - 0-35 52 - 0-875 5 + 0-225 

and the procedure CGEN for mti = ft = 1 returns with a similar speed 

c{8) = 53 - 1-600 52 + 0-7300 5 + 009000 

and the same dy(cc) = 6-250, of course. 

Example (4.3). In this example we will demonstrate the fact mentioned in Remarks 
(b) and (c) in Section 3, namely that the procedure CGEN performs the extension 
of the c-polynomial of a Delta model to the full order if it has not been done before­
hand. Consider, for instance, a regression model of order 4. If this model is transfor-
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med into the Delta form then the S-polynomial c(8), when not extended, is 

c(8) = 0 84 + 0 53 + 0 82 + 05 + l 

and, as discussed in Remark (c) in Section 3, the vector c in the canonical state model 
(5) is c' = [0, 0, 0, 0, 1]. Applying the procedure CGEN the reader can verify that 
after 4 steps, i.e. for t _ 4 

c(8) = 84 + 483 + 682 + 48 + 1 

Note that the matrix (/ + C(t)) in (36) has, for t > 4, four eigenvalues equal to zero. 

Example (4.4). It may be interesting to see how the procedure CGEN can manage 
the continuous process model if it is approximated by a Delta model simply replacing 
dT by a small but finite time increment AT. For this purpose consider a continuous 
process described by the model 

,w.ffl„(t) + *L (T) 
a(s) a(s) 

where a(s), /?(s), and y(s) are polynomials in the differential operator s, and e(t) 
is white noise. For demonstration let us choose y(s) with one positive (unstable) 
root. 

y(s) = s2 + 0-4 s - 0-6 = (s + 1) (s - 0-6) 

First, let us suppose that the order of the model, given by the order of the poly­
nomial a(s), is n = 2, i.e. the same as the order of y(s). Apparently, the choice AT — 
= 0005 sec should give a good discrete approximation of the continuous model. 
With this choice the c-polynomial of the approximating Delta model is (use formulae 
(3.92) or the procedure CONTbyDELTA from Section 3) 

c(5) = 52 + 2 . 1 0 ~ 3 5 - 1-5. 10~5 

If the procedure CGEN is started with L(0) = / and £>(0) = [1,1] then after 1600 
steps (compare T = 1600 (AT) = 8 sec with the time constants of y(s)) the stationarity 
is approach width 

c(8) = 52 + 7-992 . 10"3 5 + 1-495 . 10~5, dy = 1-006 

In the real-time scale this corresponds to (recall formulae (3.92)) 

y(s) = s2 + 1-605 s + 0-6049 

which well approximates the correct solution 

y(s) = s2 + 1-6 s + 0-6 = (s + 1) (s + 0-6) 

Even more interesting is the case when the order of y(s) is lower than the model 
order, i.e. than the order of a(s). To demonstrate such a case let us consider the same 
y(s) but formally written as the third-order polynomial 

y(s) = 0 s3 + s2 + 0-4 s - 0-6 
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Correspondingly, with the same AT = 0005 sec, we now have 

c(5) = 0 53 + 5 . 10""3 52 + 1 . 10""5 5 - 7-5 . 10~8 

Starting with L(0) = I and D(0) = [1,1,1] the procedure CGEN gives for / = 1600 
(T = 8 sec) 

c(5) = 53 + 1-008 52 + 8-024 . 10"3 5 + 1-509 . 10~5 , cly = 2-515 . 10~5 

In order to see what this result means in the real time scale it is suitable to proceed 
as follows. When inspecting the factorization (29) as modified by the procedure 
CGEN it is seen that the result does not change when dy is divided by (AT)2 and 
at the same time c(5) is multiplied by (AT). Hence, the couple {e(5), dy) can be equally 
written as 

c(5) = 5 . 10^3 53 + 5040 . lO - 3 52 + 4012 . 10"5 5 + 7-545 . 10~8 , 

dy = 1-006 

Now when the transformation (3.92) back to the continuous time is applied it is 
obtained 

y(s) = 0-005 s3 + 1-008 s2 + 1-6048 s + 0-6036 

Compare this result with the polynomial obtained by exact reflection 

y(s) = 0 s3 + s2 + 1-6 s + 0-6 = (s + 1) (s + 0-6) 

It should be mentioned that these examples were calculated using the precision 
of only 4 bytes floating-point arithmetic. 

4.4. Multi-output process 

When trying to extend the derivation from paragraph 4.2 to multi-output case 
the first difficulty met is that Var [e{tj\ is no more a single number Q but a diagonal 
matrix 

rQ1 0 . 0 

(45) Var [e(tj\ = De 
0 Q2 . 0 

0 0 0 Qsy 

which cannot be simply extracted from all expressions for covariance matrices. Hence, 
to be able to proceed further we have to set Q = 1 in (9) leaving De incorporated 
in the matrix factors Ls and Ds which are now of dimensions n dy x n dy. Instead 
of (11) it is obtained 

(46) a0 y(t\t- 1; u(t)) = s,(t - 1 11 - 1) + bQ u{t - 7;) 

while (12) and (12') are still valid with the only difference that now the coefficients at 

are matrices of dimensions dy x dy. Note that the prediction p(t | t — 1; u(t)) can 
be calculated from (46) very easily, without any division, as a0 is a monic LT-matrix. 
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Continuing in the revision of the single-output case we arrive to the relation (13) 
which now reads 

(47) Var^\t-l;u{t)^ = A^[c,HLs-] 

Also here A'1 is a monic LT-matrix 

(48) A'1 

De 0 
0 Ds 

aõ1 0 0 . 0" 
•fljao-1 7 0 . 0 

c 
LЛ 

(л-7 

— a-,a 2 " 0 
1 0 / . 0 

•a„a 
- 1 0 0 

Similarly to the single-output case, it is sufficient to modify only the inner matrix 
product in (47) to perform conditioning according to Result (2A). 

(49) м f;-:! C 

ĽЛ: 
LĎĽ 

Recall that De is a diagonal matrix and that, according to (3.67), c' is a block-row 
with all matrix entries of diagonal form 

c' = [c0I,cJ,c2I, ...,c„I] 
where all c ; are scalars. 

The following observation is of primary importance for simple and well feasible 
numerical solution of multivariate cases. The matrix L's = Ls(t — 1) is a monic 
UT-matrix of dimensions n dy x n dy which can be partitioned into n x n matrix 
entries of dimensions dy x dy. Only the matrix entries on and above the main 
diagonal are, in general, nonzero. Suppose that all these nonzero matrix entries have 
the diagonal form. To be able to express ourselves shortly and clearly we shall say 
that such a matrix has an internally diagonal structure. If L's with the internally 
diagonal structure is multiplied by the matrix H' (6) then the structure of the product 
LSH' is also internally diagonal. Thus all factors on the left-hand side of (46), which 
are to be modified, have the internally diagonal structure. When inspecting the 
algorithm of dyadic reduction which is used to perform the modification it is found 
that it preserves this structure. The matrix L, when partitioned similarly to (17) 

(50) / 0 
ë Lv 

B "-5-0" 
_o Bs] 

yields L s = Ls(i) and the internally diagonal structure is reproduced. Practically 
this means that the overall algorithm can be decomposed into dy independent 
algorithms of reduced dimension, and, moreover, if these algorithms are started 
in the same way then a single algorithm of the same complexity as in single-output 
case can perform the task, and the submatrices c and Dy in (50) get the forms 

(51) [õj, u], я, dyDe 
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where dy, cv,c2, ...,c„ are scalars generated by the procedure CGEN described 
in the previous paragraph. 

The above favourable fact, discovered by carefull investigation of the algorithmic 
solution, has the following probabilistic interpretation. In the multi-output case each 
component of the state sjt) has dy subcomponents 

(52) s'Jt) = [si(1)(t), si(2)(t),..., si(Sy)(t)] , i = \,2,...,n 

Let us rearrange the entire set of n dy state subcomponents into dy vectors of dimen­
sion n in the following way. 

(53) s'(k)(t) = [sm(t), s2(k)(t),..., s„(k)(t)] , k = 1, 2 , . . . , dy 

If the prior uncertainty of the state s(0) is described by a normal probability distribu­
tion with 

(54) Cov[Sw(0),so ,(0)] = 0 , k+j 

then also for all f > 0 

(55) Cov [s(k)(t), s(j)(t) | t] = 0 , k+j 

If, in addition, it is assumed 

(56) Var [sw(0)] = Qk LjO) DjO) LjO), k=\,2,...,dy 

then 

(57) Var [s(k)(t) | t] = Qk Ljt) Djt) LJt), k = 1, 2, ..., dy 

and 
(58) Var [a0 y(t) \ t - 1; u(t)] = djt) De 

where the monic LT-matrix Ljt), the diagonal matrix Djt), and the scalar dy(t) 
are common for all k and can be generated by the procedure CGEN. Note that here, 
and from now on, the matrix factors Ljt) and Djt) are only fo dimensions n x n. 

It should be emphasized that this simplification, which means a considerable 
reduction of the computational load, could be achieved only thanks to the introduc­
tion of the model parameter a0 as a monic LT-matrix (3.41). This made it possible 
to introduce the white-noise term e(t) of the model as a random vector with un­
corrected components, i.e. with the diagonal covariance matrix (45). 

Equipped with this knowledge we can complete the extension for multi-output 
case in a straightforward way. Continuing in the revision of the single-output case 
in paragraph 4.2 we come to the generalizing (23) 

(59) St(t\ t) = 

= ii Sjt - 1 | t - 1) + si+l(t - 1 | t - 1) - cjt) sjt - 1 | f - 1) -

- (a, - cjt) a0) y(i) + (b, - cjt) b0) u(t - Tu), i<n 

(59') s„(t | t) = ix Sj[t - 1 | t - 1) - cn(t) st(t - 1 | t - 1) -

- (an - c„(t) a0) y(t) + (b„ - c„(t) b0) u(t - Tu) + kc 
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If these relations are considered row-wise then the obtained result can be formulated 
as follows. 

Results (4B) State estimation in multi-output case. 

Let s(k)(t) be the components of the state introduced by (53). Let ai(k), 
kc(k) denote the feth rows of the model parameters ah bh and kc, respectively, and let 

bңk), and 

(60) Ҷk) 

Ҷk)l 

Ҷk)2 

Ҷk)n 

'(k) 

b(m 
Ь(k)2 

_Ь(k)n_ 

K(k) — 

c(k) 

Assume that 

(i) the white-noise term e(t) of the canonical state-space model (5) is normally 
distributed with zero mean and with the diagonal covariance matrix (45), 

(ii) the probability distribution p(s(0)) used to describe the prior uncertainty of the 
state s(0) is chosen to be normal with uncorrelated components s(k)(0), 

(iii) the initial covariance matrices (56) are chosen so that they differ only in the 
factors Qk. 

Then the probability distribution p(s(r) | t) is normal for all t > 0, the state compo­
nents s(k)(t) remain mutually uncorrelated, and their conditional mean values are 
determined by dy separate filters (k = 1, 2, ..., dy) as follows. 

(61) S(k)(t | t) = (nl + C(t)) Sm(t - 1 | t - 1) -

- («« - c(t) a0(k)) y(t) + (b(k) - c(t) b0(k)) u(t - Tu) + ks(k) 

where the matrix C(t) (25) and the vector c(t) (26) are common for all k and are 
supplied by the procedure CGEN together with Ls(t), Ds(t) and dy(t) by which the 
variances (57) and (58) are determined. The one-step-ahead prediction of the output 
and of the state can be calculated recursively according to (46) and (12). 

Remark (c). Note that, similarly to single-output case, the variances gk (k = 
= 1,2,..., dy) of the mutually uncorrelated components of the discrete white noise 
e(t) do not need to be known if only the conditional means (the point estimates) 
are of interest. In Section 6 we shall see that this favourable fact holds also when 
the model parameters a and b are estimated jointly with the state. 

4.5. Prediction in case of process delay 

Hitherto only one-step-ahead prediction of the process output y(t) and of the state 
s(t) of the process model has been considered. Namely, given S(t — \\t — 1) we are 
able to determine y(t | t — 1; u(t)) and S(t | t — 1; u(t)) from the relation (10) which 
can be solved recursively using (11), or (46) in multi-output case, and (12). If the 
process has a time delay Tu > 0 then the predicted y(t) and s(t) do not depend on 
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the already applied inputs u(t — k) k = 1, 2, . . Tu — 1, but only on w(f — Tu) 
and the inputs applied previously. However, when controlling such a process it is 
necessary to be able to predict the effect of the generated input u(t — Tu) on the 
output y(t) and on the state s(t) only on the basis of the data which are available 
at the moment when this input is generated. Hence, it is necessary to predict the 
process by Tu steps more ahead. We shall show two possible ways how to proceed. 
Since the delay discussed here concerns only the manipulated input the external 
measurable disturbance v will be considered separately. 

