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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 5 

TABLES FOR AR(1) PROCESSES 
WITH EXPONENTIAL WHITE NOISE 

JIŘÍ ANDĚL, KAREL ZVÁRA 

A new method was recently proposed for estimating the parameter of the AR(1) process 
with non-negative values. The exact distribution of this estimator was derived for the case that 
the white noise has an exponential distribution. Here we present tables containing the expectation 
and standard deviation of the new estimator. 

1. INTRODUCTION 

Let __t be a non-negative random variable such that EX\ < co. Let Y2, Y3,..., Yn 

be i.i.d. non-negative random variables with a distribution function F having a finite 
second moment. Let Y2,..., Y„ be independent of Xv Consider the AR(l) process 
{Xt, 1 ^ t S n] given by 

(1.1) Xt = &__,_. + Y, (2 ̂  t _g i») 

where b e [0, 1). Bell and Smith [2] proposed this model for investigating non-
negative time series. The parameter b can be estimated by 

b* = min (__,/__•._.). 
2 _ l g n 

Theorem 1.1. The estimator b* has a positive bias. As n -> co, b* is consistent 
if and only if there exist no numbers c, d such that 0 < c < d < co, F(d) — F(c) = 1. 

Proof. See [2]. 

If the condition introduced in Theorem 1.1 is satisfied, then b* is even strongly 
consistent. 

It is clear that the effect of Xx on b* is diminished as time increases. 
The most important case is when Yt has an exponential distribution Ex(a) with 

the density 
f(y) = a-iQ-y/a, y>0. 

Andel [ l ] proposed to consider the model, in which __x ~ Ex\a\(\ — £>)], because 
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in this case EX, is the same as the expectation of the stationary distribution. He 
derived some explicit results. 

Theorem 1.2. Let AT, ~ Ex[a\(l - b)], Yt ~ Ex(a). Then the distribution of b* 
is given by ?(b* < v) = 1 — G(v), where 

G(v) ~(l-b) {[- + (1 - ft)] [»2 + (1 - b) (1 + -)] ... 

. . . [ „« - - + (t - b)(l + „ + ... + t , --3)] . 

.[„«-! +(l _ ft)(i + 0 + ... + v " - 2 ) - b]}'1 

for v ^ b, and G(u) = 1 for v < b. 

Proof. See [1]. 

Critical values of this distribution are introduced in [1]. It was proved in the 
same paper that 

b + «-J(l - b)2 g lb* = b + (n - 2 ) - 1 , 

var b* < 2b[(n - 2)" 1 - n~l(l - bf] + 2(n - 2)" 1 (n - 3)~ ] - n" 2( l - b)A. 

Unfortunately, for b + 0 these inequalities give only very rough bounds for Eb* 
and var b*. On the other hand, simulations show that the estimator b* has con
siderably smaller standard deviation in comparison with the classical least squares 
estimator. If the bias of b* were known exactly, b* could serve even much better. 
However, no explicit formulas are known for the integral Eb* = — $vG'(v) dv. 

Table 1 contains Eb*, Table 2 (var b*)1/2 for b - 0(0-1) 0-9, 0-95 (0-01) 0-99 and 
n = 10(5) 50(50)150 . Eb* and var b* were computed using formulas 

Eb* = b + ft" G(v) dv , 

var b* = 2 tf V G(v) dv ~ 2b jb°° G(v) dv - [J* G(v) dv]2 

and the integrals 
f£° G(v) dv and j£° v G(v) dv 

were calculated numerically. In each case, the interval (b, oo) was written in the form 
(b, oo) = (b, B] u (J5, oo). The constant B (B ^ b) was chosen so that the 
integral over (B, oo) was smaller than 10"6, and the integral over (b, B] was then 
calculated using the Gauss method. 

2. AN APPROXIMATION 

S i n c e u* u , Y> 
b* - b + mm 

2 g f S " X r _ j 

it suffices to consider the distribution of 

(2.1) Z- min J-- . . 
2S(g„ A , _ j 
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Without loss of generality we can assume that a = 1, because the distribution of £ 
does not depend on a (see Theorem 1.2). Denote m = EXt. Since Xlt ...,—"„ can be 
considered from practical point of view as stationary, we have from (1.1) 

m = bm + 1 , 
i.e. 

m = 1/(1 - b) . 

If we substitute m for X,_. in (2.1), we have for £ an approximation 

4PPr = - min Y • 
m 2^ (g n 

Since Y ~ Ex(l) we have min Y ~ Ex(\J(n - 1)). Thus 
2 g t g n 

_. 1 - 6 
EC.ppr = , 

n — 1 

v a r ^ =^^T. 
W ( „ - l ) 2 

The quality of this approximation can be judged using Table 3. The exact values 
are taken from Table 1 and Table 2. 

Exact values Approximate values 

* n Eb* (varè*) 1 / 2 Eb* (varè*) 1 / 2 

0-2 10 0-2824 0-0767 0-2889 0-0889 
0-2 100 0-2080 00079 0-2081 00081 
0-9 10 0-9149 0-0181 0-9111 0-0111 
0-9 100 0-9010 00010 0-9010 00010 

For the practical purposes our approximation can be used in the form 

£b*±b + 1^1, 
n - 1 

( v a r i ,*y/2 ^ I . Z _ _ . 
n - 1 

3. AN APPLICATION 

It was mentioned that Eb* > b. Using Table 1, we can reduce the bias of the 
estimator b*. We can proceed in the following way: 

1. Calculate b*. 
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2. Find b such that Eb = b*; denote this b by b0. 
3. Use b0 as a new estimator. 
To illustrate this approach, we produced a small simulation study. For each value 

of b introduced in Table 4, 100 simulations of the stationary AR(1) process Xu ... 
...,X50 with Y, ~ Ex(l) were produced, Tn the column b* the averages of the corre
sponding estimates are given. The next column s.d. b* contains empirical standard 
deviations. In the column b0 the new estimator is presented, which is calculated 
from values placed the column b*. It was obtained by interpolation in Table 1. 
To compare these results with classical estimators, we introduce also the average of 
the least squares estimates b° and the empirical standard deviation s.d. b°. 

Table 4. 

b b* s. d. b* bo b° s. d. b° 

0 0-021 0-019 0001 -0-008 0-142 
0-5 0-511 0-011 0-501 0-492 0-121 
0-9 0-902 0-002 0-900 0-828 0-103 

Table 4 shows that b0 is more concentrated around b than b*. Further, s.d. b* 
is much smaller than s.d. b°. Thus in the AR(1) processes with exponential white 
noise the new method gives considerably better estimators than the classical least 
squares method. 

(Received January 26, 1988.) 
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