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ON PSEUDO-RANDOM SEQUENCES AND THEIR 
RELATION TO A CLASS OF STOCHASTICAL LAWS 

IVAN K R A M O S I L A N D J A N Š I N D E L Á Ř 

A finite sequence is complex in the sense of Kolmogorov complexity approach if the length of its 
shortest generating program is greater than a prescribed lower bound. Infinite sequences, almost all 
initial segments of which are complex in this sense with lower bounds depending on the length of these 
segments, will be investigated in this paper. The case of interest is that one when such an infinite 
sequence satisfies some stochastical law depending on a function defining the lower bounds in question. 
Having a finite or countable collection of stochastical laws and corresponding collection of functions 
defining lower bounds one could be interested whether there is some other function defining lower 
bounds and characterizing, in a sense, simultaneously all stochastical laws from the given collection. 
Existence of such a function is proved and its properties are analyzed. The case of constructive functions 
defining lower bounds is investigated as well. 

1. I N T R O D U C T I O N AND NOTATION 

With the aim to introduce a notion of randomness a t t r ibutable to particular sequences 
of results two approaches have been suggested and developed. T h e first one, more close 
to the classical paradigma of mathematical statistics, originates from the notion of par
ticular tests for randomness and combines all such tests which are effectively computable 
into a universal one; a sequence (finite or infinite) is defined as random if it passes this 
universal test of randomness (cf., e.g., [1], [2], [5], [6]). T h e other approach defines the 
so called Kolmogorov (algorithmic) complexity of a finite sequence of o u t p u t s by the 
length of a shortest program generating this sequence on a universal Turing machine 
and proclaims a finite sequence as random if this length does not differ substantially 
from the length of the generated sequence itself (cf. [2], e.g.). This definition is stronger 
than the former one in the sense tha t sequences of high Kolmogorov complexity pass the 
Mart in-Lof 's universal test of randomness, but there are sequences of low complexity 
passing this test as well. 

Instead of considering all the stochastical laws (laws of large numbers) comprimed al
together into the universal test of randomness we may be interested in infinite sequences 
obeying some particular stochastical laws and we may try to define, or at least to ap
proximate, sets of such sequences in terms of Kolmogorov complexities of their initial 
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segments. This has been done for the laws asserting the stability of relative frequencies 

of occurrences of particular events or strings of events in long run series of experiments 

[3] and for the law of iterated logarithm [4]. From a purely mathematical point of view, 

the results presented below deal with a possibility to define appropriate one-side approxi

mations for countable joints of classes of infinite sequences of relatively high Kolmogorov 

complexity in the terms of this complexity. The results achieved in [3], [4], [7] show that 

certain particular cases of classes of infinite sequences which we shall investigate below 

can be intuitively but quite reasonably, interpreted by, or identified with, substantial 

par ts of extensions of some well-known stochastical laws. (It means tha t any infinite 

sequence from a given class satisfies some stochastical law and, moreover, tha t majority 

of infinite sequences satisfying the stochastical law is contained in the class.) If we allow 

ourselves to extend such an interpretation or identification also to some other classes of 

infinite sequences investigated in this paper, we can say that the aim of this paper is to 

characterize, or to approximate, again in terms of Kolmogorov complexity and of lower 

tolerance bounds defined by a single function, the set of infinite sequences which are ran

dom with respect to a given set of stochastical laws. Sufficient conditions under which 

such approximations are possible and reasonable are found and corresponding assertions 

are proved. 

The following notation will be used throughout this paper. N = { 0 , 1 , 2 , . . . } will 

denote the set of all nonnegative integers, T will denote the class of all total mappings 

taking N into [0, oo). Consider a finite set-alphabet E and let c = card E > 2. For each 

n € N, E" denotes the set of all rc-tuples of elements of S (the set of all strings or words 

of the length n, in other words said). Set, moreover, S* = ( J ^ l 0 S" , hence, E* is the set 

of all finite sequences (strings, words) over the alphabet S (here E° contains the empty 

string A as the only element). If x S E*, then t(x) denotes the length of x, i. e., C(x) = n 

iff a; 6 E" . Finally, E ^ will denote the set of all infinite sequences of elements of E; given 

S € E " and n 6 N,Sn denotes the initial segment of the length n defined by S. 

Let $ denote the class of all partial mappings from the Cartesian product E* x E* 

into E*. 

2. KOLMOGOROV COMPLEXITY O F FINITE AND INFINITE SEQUENCES 

Let us begin with the following well-known definition. 

Def in i t i on 1. Let x,w € E*, let 0 € # . Then the Kolmogorov (algorithmic) com

plexity Kj,(x\w) of the sequence x, with respect to the a priori information w and with 

respect to ip, is defined by 

K*(x\w) = min {i(p) : p € S*, ^(p, w) = x} (1) 

with m b ( 0 ) = oo. 