The first possibility is to increase the order of the process model by Tu and to 
shift the ^-parameters correspondingly. Then the canonical state form (5) of the 
model will have no explicit time delay Tu 

(62) ыtu = н s'ył ~ l ) + b u ® + dv(f - т») + k* + c evř) 
but the matrix b, now of dimensions (n + Tu) dy x du has Tu leading (block-) 
entries equal to zero. 

(63) V = [0,0,. . . ,0, b'0,b\,... ,b'„] 

Now it is possible to proceed as if no delay Tu were present. However, it should be 
emphasized that in case of a Delta model (fi = 1) the first (block-) column in the 
matrix A (3.66), i.e. the 8-polynomial a(5), as well as the matrix d, the 8-polynomial 
d(5), must be extended to the full order n + Tu as described in Section 3. 

The second method does not require the extension of the model state. Suppose 
that the input-output data up to t — 1 are available and that the input u(t) is to be 
generated. When the time index is shifted by Tu steps ahead and when the mean 
value conditioned on the data up to t — 1 is taken the model equation (5) gives 

(64) 
'y(t+ Tu\t~ \;u(t)) 
S(t + Tu\t- l;u(í)) 

= A~l\H S(t + Tu - 1 | t - 1) + b u(t) + d v{t + Tu - Tv \ t - 1) + kx~] 

This relation shows that it is necessary to predict s(t + Tu — 1) and v(t + Tu — Tv) 
in order to estimate the effect of u(t), which is to be decided, on the future motion 
of the process. Suppose that the prediction of the external disturbance is available. 
A model suitable for this purpose will be constructed in Section 5. Now it will be 
shown how the estimate s(t + Tu — 1 | t — 1) can be effectively calculated. 

For j within the range 0 ^ j < Tu the model equation (5) yields 

'y(t + j | t - 1) 
S(t + j j t - 1)_ 

(65) 

= HS(t + j - l\t - 1) + bu(t +j - Tu) + d v(t + j - Tv | t - 1) + kx 

Hence s{t + Tu — 1 | t — 1) can be calculated recursively, for j = 0,1,..., T„ — 1, 
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using the relations 
(66) a0 p(t + j | t - 1) = 

= St(t +j - \ \ t - l ) + b0u(t +j - Tu) + d0 v(t +j - Tv\t - 1) 

(67) St(t + j | t - 1) = -at y(t + j | t - 1) + n S-\t + j - \\t - 1) + 

+ Sn.jfr + j - 1 | t - 1) + b: u(t + j - Tu) + di v(t + j - Tv | t - 1) , 

i — 1,. . . , n — 1 

(67') S„(f + j | t - 1) = - a „ tft + j | f - 1) + Sn(t + j - 1 | t - 1) + 

+ fo„ u(t + j - 7;) + dn v(t + j - Tv\t - I) + kc 

Note that all inputs employed are available at the moment when the calculation is 
required, however, Tu past inputs must be stored in the memory of the computing 
device. Note also that, as a0 is a monic LT-matrix, y(t + j \ t — 1) can be calculated 
from (66) very easily, also recursively. 

5. CONTROL SYNTHESIS 

The problem of optimal control can be formulated in different ways depending 
on the criterion used to measure the control performance and on the set of admissible 
strategies among which the optimal one is to be chosen. Since the control strategy 
must be chosen in advance, before it is applied and before its true effect can be obser­
ved, the criterion cannot be anything else than a single-valued probabilistic charac­
teristic of the future motion of the process by which an ordering in the set of admis­
sible strategies is introduced. In this section the expected value of a suitably chosen 
loss function, covering an arbitrary long but finite control horizon, will be considered 
as the criterion and the strategy minimizing this criterion will be chosen among the 
strategies which make use of all data available at the moment when the particular 
input is generated. 

In the first paragraph, using dynamic programming in the form suggested in [17], 
a general functional recursion is derived which solves the problem conceptually. 
It is shown that this functional recursion can be reduced to a special kind of Bellman 
equation if certain sufficient statistics exist. 

In the following paragraphs the loss function is restricted to be quadratic. Its 
choice is made in the second paragraph where also suitable models for the evolution 
of the external signals (the command signal and the external measurable disturbance) 
are introduced. When compared with the ordinary LQG control theory, as it can be 
found in standard engineering textbooks [11, 13, 15, 16], the problem formulation 
applied here is somewhat restricted and at the same time somewhat more general. 
The restriction concerns the loss function which is allowed to be a function only 
of data which can be observed on the process. No attempt is made to control internal 

61 



process variables which are not accessible to measurement. The reason why we 
accept such a restriction is that it makes it possible to operate only with input-output 
process models which can be identified from observed data. It also means that the 
model state, we make use of to reduce the computational burden, does not need 
to have physical interpretation. On the other hand the quadratic loss function is 
chosen to better reflect the engineering needs in industrial process control and to 
cover a broader class of operating modes of the controller (regulation, servocontrol, 
program control). 

In the algorithmic solution of the optimum control synthesis it is suitable to 
consider the positional and the incremental forms of process models separately. 
Since the incremental form can cover also positional models (see Sections 3 and 4) 
and since the algorithm of control synthesis is simpler and more compact for this 
form, it will be considered first in the third paragraph. 

In the fourth paragraph the algorithm of the optimum control synthesis for 
positional models is derived. 

5.1. Control optimal in the mean — conceptual solution 

Suppose that a given process has been observed and possibly somehow controlled 
up to and including the sampling period t 0 ^ 0. Starting with the input M(£0 + 1) 
the process has to be controlled for t = t0 + I, t0 + 2, ..., t0 + Toptimally in the 
sense we are going to define. 

In order to make the writting shorter and more transparent it is suitable to shift 
the time indexing backwards by t0. We shall write u(k) instead of u(t0 + k) and 
similarly for all other signal samples. Thus w(l) is the first input which is to be decided 
and the observation of the process started for k = —t0. 

It is also suitable to introduce the following sets of data: 
Data which are not known before the control starts 

(1) 3Ck = {y(l..k),u(i..k),v(\..k),w(\..k)} 

All data up to and including the sampling interval k 

(2) ®k = {y( -t0..k),u(-t0.. k), v(-t0.. k), w(l.. k)} = {20, 9Ck} 

@k = {y(k), u(k), v(k), w(k), ^ _ , } , k> 0 

History of the external disturbance 

(3) rk = v(-t0..k) = {v(k),rk^} 

History of the command signal 

(4) ifk = w(\..k) = {w(k),ifk^}, k>0 

Let l(3>r) be a scalar nonnegative function of the observed data which will be used 
to evaluate the control performance after the control task is accomplished. It is 
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supposed that the smaller the true value of this function will be the better is the 
control performance: l(2T) is a loss function. Since the future data entering the loss 
function are not available when the first input w(l) has to be decided, it is appropriate 
to design the control strategy using the expected value of the loss function as a cri­
terion 

J = E[l(2T) | 20] = 1(2T) p(SCT | 20) d.ifT 

Of course, it is assumed that there exists an admissible control strategy which makes 
this expectation finite. 

To define the admissible control strategies it is important to consider how the 
command signal is made available for the controller. As discussed in paragraph 
1.2, in case of program control the command signal is preprogrammed in advance 
for the entire control horizon T and the controller can operate also on the future 
values of this signal. Conceptually this is not a very interesting case as the command 
signal enters the loss function only as a set of fixed parameters WT. Here the more 
general case of servocontrol will be considered. It will be assumed that when u(k) 
is being decided the command signal is known only up to w(k) (the desired value of 
the output y(k) following u(k)). 

It will appear advantageous to consider the following decomposition of the loss 
function into T nonnegative terms 

1(2 T) = lT(2T) + lT-1(2T_1) + ... + 1,(2,) 

Note that such a decomposition is not unique. For instance, we could simply choose 
1(2T) = lT(2T) and lk(2k) = 0 for k < T. A more suitable choice will be made 
later on. 

The problem of optimum control synthesis can be formulated on the conceptual 
level as follows: Given the c.p.d.f.'s 

p(y(k) \k~l; v(k), u(k)), p(v(k) | * V / ) , p(w(k) | * V . ) , k=\,2,...,T 

determine the c.p.d.f.'s 

p(u(k)\w(k),2k_1), k=\,2,...,T 

minimizing the criterion 

(5) •I = E [ E / f c ( ^ ) l ^ o ] = Z [lk(2k)p(3Ck\20)AXk 
k=\ fc=i J 

It is advantageous to solve the problem recursively. Assume that the way of 
generating the inputs u(k) for k = t, ..., T— 1 have been somehow determined 
and that only the control law for the last one u[T) remains to be chosen. To choose 
it optimally it is necessary to determine the optimal c.p.d.f. 

(6) p(u(T) | w(T), 2,.x) = p(u(T) | w(T), 3CT^, 20) 

as a function of the data ?JCr_t in its condition which are not known at the moment 
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when the choice must be made. To perform this task recall (3.4), (3.5), (3.6), and 
consider that 

p ( ^ T | 20) = p(y(T), v(T), u(T), w(T) \ _? r_.) p ( ^ r _ , | _*0) = 

= p(Xr) | T - i;<r),U(T)) P « r ) | rT.t) P(«(r) | w(r),®T-l) 

p(w(T) | WT-l)p(a>T_ t\20) 

This makes it possible to rewrite the last term of the criterion (5) with k = T, the 
only one which depends on the c.p.d.f. (6), in the following way 

(7) E[tT(@T) | %] = 
t 

F r(u(r), w(r), 0 r _,) P(u(r) | W(T), ®T„V)MT) 

p(w(T) | TTr_x) dw(T) p(s;T_l | _>0) _ # _ _ . 
where 

(8) F r ( „ ( T ) , w ( T ) , ® r _ 1 ) = 

/ r(^ r) P(y(01 r - i; <r), «(r)) d><r) ?(v(t) | r r _ , ) d<r) 

Since both p(w(T) [ - #" T _ 1 ) and p ( ^ ,

r _ 1 | ^ 0 ) a r e nonnegative functions normalized 
so that their integrals are equal to 1, the term (7) will be minimal if we succeed 
to choose the c.p.d.f. (6) in such a way that the integral 

(9) jVr(u(T), w(T), <?r_i) P[u(T) | w(T), 0 r _ i ) du(T) 

be minimal for all possible w(T) and 3>T-^. 
The function FT(u(T), w(T), ^ T _ i ) is nonnegative, and when plotted with respect 

to u(T) for some arbitrary but fixed w(T) and S r _ 1 it might look, for instance, like 

F-.ulT^wrrj.S^) 

T 

fтШi.І!1 

^ ( w t U ^ T - 1 1 

»-u(T) 
Fig. 6. Illustration to the optimal choice of p(u(T) w(T), _> r_i). 

the curve F r in Fig. 6. The problem to determine the c.p.d.f. (6) minimizing the 
integral (9) is equivalent to the problem how to distribute one unit of the probability 
mass along the curve F r in Fig. 6 so that its moment with respect to the w(T)-axis 
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be as small as possible, i.e. so that its centre of gravity be as low as possible. It is 
obvious that this will be achieved if all the probability mass is placed at the lowest 
point of the curve FT. This means that the optimal choice is 

(10) p{u(T) | w{T), 9T_t) = d{u{T) - u*(w(T), 3> __..)) 

where _(•) is a Dirac .-function and 

(11) uT(w(T), ®T_t) = arg min FT(u(T), w(T), <_-T_i) 
u(T) 

If the minimum 
(12) F*(w{T), 0 T_ .) = minFT(M(T), w(T), 2r_t) 

u(T) 

can be achieved for more than one u(T) then any of the minimizing arguments (11) 
can be chosen as optimal. However, the value of the minimum (12) is always unique. 

If we denote 

(13) Br-i(^r-i) = [F*(W(T),9T^) p'yj)\iTT_l) dw(T) 

then the partially minimized criterion (5) can be expressed as follows. 

E[Br_ 1(_^T_1) + / T _ x (_Vi ) + __ _(-$*) I %] = 

\(BT _!(_Vi) + iT-i(^T-i))p(^T-i\^o)dsrT-i + 

+ 1 ( V A ) P ( ^ I ®o) d̂ rfc 

í< 
In this way the first step of the optimization procedure for k — Tis completed and 
the next step for k _= T — 1 is prepared. Denoting 

F r _ , ( _ ( T - 1), w(T - l ) , 0 r _ 2 ) = f(J»r_!(__>_-_0 + / r - i (^T- i ) ) 

p(XT - 1) I T - 2; _(T - 1), «(T - 1)) dy{T - 1) p X T - 1) | * V _ ) dv{T - 1) 

and proceeding further in the same way the following result is obtained. 

Result (5/1). Optimum control synthesis. 

The control strategy minimizing the criterion (5) is deterministic 

(14) u(k) = ut(w(k), £?*_,) 

and is generated by the functional recursion 

(15) Fk(u(k),w(k),%_t) = 

= [(Bk(9k) + lk(%)) p(y(k) \k-l; v{k), u(k)) dy(k) p(v(k) \rk_t) dv(k) 

(16) 4(w(k), 2k_.) = arg min Fk(u(k), w(k), 9)k_ ,) 
u(k) 



(17) F*(w(fc), 3k.t) = min F/u(k), w(k), # k_,) 
u(k) 

(18) Bk-i(-**-i) = f F*(w(fc), ^ t _ . ) p(w(fc) | *V.)dH<fc) 

which has to be solved for fc = T, T — 1, ..., 1 with the initial condition BT(@T) = 0 
The minimum of the criterion is J* = B0(@0). 

Bellman function 

Because the subset 3Ck. t of the set of data &!
k-1 = {3£k. u Ss0] on which the opti­

mal control strategy (14) operates is not known at the moment when the strategy 
has to be decided, the optimal control law for each k must be determined as a function 
of these not yet known data S£k.x. This domain of the function u*(-), in general 
of growing dimension, can be reduced to a finite and fixed dimension if the following 
conditions are fulfilled. 

a) There exist sufficient statistics Sy(k), Sjk), Sw(k), here understood as deterministic 
functions, in general multivariate but of fixed dimensions, of observed data and 
possibly also of the time index fc, such that 

(19) p(y(k) | fc - 1; v'k), u(k)) = p(y(k) | <fc), u(k), S/k - 1)) 

(20) p(v(k)\Vk.1) = p(v(k)\S/k- 1)) 

(21) p(w(k)\Wk.l) = p(w(fc)|Sw(fc- 1)) 

b) The evolution of these statistics is known 

(22) S/k) = f/y(k), u(k), v(k), S/k - 1), fc) 

(23) S/k) = f/v(k), S/k - 1), fc) 

(24) 5w(fc) = fw(w(fc), Sw(k - 1), fc) 

c) It is possible to decompose the loss function so that 

(25) 1(3T) = £ l/y(k), v(k), u(k), w(k), S/k - 1)) 
fc=i 

where S/k) is a fixed-dimensional function of the data such that 

(26) S/k) = f/y(k), w(k), u(k), S/k - {)) 

Let S(fc) be the union 

(27) S(k) = S/k) u S/k) u S ^ ) u Sw(k) 

By inspection of the recursion (15) to (18) it can be easily verified that under these 
conditions the optimal control law producing u(k) operates on w(fc) and on the sta­
tistic S(k — 1). If we omit, for brevity, the explicit notation of the arguments of 
the functions 

k = k(y{k), w(fc), tt(fc), v(k), S,(k - 1)) 
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and 
(28) Bk - BjS(k)) 

then the optimal control law is 

(29) ut(w(k), S(k - 1)) = arg min E[B, + lk \ u(k), w(k), St(k - 1)] 
u(k) 

where the Bellman function (28) is determined by the difference equation 

(30) Bk_l = E[min _[Bk + lk\u'k), w(k), S(k - 1)]| S(k - 1)] 
u(k) 

which has to be solved for k — T,T~ 1, ..., 1 with the initial condition BT = 0. 

Algorithm of dynamic programming 

Under given conditions one step of the functional recursion (15) to (18) can be 
decomposed into the following three stages: 
1. Given Bk + lk take the mean value over y(k) and v(k) 

(31) Fju(k), w(k), S(k - 1)) = E[Bk + lk | u(k), w(k), S(k - 1)] = 

[(Bk + lk) p(y(k) | v(k), u(k), S/k - 1)) dy(k) p(v[k) \ Sjk - 1)) d</c) 1 
2. Determine the minimum of Fk(u(k), w{k), S(k — 1)) with respect to u(k) 

(32) Ft(w(k), S(k - 1)) = min Fju(k), w(k), S(k - 1)) 
u(k) 

(33) ut(w(k), S(k - 1)) = arg min Fju(k), w(k), S(k - 1)) 
u(k) 

3. Take the mean value over w(k) to obtain the Bellman function for the next step 
of the recursion 

(34) Bk_t = E[F*(w(k), S(k - 1)) | Sxk - 1)] = 

Ft(w(k), S(k - 1)) p(w(k) | Sjk - 1)) dw{k) 

From (15) and (18) or from (31) and (34) it is seen that the optimum control 
synthesis requires to define suitable models for the evolution of external signals v 
and w. They will be introduced together with a quadratic loss function in the follow­
ing paragraph. 

5.2. Quadratic criterion and models of external signals 

In the rest of this section the following quadratic criterion will be used to measure 
the expected performance of the controller 

(35) J = I E[ £ (\Qjk); Mjk) r(k + Tu)\ + \Q/k); Mjk) Au(k)\) + 
T k=l 
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+ \<&T); MJT) (S(T + Tu\ T) - 5)| | Z>0] 

where r(k) is the control error 

(36) r(k) = yjk) - w(k) 

Qjk) and Qjk) are diagonal matrices with nonnegative diagonal entries, QS(T) 
is diagonal with positive diagonal entries, Mjk), Mjk) and MjT) are monic 
LT-matrices of appropriate dimensions, and s is the desired value of the last state 
for k = T + Tu. Tu is the possible process delay. Note that the first control error 
which can be influenced by the choice of u(\) is r(l + Tu). 

The first nonnegative quadratic form in the criterion (35) |Q/fc); Mjk) r(k + T„)| = 
= r'(k + Tu) M'Jyk) Qjjc) Mjk) r(k + Tu), Qjk) ^ 0, reflects the requirement that 
the control errors (36) be small. The choice of Qjk) 2: 0 and Mu(k) in the second 
quadratic form of the criterion (35) makes it possible to damp the movements of 
the actuator(s) if it is required by the given technology and/or implementation. 
There are seldom reasons to choose the matrices Mjyk) and Mjk) different from 
unit matrices. 

The last term in (34) with Qs > 0, penalizing the deviation of the estimate of the 
last state from its desired value, is introduced in order to secure the asymptotic 
stability of the control loop also for Qjk) = 0. Note that for T-> co and for finite 
Qs and I this last term is negligible but only when all signals driving the state estimator 
(4.24) are stable. Large entries of Qs help to stabilize the control loop also in case of 
relatively short control horizon T. 

To be able to determine the control strategy minimizing the criterion (35) it is 
necessary to adopt suitable models for the evolution of external signals, i.e. for the 
measurable external disturbance v (if available) and for the command signal w. 
These models are required to determine the conditional means in (15) or (31) and 
in (18) or (34). 

Measurable external disturbance 

As in most practical industrial cases the measurable external disturbances are 
nonstationary we shall design the controller so that it may be optimal for a "general­
ized random walk" 
(37) v(k) = v(k - 1) + ejk) 

where 

(38) E [ e „ ( f c ) | n - i ] = E[e„(fc)] = 0 

and the variances of the uncorrected increments ejk), k = 1,.. . , T, can be arbitrarily 
time-varying but finite and independent of the past history ir

k-x- The random walk 
(37) generalized in such a way is a very realistic model for load changes at unpredict­
able time instants, drifts, etc. Note that such a model does not need to be identified. 
The practical experience indicates that usually not much can be gained if a more 
detailed model for the evolution of the measurable external disturbance is considered. 
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Command signal 

As it has been discussed in the paragraph 1.2 the following typical operating modes 
of the controller will be considered. 

Regulation. In industrial process control often the task of the controller is to 
compensate measurable or immeasurable stochastic disturbances and to keep 
certain output variables as close as possible to prescribed constant values. If the 
output yc is measured as the deviation from the given fixed setpoint then yc(k) = 
= r(k) and w(k) = 0 for all k. 

Program control. In industrial practice cases are met when the desired output 
of the process is time-varying but a priory preprogrammed for the entire control 
horizon T. Then the task of the controller is to manipulate the actuators in such 
a way that the true output yc of the process follows the command signal w which 
is a priori known and the controller, when generating u[k) can operate also on the 
future values of the command signal w(j), j > k, stored in the memory of the computer. 
This prior information often can significantly improve the performance of the 
controller. For instance, the controller informed about the future change of the 
command signal starts to manipulate the process well in advance in order to minimize 
the control errors, especially when its actions are damped by a relatively large weight 
Qu in the criterion (35). 

Positional servo. If the future course of the command signal is uncertain a pro­
babilistic model has to be employed. We shall consider the case when the changes 
of the command signal cannot be predicted. Then a suitable model is the above 
introduced generalized random walk 

(39) w(k) = w(k - 1) + ejk) 

It should be emphasized once more that the variances of the mutually uncorrelated 
increments ejk) can be arbitrarily time-varying but they are assumed to be indepen­
dent of the past history of the command signal. The prediction of such a process is 

(40) E[Wj)\Wk] = W(k), j>k 

In the following paragraphs algorithms of optimum control synthesis will be 
designed for the case of program control and for the case of positional servo. The 
case of regulation is covered either by program control with w(k) = 0 for all k or by 
positional servo with zero variance of ejk). 

5.3. Algorithm of optimum control synthesis for incremental process models 

Consider a process with time delay Tu _ 0 described by the state model in the 
incremental form which, with the time index shifted by T„ steps ahead, reads 
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(41) 

:щk + тu) 
'k + тu) [ 1 = Hs(k - 1 + Tu)+ b Au(ќ) + d Av(k + Tu - Tv) + ce(k + Tu) 

where the matrices A, b, d are defined by (3.66), the matrix c is defined by (3.67), 
and the matrix H by (4.6) 

H = џ + 

Recall that for /i = 1 the relation (41) is a canonical state representation of an 
incremental Delta model while for /i = 0 it represents an incremental ARM A model. 
As discussed in Section 3 the incremental form (41) can represent also positional 
models if the c-parameters are suitably modified. 

Since in steady state the mean value of the state s of the incremental model (41) 
is equal to zero it is appropriate to choose s = 0 in the criterion (35). 

In the present paragraph the following Result (5 B) will be proved and the corre­
sponding algorithms will be designed. 

Result (5 B): Optimal controller for incremental process models. 

Suppose that the controlled process is described by the incremental model (41). 
If the evolution of the external measurable disturbance is assumed to be a generalized 
random walk (37) then in case of program control the structure of the optimal 
control law minimizing the criterion (35) is 

(42) Aw(fe) = -muw(k) - mur(k) r(k) - mus(k) S(k - 1 + T„ | fc - 1) 

where 

(43) r(k) = yjk - 1 + Tu \ k - 1) - w(k + Tu) 

and Syk — 1 + Tu | fe — 1) is the ru-steps-ahead prediction of the state of the model 
(41). The parameters muJk), mur(k) and mus(k) of the optimal control law (42) are 
vector and matrices of appropriate dimensions which can be determined by the 
algorithm of dynamic programming with the Bellman function of the nonnegative 
definite quadratic form 

(44) Bk = |Q0(fe); m0w(k) + m0r(k) r(k + Tu | fe)| + 

+ \Qjk); mjk) + mr(k) r(k +Tu\k) + Ms(k) s(k + Tu\k)\ + 0(fc) 

where 

(45) r(fe + T„ | fe) - yjk + T„ | fe) - w(fe + Tu) 

and fi(k) is the component which cannot be influenced by the previous control 
actions, i.e. by Au(j) for j ^ fe. 

The parameters of the Bellman function (44) are: 

o0(fe) ^ 0 . . . diagonal matrix of dimension dy, 

m0w(k) ... column-vector of dimension dy, 
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mjk) 
Qs(k) Ł 0 
mjk) 
mr(k) 
Ms(k) 

matrix of dimensions dy x dyc (dyc = dw = 8r) 
diagonal matrix of dimension ds = n dy , 
column-vector of dimension ds, 
matrix of dimensions ds x dr , 
monic LT-matrix of dimension ds. 

In case of positional servo the optimal control law and the Bellman function are 
modified so that muJk) = 0, m0Jk) = 0, mjk) = 0 and 

(46) r(k + Tu | k) = yc(k + Tu \ k) - w(k) , 

r(k) = yc(k - 1 + Tu | k - 1) - w(k) 

Remark (a). The prediction yc(k - 1 + Tu \ k - 1) and S(fc - 1 + T„ | fc - 1) 
on which the optimal controller operates can be calculated by Tu steps of the recursion 
(4.66) and (4.67) starting with the state estimate s(k — 1 | k — 1) supplied by the 
state estimator according to Result (4A) in single-output case or according to Result 
(4 B) in multi-output case. Clearly, for Tu = 0 no prediction is required and 
y(k — 1 I k — 1) = y(k — 1) which is available when u(k) is generated. An alterna­
tive way how to handle the process delay is to extend the model order by Tu and to 
proceed according to the first method described in the paragraph 4.5, however, at 
the cost of higher computational burden. 

Remark (b). The Bellman function being a nonnegative definite form can be 
factorized and/or decomposed in various ways. This means that the right-hand 
side of (44) is not unique. The form given in (44) has been found algorithmically 
and numerically most advantageous among a number of other possibilities which 
have been investigated. This holds also for the algorithms described in the sequel. 