Let W = (u>o,tci,. . .) be a sequence of finite strings over E (i .e. , wi £ S* for each 

i) such tha t wn expresses some a priori information concerning the initial segments 
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of the length n of the infinite sequences to be considered below. E.g., u>„ contains 
an information about the length n of these segments or about the value of a function 
depending on this length. Let T = T(w) denote the set of all triplets (ip, f, W) such 
that t/> e * , / G T. 

Definition 2. Given (tp, f, W) € T, a sequence S € Ew is called <V>, / , W)-complex, 
if there exists j £ N such that, for each n > j , the inequality 

I<A$n\wn) > n - f(n) (2) 

holds. Let D(tj), / , W) denote the set of all (tp,f, W)-cotnplex infinite sequences over E. 

3. MARTIN-LOF CONDITION 

With the aim to generalize the well-known Martin-Lofs result (cf. [6]) we shall prove 
that £r=o c" / (n ) < oo implies D(ip, f, W) £ 0; let us recall that c = card E. 

Lemma 1. Let to € E*, ^ € * , r € [0, oo). Then 

card {x € E" : K<,(x\w) < r} < ( c M - l) (c - l ) ~ \ (3) 

where '»•' = min{n : n € At, n > r} . 

P roof. Analogous to the proof of Lemma 2.7 in [1], p. 306. O 

Let B be the minimal cr-field generated by the algebra A of cylinders over E^', let P be 
the product probability measure generated on 6 by the uniform probability distribution 
over E (associating c - 1 to each letter). Then, obviously, 

P ({S e E " : S«w) = «,})= c-<«. (4) 

A function / £ T satisfies the Martin-Lof condition (or: posseses the Martin-Lofprop
erty), if Y^H°=O c - '""' < OO. Let ML C T denote the class of functions from T possessing 
the Martin-Lof property. 

Theorem 1. Let (t/>,/,W) € T. Then £>(t/>,/,W) is measurable. Moreover, if 
/ € ML, then P(D(^,f,W)) = 1, hence, D(tj>,f,W) f 0. 

Proof . Definition 2 immediately implies that 

E " \ D{ip, f, W) = f) Q ( J {S 6 £ " : Sn = x, K+(x\wn) < n - / ( n ) } . (5) 
j=0 »=j * € £ -

For each B 6 !V, n fixed, .r € EN , the set 

Bx,n = { S € S" : <?„ = x, A>(*K) < n - / (n)} (6) 
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is a cylinder, hence, HN \ D(il>,f,W) is measurable due to (5). Moreover, 

p ( U B*>»)= c_n card <x e E": **(*w <n - /(»))> (7) 
so that, using Lemma 1 and the fact that c > 2, we obtain that 

r-/(n)+i (8) 

Due to (5), for each j € N, 

OH-*--
emma 1 and the fact 

p([) BXA < c-" (-'"-'<">" - l) ( c - I)"1 < c-
/(" 

e!v, 

P (E* \ D(V», /, W)) < f; P ( U O - (9) 

hence, for each j € /V, 

P ( E J V \ D ( , A , L W ) ) < c V c - / < " ) . (10) 
n-j 

But / € ML, so that inf {E*=Jc- / ("' : j e N} =0, consequently, 

F'(ZN\D(4>,f,W))=0, (11) 

and the assertion immediately follows. D 

For two total mappings / , g taking N into real numbers, define mappings f+g, f—g 
by setting 

(f+9)(n) = max {/(n) + g(n), 0} , (/-</) (n) = max {/(n) - g(n), 0} . 

The following assertion is obvious. 

Lemma 2. If / € ML, g : N —> R\s total, and if \g(n)\ < K holds for a constant K 
and for all n 6 !V, then (/+</) G ML, (/-</) € ML. 

4. ON CLASSES OF COMPLEX SEQUENCES 

Henceforth, 4> and W are fixed so that we may write D(f) instead of D(^,f,W) if no 
misunderstanding menaces. If Q C T, set D(Q) = Hjgc I"(<7)- For f,g€J-, f < g 
means that / is smaller than or equal to g almost everywhere, i.e. 

/ < g ^ (3 j 6 N) (Vn > j) (f(n) < g(n)). (12) 

If / € T, Q CT, then / -< 0 means that / •< g for each <7 € <J. 
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L e m m a 3 . If / -< </, then D(f) C D(g). 