Remark (c). Since the criterion is quadratic and the employed models are linear 
the algorithm of dynamic programming is reduced to operations on quadratic forms. 
For numerical and algorithmic reasons it is more advantageous to perform the main 
optimization stage (31) and (32) using the dyadic reduction instead of following 
the route of the Riccati-like equation to which the recursive relation (30) could be 
brought in this linear-quadratic case. However, the reader should be acquainted 
with the decomposition and minimization of nonnegative definite quadratic forms 
described in the paragraph 2.3. 

Single-input single-output process, T„ = 0 

To make the exposition easier to follow the Result (5 B) will first be proved for 
this simplest case. The proof will be given by designing an algorithm which propagates 
the Bellman function in the form (44) producing the optimal control law (42) at the 
same time. 

Consider the following decomposition of the loss function 

(47) lT = \Qr{T); r{T)\ + \QU(T); AM(T)| + \QS(T); MS(T)S(T\ T)\ 
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(48) lk = \Q/k); r(k)\ + |o„(/c); &u(k)\ , k<T 

In the given simple case 

(49) r(k) = y(k) - w(k) , r(k) = y(k - 1) - w(k) 

Let us suppose that the parameters of the Bellman function (44) are given numeri­
cally for some k < Tand let us perform one step of dynamic programming from k 
to k — 1. To make the writing easier to survey we shall occasionally omit the time 
indexing of numerically given quantities when no confusion can occur. First we shall 
design the algorithm for the program control. It can be easily modified for the case 
of positional servo afterwards. 

It is advantageous to decompose the algorithm into the following stages. 

Stage la. To prepare Bk + lk for calculating the conditional mean (31) it is suitable 
to modify, using the dyadic reduction, the following sum of two quadratic forms 
so that r(k) appears only in one of them. 

(50) \Q0(k); mjk) + m0/k) r(k)\ + \Q/k); r(k)\ = 

"Öol . Гm0v 

Qr J ' L° 
m 0 r 

1 

" 1 
_r(k)_ 

l_l 
Гl 

"ßo" 
1 

m0w 0 
_mrw 1_ 

1 
_r(k)_ 

\Q0; m0w\ + \Qr; m. 

The second equality in (48) means application of the dyadic reduction to reduce m0r 

to zero. In the given simple case the following explicit formulae can perform the task. 

(51) Qr = Qr + Q0m
2

0r, mrw = (Q0jQr) m0rm0w , Q0 = (Q/Qr) Q0 

The reason for the modification (48) is that the first term on the most right-hand 
side of (48) cannot be influenced by the previous control actions and has to be added 
to the unreducible part f$(k) of the Bellman function (44) in order to prevent the 
growing of certain numbers within the numerical algorithm of optimum control 
synthesis. 

(52) A/Vv/c) = \Q0; m0w\ = Q0m
2

0w 

Stage lb. For calculating the conditional mean (31), first over y(k) and than over 
v(k), it is suitable to express r(k) and S'Kk | k), which enter Bk + lk as random variables, 
in the following way. 

(53) 

where 

r(k) = y(k) - w(k) = y(k - 1) - w{k) + Ay(k) = 

= Қk) + &ў(k | k - 1; u(k)) + e(k) 

e(k) = y(k) - y(k\k - I; v(k), u(k)) 
From (4.20) we have 

s(k \k) = s(k\k- I; v{k), u(fc)) + (c(k) - a) e(k) 
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This makes it possible to express Bk + lk as follows 

Bk + lk = \QU; Au(k)\ + \Qr; mrw + r(fe) + Ay(k | fc - 1; v(k), ii(fc)) + s(fc)| + 

+ ]& mw + -, w + K, MJ [-*; 11:;; < | <;»] + K + M , . 
. ( c -a ) )e ( fc ) | + /!(fc) + A/!w(fc) 

Now taking into account that according to (4.22) 

Var [e(fe) | fc - 1; v(k), u(k)~] = Var [v(fc) | fc - 1; »(fc), u(fc)] = e ci,(fc) 

and that according to (41) 

Ay(k | fc - 1; y(fc), u(fc)) = ^(fc - 1 | fc - 1) + b0 Au(k) + d0 Av(k) 

[A% | fc: 1;S S ] - ^ w -»ifc -»+»A««+<• M*» 
we can determine the conditional mean over y(k) 

E[Bfe + lk | fc - 1; <fc), ii(fe)] = |Q„; Au(fc)| + 

+ |gp; mrw + r(fc) + st(k - 1 | fc - 1) + b0 Aw(fc) + d0 Av(k)\ + 

+ \QS; mr r(k) + G(Hs(k - 1 | fc - 1) + b Au(fc) + rf A»(fc))| + 

+ fS(k) + Aj8w(fe) + A/3y(fe) 
where 

(54) G = [mnMs-\A-i 

(55) A/9/vfe) = e dy(k) (Qr + \QS; mr + Ms(c - a)\) 

Now it is already easy to determine the conditional mean over v(k) and thus to 
complete the evaluation of (31). According to (37) and (38) we have E[Ay(fc) | fc — 1; 
u(kj] = 0 and if we denote 

^(fc) = Var [ev(k)] 

then (31) gives for the case of program control 

(56) Fk(Au(k), r(k), S(k - 1 | fc - 1)) = E[Bk + lk \ fc - 1; u(k)] = 

= \QU; Au(k)\ + |g r ; b0 Au(k) + mrw + r(fe) + ^(fe - 1 | fc - 1)| + 

+ \QS; muAu(k) + mw + mr r(k) + GH (̂fe - 1 | fc - 1)| + 

+ P(k) + A/9w(fc) + Aj8,(fc) + A/jy(fe) 
where 

(57) mu = G/3 

(58) A^(fc) = Qv(k) (\Qr; d0\ + IS-; Gd\) 

To complete the first stage of the algorithm of dynamic programming we shall show 
how the matrix G (54) and the vector m„ (57) can be efficiently calculated. Making 
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м . ] [ J ! ] = K.мj 

m„ = m,~ Msa 

«м-

use of (4.15) we obtain 

(59) G - [mr 

where 

(60) 

Substituting of (59) into (57) gives 

(61) mu = \ma, A 

Also the product GH can be calculated very easily 

(62) GH = [m., MJ ^ [ j ] + j^J) = ^Ms + [m„, Mj R ] 

Recall that for Delta models /* = 1 while for ARMA models ^ = 0. Note the special 
form of GH which is close to a monic LT-matrix. This will appear advantageous 
in the following stage of the algorithm. 

Stage 2a. Now the dyadic reduction will be emloyed to minimize FjAu(k), 
r(k), §(k — 1 | k — 1)) with respect to Au{k). For this purpose it is suitable to re­
arrange (56) into a single quadratic form the scheme of which is shown in Fig. 7. 
In the top row of this scheme the variables are indicated by which the underlying 
columns are multiplied when the quadratic form is evaluated as a sum of weighted 
squares. Each row produces one square the weight of which is given in the most 
left column. Empty spaces are zeros which do not enter the calculation. Note the 
special form of GH. 

AM 1 r st s2 • sn 

Qu 

Qr 

1 0 0 0 0 0 0 0 
b0 mrv 1 1 

Qs 
mu 

l 

m w 

i 
í • 

mr 

• - 1 
. . 1 | 
. GH . 1 | 
. . . . 1 

Fig. 7, Scheme of the quadratic form E& to be minimized. 

To minimize such a quadratic form with respect to u(t) it is sufficient to apply 
the dyadic reduction so that the one lying under Au(t) is used to reduce the rest 
of the underlying column to zeros as shown in Fig. 8. Note that neither the zeros 
in the empty space of the scheme nor the ones indicated in Fig. 8 are destroyed 
if the reduction is performed downwards. At the same time the first row of the numerical 
area in the scheme, originally filled with zeros (Fig. 7), becomes, in general, nonzero 
as indicated in Fig. 8. After this modification the only square of the quadratic form 
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Fk which depends on the choice of u(k) is produced by this first row 

(63) 2„(Au(/c) + muw + mur r(k) + mj(k - 1 | k - l ) ) 2 

and can be totally zeroed, and thus the nonnegative definite 

AM r §I s0 , . s„ 

Qu H m uw '"ur • • mus . . 

1 
1 

1 1 
. 1 

1 

Fig. 8. Minimization of the quadratic form Fk by dyadic reduction. 

quadratic form Fk minimized, by the choice 

(64) Aw(fe) « -muw - murr(k) - mj(k - 1 | k - 1) 

This proves the optimal control law (42) for the given simple case. Note that the 

weight Qu in (63) determines the increase of the criterion if the optimal control law 

could not be fulfilled. If Qu is small then the minimum is flat. 

Stage 2/3. If the square (63) represented by the first numerical row in Fig. 8 is 

zeroed by the optimal control law (65) then the remaining rows represent the mini-

malized quadratic form Fk. However, it is necessary to transform it into the form 

of the Bellman function (44). This can be done by reducing the last row as depicted 

AM 1 f §! s2 . . s„ 

й. 1 m 

ð. 

m 
uw '"ur 

0 
0 
0 rňw 

0 
0 

m. 

• • ™us . . 

1 | 

• 1 1 
. . 1 | 
. Ms . 1 

1 
0 m0w m0r 0 0 0 0 0 

Fig. 9. Reduction of the last row - reconstruction of the propagated form of the Bellman function. 

in Fig. 9. Again the dyadic reduction can be employed to perform the task. However, 
not to destroy the desired structure the last row must be reduced from right to left 
using, as reducing, the rows with ones lying above the zeroed entries. 

After this modification the minimized quadratic form Fk can be decomposed 
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in the following way. 

(65) F*(r(fc), §(k-l\k- 1)) = \Q0(k); m0Jk) + m0r(k) r(k)\ + 

+ |gs(fc); mjk) + mjk) r(k) + Mjk) s(k - 1 | fc - l) | + 

+ P(k) + Apjk) + Afi/k) + Apv(k) 

Stage 3. The Bellman function Bk_t is obtained from E* if in (65) it is expressed 

(66) f(k) = y(k - 1) - w(k) = y(k - i) - w(fc - 1) - Aw(fc) = 

= r(k - 1) - Aw(fc) 

Since in program control Aw(fc) is known in advance the operation (34) is replaced 
by the following correction of mjk) and m0Jk) 

(67) mjk - 1) = mjjc) - mr(k) Aw{k) , 

m0Jk - 1) = m0w(fc) - mjk) Aw(fc) 

Hence the Bellman function Bk~t is obtained in the reproduced form (44) with 
Q0(k - 1) - 20(fc), mjk - 1) = mjk), Qjk - 1) = Qjk), mjk - 1) = mjk) 
and Mjk - 1) = Mjk). 

This concludes the recursion and to complete the proof for the case of program 
control it remains to show that the given structure of the Bellman function and of 
the optimal control law suit also for fc = T. Considering the initial condition BT = 0 
it is easily seen that besides QjT), MjT), Qr{T) and Q/T) given by the last com­
ponent of the loss function (47) the algorithm starts with 

(68) mw(T) = 0 , m0w(T) = 0 , mjj) = 0 , mQr(T) = 0 , 

<20(T) = 0 , /i(T) = 0 

Note that mjk) and m0w(fc) remain zero also for fc < T if Aw(fc) -= 0 for all fc. 

Positional servo. If the future course of the command signal is uncertain then the 
conditional mean (34) has to be determined. If the generalized random walk (39) with 

E[Aw(fc) | Hrk„{\ = 0 , Var [Aw(fc) | # V i ] = Qjk) 

is used to model the uncertainty of the future command signal at the moment fc = 1 
then the above Stage 3 has to be modified in the following way. Instead of (66) and 
(67) we now have 

E[f(fc) | fc - 1] - r(k - 1), mjk - i) = mw(k) = 0 , 

*n0Jk - 1) = m0w(fc) = 0 

This reduces to zero also mrw in (51) which means that the entire corresponding 
column in the schemes Fig. 7, Fig. 8 and Fig. 9 can be omitted. Apparently, also 
the increment (52) of the component fi(k) of the Bellman function is reduced to zero 
but it is replaced by an other increment produced by the conditional mean (34) 
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with EJ given by (65). 

A /?# ) = Qw(k)(\Q0(k); m0r(k)\ + \Qs(k); mr(k)\) 

Process delay Tu > 0 

It is not difficult to verify that the above algorithm of optimum control synthesis 
holds also for the process model with time delay if the control error r(k) and the 
related variable f(k) = y(k — 1) — w(k) on which the optimal controller operates 
are replaced by their T„-steps-ahead predictions (45) and (43) in case of program 
control, or (46) in case of positional servo. The only difference caused by the process 
delay is a more complex evaluation of the increments of the component /j(fe) of the 
Bellman function. Since they influence only the minimum of the criterion which 
can be achieved by the optimal control, but not the optimal control law itself, they 
are not followed in detail here. The PASCAL procedure LQGI listed below can be 
used also for processes with delays. 

Stochastic deadbeat control 

Recall that the mean value of the state s of an incremental model is zero in steady 
state. 

Since the weights Qr(k) and Qu(k), by which the control error and the change 
in the position of the actuator are incorpotated into the quadratic criterion, can be 
different for different k it is possible to choose QS(T) > 0, Qr(T) > 0, QU(T) = 0 
and for k < T, Qr(k) = 0, Qu(k) = 0. By inspection of the above algorithm it can be 
verified that with this choice the rank of the matrix on which the algorithm operates 
is decreased by one in each step if dynamic programming. Since for k = T this 
rank is, in general, n + 1 the stochastic deadbeat control can be obtained by n + 1 
steps of dynamic programming. In such a case the minimum of the criterion is BQ = 
= /?(0) and does not depend on the state estimate s[0 | 0). 

It is a great advantage of the numerical algorithm based on dyadic reduction 
that it can safely manage such singular cases. This means that the below listed 
procedure LQGI can well be used to calculate deadbeat control and other (often 
more reasonable) modifications of the quadratic criterion. 

Remark (d). Note that the parameters of the optimal control law (42) do not 
depend on the c-parameters of the process model. The c-parameters are reflected 
only in the state estimate s(k — 1 | k — 1) on which the optimal controller (including 
the prediction if required) operates. Note also that the measurable external disturb­
ance, v, if the uncertainty of its future development is modelled by a generalized 
random walk, does not enter the optimal control law explicitly. The feedforward 
from v only helps to improve the estimate of the state. 



PASCAL procedure LQGI 

The following procedure performs one step of dynamic programming described 
above and generates the parameters of the optimal control law. Nonstandard types 
of its parameters are 

TYPE poly = ARRAY [0. .nmax] OF REAL; 
row = ARRAY [0. .jmax] OF REAL; 
Matr = ARRAY [0. .imax] OF row; 

where the integer constant nmax is the maximal model order, jmax = nmax + 3, 
imax = nmax + 1. Since the procedure LQGI makes use of the procedure DYDR 
(see Section 2) the type row must be common for both of them. 

Parameters: 

mti ... type INTEGER; model-type indicator (in text denoted by /i); set mti = 1 
for Delta model, mti = 0 for ARMA. 

n ... type INTEGER; model order. 
a, b . . . type poly; model parameters; a[i\ — at; b[i] = bt. 
Qr, Qu ... type REAL; nonnegative weights by which the square of the control 

error and the square of the change in the position of the actuator are 
penalized in the control step for which the control law is calculated. 

dw . . . type REAL; dw = 0 in case of positional servo; increment of the command 
signal preprogrammed for the next control step in case of program 
control (Tu steps ahead in case of process delay if the model state is not 
extended). 

M . . . type Matr; the matrix on which the procedure operates; both in call-
state and in return-state the submatrices are placed as depicted in Fig. 9; 
parameters of the optimal control law appear in the first row indexed 
by iu -= 0: muw = M[iu,jw], mur = M[iu,jr], musj = M[iu,jr + ; ] , 
j = I. ,n; the nonnegative weights are placed in the first column with 
the column index jQ = 0; the first row indexed by iu = 0 can be arbitrary 
when the procedure is called; rows with indices iu + i, i = 1. .n + 1, 
must be initialized before the first call of the procedure including the ones 
M[iu + i,jr + /] = 1, i =- 1. ,n. Large initial entries M[iu + i,]Q\ — 
— Qs,i(T) stabilize the control loop, 

PROCEDURE LQGI (mti, n: INTEGER; a, b: poly; Qr, Qu, dw: REAL; 

VAR M: Matr); 
CONST iu = 0; ir = 1; 

JQ = 0; ju = 1; j w = 2, jr = 3; js = 4; 

VAR i,j, ii,jj\ a} im,jn: INTEGER; 
am, bm, Mij: REAL; 

BEGIN 
jn:= n + jr; j m : = „ + ir; 
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Mij := M[im,jr]; Qr := Qr + M[imJQ] * Mij * Mij; 
M[ir,jw] := M[imJQ]\Qr*Mij * M[imjw]; 
il := im; 
FOR i := « DOWNTO 1 DO 

BEGIN 
i i := i l - 1 ; 
am := M[ii,j>] - a [i]; /3m := /3[i]; 
jj'^js; 
FORj: = l T O i - 1 DO 

BEGIN 
Mij := M[ii,j'j']; 
am := am — Mij * a[j]; bm := bm + Mij * &[/]; 
j1:=j'j" + i; 
M[iljj] := m*i * M[ii,H] + Mij 
END; 

M[il,js] := mti * M[iijs] + am; 
M[i\Ju] := bm + am * /3[0]; 
M[il,je] := M[zz,je]; M[il,jr] := M[iijr]; 
il := ii 
END; 

M[irJQ] := Qr;M[ir,jM] := b[0]; M[ir,jr] := 1; 
M[iw,;Q] := Qu; 
FOR j := jw TOjn DO M[iu,j] := 0; 
j*j":=j*5; 

F O R i : = ir TO im DO 
BEGIN 
DYDR(M[i], M[iu], M[i, jQ], M[iu, jQ], ju, jw, jj); 
IF jj <jnTRENjj:=jj + 1 
END; 

FOR i : = im - 1 DOWNTO ir DO 
BEGIN 
j*: = jj - i ; 
DYDR(M[im], M[Q, M[imJQ], M[iJQ]jj,jwj); 

j'j':=j 

END; 
IF dw <> OTHEN 

FOR i := ir TO im DO M[ijw] := M[i,jw] - M[i,jr] * iw 
END; 

Remark (e). If the procedure LQG7 has to be used for the most common case 
of positional servo or of regulation then it suffices to set the procedure parameter dw 
permanently to zero. However, in such a case the following simplification can be 
recommanded: 
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— Omit the procedure parameter dw, the third line of the body where M\ir,jw] is 
calculated, and the last IF statement. 

— Replace jw by jr. 
— In CONST declaration omit jw and setjr = 2 and js = 3. 

Multivariate case 

The extension of the above algorithm of optimum control synthesis for a multi­
variate case (dy >. 1, du — 1, dyc = dw = dr ^ dy) is rather straightforward. 
If we omit the calculation of the increments of /?(/c) which do not influence the 
optimal control law then it suffices to consider, instead of rows and columns in the 
schemes Fig. 7, Fig. 8 and Fig. 9, block-rows and block-columns of dimensions 
given in Result (5B), to replace the ones by monic LT-matrices, and to modify the 
particular stages of the algorithm in the following way. 

Stage la. Instead of the explicit formulae (51) the modification (50), which now 
reads 

\Q0; m0w + m0r r(k)\ + \Qr; MF r(k)\ = |g 0 ; m0w\ + |g r ; mrw + Mr r(k)\ 

where Mr andM r are monic LT-matrices, must be performed using dyadic reduction. 

Stage 1/3. Instead of explicit inverting of the monic LT-matrix A (see (4.48), as 
applied in (59) and (60), it is now more advantageous to calculate the first dy columns 
ma of the matrix G recursively using the relation following from (54). 

GA = \ma, MJ 
Some care must be exercised when calculating the second quadratic form on the 

right-hand side of (56) corresponding to the second numerical block-row in Fig. 7, 
especially when the number of controlled outputs is lower then the number of obser­
ved outputs, i.e. when dyc < dy. If the vector of controlled outputs yc is placed 
in y as first, y' — \y'c, • ] , and the model parameters a0, a monic LT-matrix, and b0 

are partitioned correspondingly 

«.-[?••?]. io-p"] 
then from the first dyc rows of the model equation (41) it is obtained 

Ape(k + Tu | k - 1; u(k)) = fl0V(-?io(fc - l + Tn\k-l) + b0c Au(k)) 

where slc is the corresponding subcomponent of state component sv However, 
in order to match the rest of the algorithm (reduction of the last block-row in Stage 
2b) the second numerical block row in Fig. 7 must consist of dy rows and therefore 
the discussed quadratic form has to be extended in a way which does not change 
its value. 

| [ f ] i [^]Mk) + ["J-] + [^lH']w + 

+ [**" 5]l1(k-l + T.|k-l)| 

80 



The inversion of a0c is a very low price paid for a drastic simplification of state 
estimation, and especially of joint parameters and state estimation (see Section 6) 
in multivariate case. As a0c is a monic LT-matrix the caclulation can be performed 
by a simple recursion operating on all matrix entries in the upper part of the block-
row which have to be multiplied by this inverse. 

Stage 2a. The only modification is that instead of a single column a block of du 
columns has to be reduced to zero sequentially from left to right. 

Stage 2/3. Similarly, the block of dy last rows has to be reduced to zero proceeding 
upwards in order not to destroy the structure. 

Stage 3. In case of program control (67) remains valid if mr and m0r are inter­
preted as matrices of dimensions ds x dr and dy x dr, respectively. Note that even 
in multivariate case mw and mw0 are just single columns. 

In case of positional servo or of regulation no calculation is performed in Stage 3 
and the procedure can be simplified similarly to single output case (see Remark (e)). 

5.4. Algorithm of optimum control synthesis for positional process models 

In this paragraph the Result (5 B) will be modified for the positional process 
model (3.63) 

(69) 

}l I ^ ] - Hs(k - 1 + Tu) + bu(k) + dv(k + Tu - Tv) + ce(k + Tu) + kx 

The matrix parameters A, b, c, d and kx are defined by (3.66) and (3.67) while the 
nonparametric matrix H will be considered in the form (4.6) to cover both ARMA 
and Delta cases. Compare (69) with the previously considered incremental model 
(41) and recall that 

k'x = [o,o,...,o,k'c-] 

Result (5 C): Optimal controller for positional process models. 

Let the controlled process be described by the positional model (69) and let the 
measurable external disturbance be considered as the generalized random walk 
(37). Then the control law minimizing the quadratic criterion (35) for the case of 
positional servo and Tv ;> Tu can be given the structure 

(70) Au(k) = -mjk) u(k ~ 1) - mjk) - muw(k) w(k) - mjk) v(k - 1) -

— mus(k) S(k — 1 + Tu | k — 1) 

where s,k — 1 + Tu | k — 1) is the Tu-steps-ahead prediction of the state of the model 
(69). The parameters of the control law (70) can be determined by the algorithm 
of dynamic programming with the Bellman function of the following nonnegative 
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definite quadratic form 

(71) Bk = 

= \Qs(k); mu(k) u(k) + mw(k) w(k) + mp(k) + mv(k) v(k) + Ms(k) s(k + Tu | fc)| + 

+ \Qp(k); mpu(k) u(k) + mpw(k) w(k) + mpp(k) + mpv(k) v(k)\ + fi(k) 

where M/k) and mpu(k) are monic LT-matrices, mp(k) and mpp(k) are vectors of 
dimensions ds and du, respectively, and the rest of parameters are rectangular 
matrices of appropriate dimensions. fi(k) is the component which cannot be in­
fluenced by previous control actions. 

In case of program control, when the command signal is given a priori for the 
entire control horizon, the terms mw(k) w(k) and mpw(k) w(k) can be omitted in the 
Bellman function and the command signal can be incorporated into the absolute 
terms mp(k) and mpp(k). Then the optimal control law does not contain the term 
muw(k) w(k). 

Remark (d). The Remarks (a, b, c) from the previous paragraph are relevant 
also here. 

Single-input single-output process, Tu = 0 

Since the extensions for the multivariate case and for a nonzero process delay are 
very similar to the case of incremental model the Result (5 C) will be proved and the 
algorithm for optimum control synthesis will be designed only for this simple case. 

Similarly to (47) and (48) it is suitable to decompose the loss function as follows. 

IT - \Qr(T);r(T)\ + \Qtl(T); Au(T)\ + \QS(T); MS(T)(S(T\ T) - s)\ 

lk = \Qr(k);r(k)\ + \Qu(k);Au(k)\, k<T 

First we shall perform a general step of dynamic programming from k to k — 1 
and afterwards we shall consider the first step for k — T and discuss the proper 
choice of the last desired state s in the criterion (35). 

Again, one step of dynamic programming will be decomposed into three stages. 

Stage 1. For calculating the conditional mean (31) it is suitable to introduce 

g(/c) = y(k) - y(k | k - 1; v(k), u(k)) 

and to express S(k | k) according to (4.20) 

(72) s(k \k) = s(k\k- I; v(k), u(k)) + (c(k) - a) a(k) 

Clearly 
y(k) = y(k | k - l;v(k),u(k)) + e(k) 

From the model (69) we have 

(") A [$ | \ - u t l S i ] - * ** - * I * - i) + > "» + - <k) + *, 
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the first row of which gives 

(74) y(k | k - 1; v(k), u(k)) = st(k - l | k - 1) + b0 u(k) + d0 v(k) 

Using the random-walk model (37) for v(k) it is possible to express the output y(k) 
as follows. 

(75) y(k) = st(k - 1 | k - 1) + b0 u(k) + d0 v(k - 1) + s(k) + 

+ d0 ev(k) 

Omitting the time index of numerically given quantities and making use of (73) 
we can also write 

(76) MJ(k | k) = [0, MJ [** | \ ~_ I g j ; Jg>] + Ms(2 - 5)a(fc) = 

= GH s(k - l \ k - 1) + Gb u(k) + Gd v(k - 1) + 

+ Gkx + Ms(c - a) s(k) + Gd ev(k) 
where 

G=[0,Ms]A^ = [ - M s a , M j 

Recalling that b' = [/30, /5J and ti' = [d0, t3'] we have 

G/3 = -Msab0 + MSE , GJ = -Msad0 + Msd 

Since Ms is a monic LT-matrix we also have 

(Gkx)' = [0,0,...,0, fcj 

Now it is already easy to calculate the conditional mean (31) Fk = E[Bfe + lk I 
\Dk_uu(k),w(k)~]. Since the random variables s(k) and ê /V) have zero mean, 
by their definition are uncorrelated and their variances are 

Var [s(k) | k - 1] = Q dy(k), Var [ejk) | T f c - i ] = Q»(k) 

it is obtained 

(77) Fk = \QU; Au(k)\ + \Qp; u(k) + mpw w(k) + mpp + mpv v(k - 1)| + 

+ \Qr; b0 u(k) - w(k) + d0 v(k - 1) + s,(k ~ 1 | k - 1)| + 

+ \QS', mu u(k) + mw w(k) + mp + Mv v(k - 1) + GH s(k - 1 | k - 1)| + 

+ p(k) + A/i/fe) + Apjk) 
where 

(78) m„ = mu + Gb — mu - mab0 + mb , mv = mv + Gd = m„ - mflrf0 + md 

(79) ma = Msa , mb = Msb , md = Msd 

(80) mp = mp + Gkx , m'p = m'p + [0, 0, ..., 0, fcj 

(81) GH = [-ma , MJ H = vMs + [-ma , M j P I 
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Hence, the main calculation, which is to be performed in this stage of the algorithm, 
is the determination of the vectors ma, mh and md, all of dimension n, according 
to (79). The fact that Ms is a monic LT-matrix simplifies the calculation. 

Stage 2. To perform the minimization of Fk with respect to u(k) according to 
(32) and (33) it is suitable to express the sum of nonnegative quadratic forms in (77) 
as a single quadratic form as shown in the scheme Fig. 10 where Au = Au(k) and 
u - u(k - 1). 
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Fig. 10. Scheme of the quadratic form Fk for positional models. 

Note that u(k) is expressed as Au(k) + u(k — 1). As before, the empty spaces mean 
zeros which do not enter the calculation and the dots mean the numbers in general 
nonzero. 

To minimize the quadratic form with respect to AM =- Au(k) it is now sufficient 
to use the first row as reducing and to zero the rest of the column lying under AM. 
If the dyadic reduction is applied sequentially from up to down the required structure 
of the entire matrix is maintained as shown in Fig. 11. Because the minimization 
procedure is, in principle, the same as in the above case of incremental models we 
can shorten the commentary. 

AM W 1 v u §<, §i . . §„ 

Qu 1 m,, m, m, 
L 
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1 1 
• 1 1 
. . 1 

1 

Fig. 11. Minimization of the quadratic form Fk for positional models by dyadic reduction. 

After this transformation of the nonnegative quadratic form the only square which 
depends on the choise of Au(k) is produced by the first row and is totaly zeroed 



by the control law 

(82) Au(k) = 

= - muu u(k - 1) - muw w(k) - mup - muv v(k - 1) - mus S(k - 1 | k - 1) 

which coincides with the general form of the optimal control law (70) for the given 
simple case. 

The propagated form of the Bellman function can be reconstructed by reducing 
the right hand part of the last row as shown in Fig. 12. This reduction must be 
performed from right to left in order not to destroy the desired structure of the form. 
Note the right positioning of the column multiplied by u — u(k — 1) with the one 
in the proper place. This makes the algorithm compact. The square produced by 
the last row in Fig. 12 does not depend on the previous control actions and thus 
contributes to the /J-part of the Bellman function. 

(83) Ap0(k) = E[Q0; m0w w(k) + m0p(k) + mjk) v(k - 1) | D0] 
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Fig. 12. Reconstruction of the propagated form of the Bellman function by the reduction of the 
last row. 

Stage 3. In this last stage the conditional mean over w(k) has to be taken accord­
ing to (34). If the a priori uncertain command signal is modelled as the generalized 
random walk (39) then E[w(/<) | Wk^1] = w(k — 1). This means that it is sufficient 
to replace w(k) in the Bellman function by w(k — 1) and to increase its /i-part, 
(which actually does not need to be calculated) by 

(83) Afijk) =- QJk) (\Qp; mpw\ + |QS; mw\) 

where Qw(k) = Var [ew(fe)]. Recall that the variances gjk) as well as gv(k) can be 
arbitrarily time varying. 

Program control. In case of program control the a priori numerically given 
w(k) can be incorporated into the algorithm in Stage 2 so that its negative value 
is inserted instead of the zero in the row weighted by Qr and in the column multiplied 
by 1 in the scheme Fig. 10. This means that the column lying in this scheme under w 
can be fully omitted. 
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Choice of the last desired state 

It remains to consider the first step of dynamic programming for k = T. Since BT = 0 
we can write 

BT + lT =- \Qr{T); r(T)\ + |Qr(T); Au(T)\ + |QS(T); MS(T)(^(T| T) - s)\ 

It is clear that it much depends on the choice of s. If we chose the desired last state s 
as a numerically given vector it would be possible to consider formally BT = |QS(T); 
mp(T) + Ms{T)s(T\ T)\ with mp(T) = -Ms(T)s and to proceed as in general 
step. However, this would not be a very reasonable choice. It is more appropriate 
to require that the process be as close as possible to a steady state after the last 
control action Aw(T) is applied. This corresponds to the choice 

(84) s = s(T- 1\T- 1) 

With this choice we can proceed as follows. According to the above relation (76) 
it holds 

\Qs;Ms(s(T\T)-s(T- l | T - l ) | = 

= |QS; (GH - Ms) S(T - 1 \ T - 1) + Gb u(T) + Gd v(T - 1) + 

+ Gkx + Ms(c - a) s(k) + Gd ev(T)\ 

This gives, see (78) to (81), 

mu(T) = -mab0 + mb , mv(T) = -mad0 + md , m'p(T) = [0, 0, ..., 0, fcj 

(85) GH - Ms = (n - 1) Ms + [ - ma, M j |"j l 

where 
ma = Ms(T)a, mb = Ms(T)b, md = Ms(T)d 

This means that it is possible to start the dynamic programming for k = T with 
mu(T) = 0, mw(T) = 0, mp(T) = 0 and mv(T) = 0 and all what has to be done 
to achieve the choice (84) is to decrease in the first step of dynamic programming 
the model type indicator fi by one as shown by (85). 

PASCAL procedure LQGP 

The following procedure performs one step of dynamic programming and generates 
the optimal control law for a single-input single-output positional model with zero 
steady state offset kc — 0 and for the case of positional servo with no feedforward 
from a measurable external disturbance. However, it can be easily modified for the 
other cases discussed above. The nonstandard types of its parameters are the same 
as for the above procedure LQGI. To economize the memory of the computer it 
is suitable to choose imax = nmax + 2 and jmax = nmax + 3. 
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Parameters: 

mti ... type INTEGER; model type indicator (in text denoted by fi); mti = 1 
for Delta model, mti = 0 for ARMA; in the first call of the procedure 
mti must be decreased by 1 to start dynamic programming with (84), e.g. 
for ARMA model in the first call set mti = — 1. 

n . . . type INTEGER; model order. 
a, b . . . type poly; model parameters; a[i] = at, b[i] =- bt 

Qr,Qu . . . type REAL; nonegative weights in the criterion (35). 
M . . . type Matr; the matrix on which the procedure operates; both in call-

state and in return-state the submatrices are placed as depicted in Fig. 12; 
parameters of the control law (82) appear in the first row indexed by 
iu = 0: muw = M[iu,jw], muu = M[iu,ju], musj = M[iu,ju + j], 
j = 1,2,.. n, (jw and ju are declared as CONST); the rows with indeces 
i = iu + k, k = 1, 2, .. n + 1, must be incialized before the first call 
of the procedure including the ones M[iu + k,jw + k]; large nonnegative 
weights Qsk = M[jQ, ip + k], k -= 1 . . n, stabilize the control loop; 
standard initialization of the remaining entries is zero. 

PROCEDURE LQGP (mti, n: INTEGER; a, b: poly; Qr, Qu: REAL; 
VAR M: Matr); 

CONST in = 0;ip = l;ir = 2; 
jQ = 0;jD = l;jw = 2; ju = 3; js = 4; 

VAR i, j , ii, jj, il, im, jn: INTEGER; 

am, bm, Mij: REAL; 
BEGIN 
jn : = n + jd; im := n + ir; 
il := im; 
FOR i := n DOWNTO 1 DO 

BEGIN 
n := il - 1; 
am := a[i]; bm := b[i]; 
jj :=1s ; 
F O R I : - l T O i - 1 DO 

BEGIN 
M / / : = M[ii,jj]; 
am := am + Mij * a[j]; bm := bm + Mij * b[j]: 
jj:~jj+ 1; 
M[il,jj] := mti * M[ii,jj] + Mij 
END; 

M[il, js] :— mti * M[ii,js] — am; 
bm := M[ii,ju] + bm -am* b[0]; 
M[il,jD] := bm; M[il; ju] := bm; 
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M[iíJQ] := M[iiJQ]; M[iljw] := M[iijw]; 
i\ := ii 
END; 

M[iuJQ] := Qu; 
FOR j : = jw TO jw DO M[iu, j] : -= 0 ; 
M[ip,jD]:= 1; 
M[ir,/Q] := £r; M[ir,jD] := /3[0]; M[ir,./vv] := - 1 ; M[ir, ju] := /3[0]; 

ti'-=m 
FOR i : = ipTO im DO 

BEGIN 
DYDR(M[i], M[í«], M[iJQ], M[iuJQ]jDJwJj); 
IFjj <jnTRENjj:=jj + 1 
END; 

FOR i := im - 1 DIWNTO ip DO 
BEGIN 

DYDR (Af[im], Afp], M[im,jQ], M[iJQ]jjJwj); 

END 
END; 
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6. SIMULTANEOUS PARAMETER AND STATE ESTIMATION 

In the foregoing sections it was assumed that the parameters of the process model 
were a priori known. However, this is rarely the case in industrial practice. To make 
the theory practicable it is highly desirable to develop procedures and reliable 
numerical algorithms which make it possible to estimate the model parameters in real 
time under the operating conditions of the control system. This is the topic of the 
present section. 

Usually, an attempt to estimate the parameters of a state-space model jointly 
with its state leads to a problem of nonlinear filtering which can be practically 



solved only with some approximation. The purpose of the first paragraph of this 
section it so give a general view on the problem and to investigate under what condi­
tions the problem can be simplified if the parameters are estimated separately from 
the state. It turns out that such a simplification exists for the parameters a,b,d and kc 

of the linear models introduced in Section 3. 
In the second paragraph a filter is derived which updates the statistics (certain 

matrices) which make it possible to express the estimate of the model state as a linear 
function of the unknown parameters a, b, d and kc. This opens the way for the exact 
solution of the problem of simultaneous estimation of these parameters and of the 
model state. 

In the third paragraph it is shown that the problem of parameter estimation can 
be solved exactly within normal probability distributions.A filter is derived which 
updates the mean values and the covariances of the unknown parameters and deter­
mines the joint probability distribution for both the parameters and the state. It 
turns out that also in this case the variance of the white-noise component of the 
models does not need to be known if only the conditional means (point estimates) 
are of interest. It enters the procedure only as a factor by which all covariances are 
multiplied. 

Unfortunately, the c-parameters of the linear models we deal with cannot be 
exactly estimated in real time. Throughout this section it is assumed that they are 
suitably chosen as the base of exponentials by which the "tails" of a regression 
model are approximated as discussed in paragraph 3.2. The procedure developed 
in the third paragraph of this section provides all probabilistic characteristics which 
are required to calculate the aposterior probability distribution on a finite number of 
hypotheses about posible values of these parameters. This can help to make the choice. 
However, a detailed discussion of this problem is outside the scope of this paper. 
An interested reader is referred to Section 6 in [10] for the way how to proceed. 

With no loss of generality the external measurable disturbance v will not be 
considered explicitly in this section. It can be considered as an additional process 
input and the fact that this input cannot be manipulated is not essential for the 
given problem. If required, the ^-parameters of the model can be estimated in the very 
same way as the /3-parameters. 

6.1. Conceptual solution 

Suppose that a given process can be described by a state space model which, 
if its patameters are known, defines the c.p.d.f. (3.18) 

(1) ?(y(t),s(t)\s(t-l),u(t)) 

If a set of parameters 9 of this model is unknown then the model does not define 
(1) but only 

(2) p(y(t),s(t)\s(t-i), u(t),0) 
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To estimate the unknown parameters 9 jointly with the state s(i) means, in Bayesian 
view, to evolve the c.p.d.f. 

(3) p(s{t), 9 | t) 

If the state s(t) is extended by the model parameters 9 then, following the procedure 
applied in the paragraph 4.1, it is obtained instead of (4.1) 

(4) p(y(t),s(t),9\t-l;u(t)) = 

- p(y(t), s(t) | s(t - 1), 9, u(t)) p(s(t - 1). 0 11 - 1) ds (t ~ 1) 

instead of (4.2) 

(5) p(y(t) \ t - l ; u(t)) = ffp(y(r), s(t), 9\t~l; u(t)) ds(t) d9 

and instead of (4.3) 

(6) ?me\t) = ^f^\<-)f)) 
p(y(t)\t- 1; 11(f)) 

The functional recursion (4), (5) and (6) solves the problem of joint parameter 
and state estimation conceptually, but, as mentioned above, only rarely can be 
reduced to a feasible algebraic recursion without any approximation. Our case is an 
exception. 

The following result will appear very useful. 

Resul t (6A): Estimation of the parameters separately from the model state. 
If there exists a statistic X(t), a finite dimensional function of the observed data 

but not of the unknown parameters, 

(7) ' X(t) = f(X(t-l),y(t),u(t)) 

such that 

(8) p(s(t)\t;9) = p(s(t)\X(t),9) 

then, under natural conditions of control, the unknown parameters 9 can be estimated 
separately from the state s(t) using the relations 

(9) p(e 11) = P(y(t)\x(t-i),e,u(t))P(0\t-i) 

P W O I < - i; - (0) 
where 

(10) p(y(t) | X(t - 1), 9, u(t)) = 

p(y(t) | s(t - 1), u(t), 9) p(s(t - 1) | X(t - 1), 9) ds(t - 1) 

/» 
(11) p(y(t) \ t - l ; u(t)) = p(y(t) \ X(t - 1), 9, u(t)) p(9 \ t - 1) d9 

• 

Then, for any t, the joint c.p.d.f. for the estimated parameters and the state can be 
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determined as follows. 

(12) ?(s(t), e 11) = P(s(t) | x(t), 9) ?(e 11) 

Proof. There is not much to be proved. The given relations are just applications 
of the elementary operations (2.1) and (2.2), and of the natural conditions of control 
(2.5) 

p(0 11 - 1; «(()) = P(e 11 - 1) 

It is clear that the usefulness of the Result (6A) much depends on the existence 
of the statistic X(t) with the properties (7) and (8), and on the form of the cp.d.f. (9). 
In the following paragraph it will be shown that such a statistic exists for the pa­
rameters a, b and kc (and d if required) of the linear process models considered in this 
paper. As the cp.d.f. (9) is normal if e(t) is assumed to be normally distributed, 
the problem can be solved within normal probability distributions and the functional 
recursion can be reduced to algebraic operations on conditional means and covari-
ances. 

6.2. C-filters 

Let us consider the process model in the form (4.5) 

(13) A P(WJ = H s(t - 1) + b u(t -Tu) + kx + c e(t) 

where the parameters A, b, c and kx are defined by (3.66) and (3.67). If the non-
parametric matrix H of dimensions (dy + ds) x ds is considered in the form (4.6) 

II -'GЬИ 
then (13) can represent both ARM A and Delta models. If y(t) and u{t) are replaced 
by their increments and if it is set kx — 0 then also incremental models are covered. 

For the sake of simplicity only the single-input single-output case will be considered. 
However, the presented solution can be well extended for the multivariate case, 
namely thanks to the Result (4 B). (Actually, the multivariate case can be solved by 
running the same dy filters in parallel.) 

Let the unknown parameters be 

(14) d = {a, b, kc) = {au a2, .. an, b0, bu . . bn, kc} 

In order to see whether the Result (6 A) can be applied we have to investigate the 
cp.d.f. (8). From the Result (4 A) we know that, under given assumptions, this 
cp.d.f. is normal with the covariance matrix (4.21), which is independent of 6, and 
with the conditional mean s(t 11), which envolves according to the difference equation 
(4.24) and is a function of the unknown parameters (14). 

(15) s(t 11; 0) = (nl + C(t)) s(t- l \ t - 1;6)-

-(a- c(t)) y(t) + (B- c(t) b0) u(t - Tu) + ks 
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To determine S(t \ t; 9) as an explicit function of 9 let us find the explicit solution 
of the difference equation (15). 

If the transition matrix G(t, k) is introduced so that 

(16) G(t, fc) = [ I (Hi + C(j)) , k<t 
j = k+l 

(17) G(t, t) = I 

(18) G(t, fc) = (pil + C(t)) G(t - 1, fc) 

then the explicit solution of (15) can be written as follows 

(19) S(t \t;9) = S0(t | t) - Sy(t | t; a) + Su(t \ t; b) + sk(t | t; kc) 

(20) -foC* I 0 =G(t,0)S(0) 

(21) Sy(t \t;a) = £ G(t, k) (a - c(k)) y(k) 
fc=l 

(22) Su(t \t;b) =t G{t, k) (E - c(k) b0) u(k) 
k=í 

t 

(23) Sk(t | t; kc) = £ G{t, fc) fcs 
k = l 

where S(0) is the expected value of the initial state s(0) before the observation of the 
process starts and, according to (4.28), 

(24) /< = [0, 0, . . . 0, fcj 

Note that, in case of an incremental model, kc, ks and thus also Sk(t | t; kc) are zero. 
It will appear advantageous to express 

(25) a - cKk) = C*(k) a, b - c(fc) b0 = C*(k) b 

where 
(26) C*(fc) = [-c(fc),i] 

Note that C*(t) of dimensions n x (n + 1) is the matrix C(t) (4.25) extended by an 
additional column the only nonzero entry of which is a one in the last row. Using 
(25) it is possible to rewrite (21) and (22) as follows. 

(27) Sy(t \t;a)= Y(t) a , Su(t \ t; b) = U(t) b 

where Y(t) and U(t) are rectangular matrices of dimensions n x (n + 1) 

(28) 7(t) = J G(t, fc) C*(fc) y(k), U(t) = £ G(t, fc) C*(fc) u(fc) 
fe=l k = l 

and a' = [1, a '] . Hence, the explicit solution (19) of the difference equation (15) 
can be expressed as the following linear function of the unknown parameters. 

(29) S(t \t;9) = K0(t) - Y(t) a + U(t) b + K(t) kc 

where K0(t) and K(t) are vectors. 
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Applying (17) and (18) it is easy to find that the following recursion holds. 

(30) Y(t) = (,H + C(t)) Y(t - 1) + C*(t) y(t) , Y{0) = 0 

(31) U(t) = (fil + C(t)) U(t - 1) + C*(t) u(t), (7(0) = 0 

(32) K(t) = (ill + q » ) K(t - 1) + [0, 0, . . 0, 1]' , K(0) = 0 

(33) K0(t) = (jil + C(t)) K0(t - 1) Ko(0) = <0) 

Note that each nonzero entry of the matrix added in (30) and (31) is multiplied 
by the scalar y(t) or u(t), respectively. 

If the prior probability distribution of the initial state s(0) is chosen sufficiently 
flat (large numbers on the diagonal of Ds(0) in (4.30)) it is suitable to choose s(0) = 0 
and to omit the term (33). 

In this way the c.p.d.f. (8) has been brought into the desired form with the statistic 

(34) X(t) = {Y(t),U(t),K(t)} 

Summing up we have the following 

Resul t (6 B): C-filters. 

Estimation of the model parameters a, b and kc simultaneously with the state 
s(t) requires to filter the input and the output of the process using filters operating 
on matrices Y(t) and U(t) according to (30) and (31). If the possible offset kc is 
estimated then also the vector K(t) has to be evolved in real time according to (32). 
The time-varying coefficients c(t) which enter the filtering are generated by the 
algorithm described in the paragraph 4.3. 

PASCAL procedure GFIL 

The procedure CFIL listed below incorporates one sample of the filtered signal 
into a statistic of a matrix form according to (30) or (31). The nonstandard types 
of its parameters are 

TYPE row = ARRAY [0 . . nmax] OF REAL; 
Mat = ARRAY [1 . . nmax] OF row; 

where nmax is an INTEGER constant chosen with respect to the maximal model 
order to be considered. 

Parameters: 

Xf . . . type Mat; matrix state of the filter (eg. Yor U) to be updated (according 
to (30) or (31)). 

x . . . type REAL; signal sample (eg. y or u). 
c . . . type row; vector of coefficients generated by the procedure CGEN. 
n . . . model order. 
mti ... model-type indicator, mti — 1 for Delta, mti = 0 for ARMA. 
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PROCEDURE CF7L(VARx / : Mat;x: REAL; c: row; n, mti: INTEGER); 
VARiJ: INTEGER; 
BEGIN 
F O R 1 : = O T O n D O 

BEGIN 
F O R i := l T O n - l D O 

Xf[ij] := mti*Xf[ij] + Xf[i + 1,1] - c[q*Xf[l,j]; 
Xf[n,j] := mti*Xf[n,j] - c[n] * Xf[l,j] 
END; 

F O R i : = l T O n D O 
BEGIN 
Xf[i,i]:=Xf[i,i] + x; 
Xf[i,0]:=Xf[i,0]-c[q*x 
END 

END; 

6.3. Real-time estimation 

Now we are prepared to solve the problem of estimating the parameters a, b and kc 

simultaneously with the state s(t) in real time according to the Result (6 A). However, 
since the problem is linear and Gaussian it will be sufficient to operate only on condi­
tional mean values and covariances. 

Let us order the set of 2n + 2 unknown parameters (14) into the vector 

(35) 8' = [at,a2,...an,b0,bu... bn, kc] 

and let us order the statistic (34) into the matrix 

(36) X(t) = l-Y(t), 17(0, K(0] = [ - Y*(>% mi 

where Y*(t) is the first column of the matrix Y(t). 
Then from (29) for K0(t) = 0 we have 

(37) š(t \t;9) = X(t) = -Y*(t) + Z(t) 

Since we are interested in recursive estimation let us assume that the mean value 
of the uncertain parameter vector (35), conditioned on the input-output data observed 
up to the sampling period t — 1, is given 

(38) E[0 | t - 1] - 6(t - 1) 

and that also its covariance matrix is given in the factorized form 

(39) Var [6 . | t - 1] = Q Le[t - 1) De(t - 1) Le(t - 1) 

where the monic LT-matrix LQ(t — 1) and the diagonal matrix De(t — 1) are given 
numerically while the scalar factor Q = Var e(t) does not need to be known. The 



mean value (38) and the covariance matrix (39) fully determine the c.p.d.f. p(0 | t — 1) 
if it is normal. 

To be able to update p(9\t - 1) = p(0\t - 1; u(t)) with respect to a newly 
observed output y(t) we need to determine the numerator of (9), i.e. the joint c.p.d.f. 

(40) p(y(t), 0 11 - 1; u(t)) = p(y(t) | X(t - 1), u(t), 9) p(6\t- 1) 

From the Result (4 A) it is known that p(y(t) \ X(t - 1), u(t), 9) is normal with 

(41) B[y(t) | t - 1; u(t), 9] = y(t\t- 1; u(t), 9) = s\(t - 1 | t - 1; 0) + b0 u(t) 

(42) V a r [ y ( O | r - l ; M ( t ) , 0 ] = a ^ ( O 

where dy(t) does not depend on the unknown parameters and is supplied by the 
procedure CGEN simultaneously with the coefficients c(t) required for updating 
the statistic X(t - 1). 

The conditional mean value st(t — 1 \ t — 1; u(t), 9) is given by the first row 
of (37) for the time index t — 1 

s,(t - 1 11 - 1;0) - Xt(t - 1 ) P 1 = -Y*(r - 1) + Zx(t -1)9 + b0u(t) 

where Xt(t — 1) and Zx(t — 1) are the first rows of the matrices X(t — 1) and 
Z(t - 1), and Y*(r - 1) is the first entry of the column vector Y*(t - 1). Thus, 
(41) can be written 

y(t\t- l; u(t), 9) = ~ Y*(t - 1) + Z±(t - 1) 0 + b0 u(t) 

or more concisely 

(43) y(t\t~l; u(t), 9) = - Y?(t - 1) + z(t) 9 

where z(t) is a row-vector with the entries 

(44) zj(t) = Z1}j(t - 1) for j + n + 1 

(44') zn + 1(0 = Z l ! f l + 1(f- 1) + M(r) 

Now the required joint c.p.d.f. (40) can be determined using the Result (2 B) 
slightly modified in the following way. Replace in (2.29) to (2.45) y by 9 and x by 
y(t), exchange their positions in (2.41) and (2.42) and, of course, correspondingly 
also their covariances. In this way it is obtained 

(45) E|>(0 I t - 1; «(0] = - !?(< - 1) + <<) Ht ~ 1) 

and, when we introduce the row-vector 

(46) f(t)^z(t)Le(t-l) 

the joint covariance matrix is 

(47) V a r p f | r - l ; u ( 0 ] ] = 
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- e [o L,(t - 1)J |_o D,(t - 1)J [/(.) _/r - 1)J 
To perform the conditioning (9) it is sufficient, according to the Result (2 A), 

to modify the factorization of the joint covariance matrix (47), in the following way 

(48) p / w ird' ( < ) ° i r ' ° i -
(W> |_° L,(t - 1)J [ 0 D,(t - 1)J lf'(t) L,(t - 1)J -

r i o i ra.(f) o ir i^wi 
" lg,(t) L,(t)\ I 0 D,(t)J[0 L,'t)\ 

The algorithm which performs this modification will be described below. Then the 
Result (2 A) gives 

(49) B(t)~B(t-l) + ge(i)t(t) 

where s[i) is the prediction error 

(50) t(t)~y(t)-$(t\t~ l;u(t)) 

t{t) = y(t)+Y*(t)-z(t)B(t-l) 

At the same time it is obtained 

(51) Var[0|f] = Q Le(t) De(t) Le(t) 

(52) Var [y(t)\t- 1; u(t)] = Q dy(t) 
This, together with the updating the statistic (36) according to (30), (31) and (32), 
solves our problem of recursive parameter estimation. 

It remains to determine the joint probability distribution for the parameters 6 
and the state s(t). A straightforward application of the Result (2 B) gives 

(53) E[S(») | 0 = X{t) [ g f j = - Y*(t) + Z(t) B(t) 

(54) Var 
1 _ Шt) 0 1 fD,(t) 0 1 ГĽв(t) Ľ,(t) ZЩ 

\~eЫt)Чt)LШo o.(0JLo щ J X0 
The procedure can be summarized as follows. 

Result (6 C): Simultaneous parameter and state estimation. 

Suppose that the observed process can be described by the model (13) with given 
parameters c but unknown parameters a, b and kc. The unknown parameters and 
the state s(t) can be estimated in real time, under the earlier stated assumptions 
with no approximation involved, using the following procedure. 

Given the statistics Ls, Ds, X, L9, Dg and 6 from the previous step, say for the 
time index t — 1, proceed as follows. 

1. Using the given parameters c apply the procedure CGEN to update Ls and Ds, 
and generate c and dr 
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2. After a new input u(t) is applied and the succeeding output y(t) is observed 
compose the row vector z acording to (44), place y(t) — Y*(t — 1) into z 0 and 
using dy apply the below described procedure LDFIL to update Lg, D0 and the 
parameter estimates 9. 

3. Using c update the statistic X applying the procedure CFIL to its components Y 
and U. If also kc is estimated update the last colmn of X according to (32). 

4. Multiply the statistic X by the parameter estimates B according to (53) to obtain 
the estimate of the state s(t). 

5. Repeat 1. 

The uncertainty of the estimates is characterized by the covariance matrix (54). 
The variance of the one-step-ahead prediction of the output y(t) is given by (52). 
The variance Q of the white-noise component of the model (13) does not need to 
be known if only the estimates (the conditional means) are of interest. However, 
it is assumed to be constant. 

Remark (a). Into 0(0), D0(O) and Le(0) the prior information about the possible 
values of the estimated parameters can be incorporated. This can be very useful 
when starting a selftuning control. 

Remark (b). The recursive estimation of the parameters 0 derived in this paragraph 

is, actually, nothing else than a least-square regression where z(t) is the regressor, 

y(t) + Y*(t — 1) is the regressant and dy(t) is the weight assigned to the minimized 

square of the residual. 

LD filter 

The modification of the matrix factorization (48) can be performed using dyadic 

reduction. The left-hand side of (48) can be considered as a weighted sum of symmetric 

dyads. In the scheme Fig. 13 each row represents one dyad and its weight placed 

in the most left column. N is the number of estimated parameters, in our case (if 

also kc is estimated) N = In + 2. The empty spaces are zeros which do not enter 

the computation. 

0 0 0 . 0 d„ 

D ,N 

1 

h 
fг 

h 

1 
1 . Ľ . 

1 . . 
~i l • 

1 1 
Fig. 13. Scheme illustrating the application of dyadic reduction to the modification of the 

matrix factorization (48). 

The goal of the algorithm, to achieve the desired form of the right-hand side 
of (48), is to zero all entries ft lying under the one which is the only nonzero entry 
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in the first row when the algorithm starts. Hence, the first row is used as reducing 
in the dyadic reduction. However, not to destroy the upper triangular form of the 
matrix Le it is necessary to start with/y and proceed backwards for i = N, N — 1, . . 1 
until the situation depicted in Fig. 14 is reached. The vector g0, required for the 
updating of the parameter estimates according to (49), appears in the first row 
as indicated. 

0,1 

9,2 

Ď ,N 

1 00,100,2 • • 9Q,N 

0 1 . . , 
0 | 1 . L' • 
0 ~~J 1 
0 *""] 1 . 
0 | 1 

Fig. 14. Reduction of/generates gg in the first row. 

PASCAL procedure LDFIL 

The below listed procedure performs one step of least-square regression with 
weighting of the minimized squares of residuals. It calculates the vector / according 
to (46), performs the modification of the matrix factorization (48) and updates the 
parameter estimates. At the same time it updates LB and D9 in (51) and generates dy 

for (52). The nonstandard types of its parameters are 

TYPE row = ARRAY [0 . . Nmax] OF REAL; 
Matrix = ARRAY [0 . . Nmax] OF row; 

where Nmax is an INTEGER constant chosen with respect to the maximal number 
of the estimated parameters. Since the procedure makes use of the procedure DYDR 
the type row must be common for both of them. 

Parameters: 

Par . . . type VAR row; parameter estimates Par [i] = 6{; must be initialized before 
the first call of the procedure; Par [0] not used. 

D . . . type VAR row; diagonal of Dg extended by dy in D[0]; procedure modifies 
D[0] to cly and therefore D[0] must be restored whenever the procedure 
is called; D must be initialized before the first call of the procedure when 
the large numbers D[i] for i = 1 . . N mean very uncertain prior estimate 
Par. 

L . . . type VAR Matrix; monic upper triangular matrix Le extended by the 
column with index / = 0 where the vector/' can be found, and by the row 
with index i = 0 where the gain vector g'e appears; must be initialized before 
the first call of the procedure including the ones on the main diagonal, 
L[i, i] = 1 for i = 1 . . N. 

z . . . type row; row of processed data, z[0] regressant, z[/],j = 1 . . N, regressor. 
N . . . type INTEGER; number of estimated parameters. 
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PROCEDURE LDFLL(VAR Par, D: row; VAR L: Matrix; z: row; N: INTEGER); 
YAR i,j: INTEGER; 

/ , e: REAL; 
BEGIN 
e:=z[0]; 
F O R / : = 1 T O N DO 

BEGIN 
e := e — z[i] * Par [i]; 

FORj := 1 + l T O i V D O / : = / + z [ j ] * L [ i , j ] ; 
L[i\0]:-=/; 
L[0, (j := 0 
END; 

FOR i:=N DOWNTO 1 DO DYDR (L[i], L[0], D[i], D[0], 0, i, N); 
FOR J := 1 TO NDO Par [i] :=~ Par [i] + L[0, i] * e 
END; 

7. ADAPTIVE AND SELF-TUNING CONTROL 

The previous section gave an unswer to the problem of how to predict the output 
of an observed process one step ahead and at the same time to estimate the state 
of its linear model if the main parameters of the model are not known. Under the 
stated assumption the answer is exact. Unfortunately, the problem of optimum 
control synthesis, minimizing the criterion (5.35) for the control horizon T > 1, 
is much more difficult and the present theory does not yield its exact solution which 
could be practically realized using the present-day computer technique. This is dis­
cussed in the first paragraph of this last section. 

Fortunately, there exists an approximative solution of the given problem which 
is well feasible and appears to be successful in practical applications even when its 
full theoretical analysis is still lacking. It is the self-tuning control, based on the so-
called certainty equivalence hypothesis, discussed in the second paragraph. In this 
concluding paragraph it will be outlined how the above derived algorithms can be 
employed to implement such a control practically, 

7.1. Problem of dual control 

In the previous Section 6 it was derived that, under the lack of knowledge of the 
parameters 6 (6.14), the predictive c.p.d.f. p(y(t) | t — 1; u(t)) is normal with the 
mean value (6.45) and the variance (6.52). The inspection of the above results also 
shows that the statistic 

(1) Sy(t -1) = {X(t - 1), $(t - 1), Lg(t - 1), D9(t - 1)} 
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is sufficient for this c.p.d.f. so that 

(2) p(y(t)\t-l;u(t)) = p(y(t)\Sy(t-l),u(j)) 

Hence, all is prepared for the general method of optimum control synthesis accord­
ing to the Result (5 A). Moreover, as a finite dimensional sufficient statistic (1) 
exists (it exists also for unknown Q) the domain of the Bellman function is of fixed 
and nongrowing dimension. However, when trying to apply the algorithm of dynamic 
programming to this case serious difficulties are met already in the second step. The 
function Fk defined by (5.31) is no more quadratic, neither elementar. Even when it 
is calculated as a multidimensional table its minimization with respect to u(k) is 
no simple problem. These are the reasons why such a control — called dual — is 
unrealistic for practical use. 

The problem of dual control was formulated firstly by Feldbaum [18] but could 
be solved only for the most simple cases. The adjective dual means that such a control 
modifies the control actions, which would be optimal for the known parameters, 
so that it introduces perturbations improving the parameter estimation and thus 
also the future controls. 

7.2. Self-tuning control 

A natural approximation of the optimal dual control is to replace the unknown 
parameters by their point estimates and to perform the control synthesis as if the 
model parameters were known. This is sometimes called certainty equivalence 
hypothesis. Practically it means to combine the algorithm for parameter and state 
estimation described in the Result (6 C) with one of the algorithms for optimum 
control synthesis given in Section 5. However, it also means that the control law 
has to be redesigned when the parameter estimates are updated. There are two 
possible ways how to keep the computational load within reasonable proportions. 

Receding control horizon. The control horizon for which the control law is designed 
is chosen only slightly longer than is the settling time of the process, which is usually 
a priori known with sufficient accuracy. However, then the settling of the final state 
must be heavily weighted in the criterion in order to ensure the stability of control. 

Iterative optimization. Usually better and simpler is to proceed as follows. For 
T-* oo the parameters of the Bellman function, which determines the optimal 
control for the current sampling period, converge to constants (except mw and m0lv 

in (5.44) or mp and mpp in (5.71) in case of program control.) To find this asymptotic 
Bellman function it appears to be sufficient to perform in each control step only 
a very limited numer of optimization steps (just one is usually sufficient) using the 
algorithm of dynamic programming. Such a control strategy is called 1ST (Iterations 
Spread in Time) in [ l ] where it is discussed in more detail. 

When starting the self-tunig control it is advisable to incorporate into the chosen 
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prior probability distributions as much prior information about the controlled 
process as possible. The way how to proceed can be found in [19], 

Time-varying processes 

The control problem considered in this paper has been formulated and solved 
as control of a process which can be described by a linear stochastic model with 
unknown but constant parameters. The resulting controller has the ability to accumul­
ate the information about the controlled process carried by the observed data and 
to use it for automatic tuning of its control law. This removes the by-hand tuning 
of standardly used controllers. 

In many industrial applications the properties of the controlled process vary in time 
and it is required that the adaptive controller be able to track these variations. Then 
it is necessary to suppress the old information in order to make space for the new 
one. The technique of exponential forgetting has been widely used for this purpose. 
A probabilistic interpretation of this technique can be found in [10]. It explaines 
the difficulties which may occur when the standard exponential forgetting is applied 
in a closed control loop. Therefore a new technique of forgetting has been developed 
[20, 21] which removes these difficulties. The identification procedure derived in 
Section 6 provides all probabilistic characteristics which are required for the applica­
tion of these heuristic but rationally based technique also for the models considered 
in this paper. 

When concluding it is appropriate to emphasize that the presented theoretical 
results cannot be applied mechanically. It is the engineer, the control system 
designer, who has to think and to apply the theoretical results adequately to his 
practical problem, considering the assumptions under which the theory was deve­
loped. The theory only can help him in keeping his thinking consistent in complex 
situations and to provide algorithms which make it possible to realize his ideas 
in a reliable way. 
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