P r o o f . If D(f) = 0, the assertion is trivial, so let / -< g and let S e D(f). Hence, 

there exists j 0 € At such tha t , for all n > j 0 , f(n) < g(n) holds, at the same time, 

5 € D(f) implies tha t there exists j \ € At such that K^,(Sn \ wn) > n — f(n) for each 
n > j \ - So, n > ma,x{jo,jx} implies K^,(Sn\wn) > n — g(n), hence, S € D(g) and the 

assertion is proved. D 

The following corollary immediately follows. 

Corol lary 1. Let / € f, Q C T. If / -< Q, then D(f) C D(Q). If, moreover, 

/ € ML, then P(D(f)) = 1 and P(D(Q)) = 1. 

Under the interpretation suggested and briefly discussed in the introductory part of 

this paper , each set D(g), g € Q, corresponds to some "stochastical law", or "law of 

large numbers" , hence, if / -< Q, then each sequence from D(f) obeys all these laws 

corresponding to functions g € Q. In other words, the problem to describe or at least 

to approximate, in an effective way, the set of infinite sequences obeying all the laws 

corresponding to functions from Q is reduced to that of finding a function / such that 

f <Q and / € ML. 

There is an analogy between this situation and that occurring when the so called 

universal Martin-Lof 's tests are applied. With the aim to develop this analogy in more 

detail and to express the properties of the sets D(f) and D(Q) in terms of recursion 

theory we introduce and prove the following two lemmas and a theorem resulting from 

them. 

Let /"sum = {/ € T: Yln°=of(n) < °°} be the class of all summable functions from 

T. 

L e m m a 4 . Let H C Tmm he finite or countable. Then there exists k € .FSU1U such 

tha t h -< k for each h 6 H and 0 < k(n) < 1 for each n € At. 

P r o o f . Let us arrange the set H into a sequence H = (ht,h2,...), let h0 € fmm be 

such tha t 0 < / i0(") for each n 6 At and . C ^ o ' l ° ( n ) < 1 a n c l let us join h0 to H. Set, 

for each m € At, 

£m = ma.x{h0,hu...,hm}. (13) 

Obviously, for each m € At, 

f;u«)<f;(EM'o)<oo, (H) 
n=0 u=0 \ j = 0 / 

so tha t {£0, f\, • • •} C .Fsuiir Moreover, for each in € At, hm -< £m. Hence, in order to 

prove the first par t of the assertion, if suffices to find k e 5Sum such that £m < k for each 

me At. 
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Now, let us construct, by induction, an increasing sequence n0,nu ... of integers such 

tha t , for each jn 6 N, 

f ] U n ) < 2 - m . (15) 

In fact, take 771 = 0 and set »»0 = 0. Then t0 = h0 and (15) immediately follows 

from the declared properties of h0. Having chosen «m- l , there exists j € N such tha t 

J2T= <tm(n) < 2 - ' " holds, hence, set n,„ = max{ji ,nm_i + 1}. Now, (15) evidently holds. 

Setting k(n) = tm(n) for each m € A', n,„ < n < n,„+\ — 1, we easily find tha t 

£>(»)=£ £ ^n)^i> (ie) 
n=0 m=0 n=nm 

i .e. , k € /"sum, k(n) < 1 for each n G N. As h0(n) = 4)(n) < i t(n),0 < fc(n) holds for 

each n € N. 

Take jn € N, n > nm. Then there exists q € N such tha t n , < n < n , + ] — 1. 

Evidently, q > m, so that 

k(n) = t„(n) = max{ /7 0 (n ) , f t , ( jx ) , . . . , f t , (n ) )> (17) 

> max{A 0 (»)»«i (») . - • - i M « » = 4 . W , (18) 

hence, for each n > n m , £m(n) < fc(n), so that <?,„ < k holds. The assertion is proved.D 

L e m m a 5 . Let Q C ML be countable. Then there exists / 6 ML such that f<Q. 

P r o o f . Arrange Q into a sequence Q = (g0,g\, • • •) and set, for each 

jn, n € N, hm(n) = c~9"' ("l The set H = {h0,hu...} satisfies the condition of 

Lemma 4, hence, there exists k € / , ,»« satisfying the assertion of Lemma 4. Set 

f(n) = - logc(<t(n)), then 0 < f(n) for each n'N and ^ l 0 c - / ( " » = T,Z=ok(n) < °°> 

so that / G ML. 

Let g ~ Q, let g = gm, recalling the proof of Lemma 4 above we can easily see that 

there exists j € A' such that , for all n > j , hm(n) < k(n). Consequently, g(n) = gm(n) = 

— logc hm(n) > — logc k(n) = f(n) holds for each n > j as well, so tha t f •< g and f <Q 

follow. D 

The following s tatement immediately follows from Corollary 1 and Lemma 5-. 

T h e o r e m 2. Let Q C ML be countable. Then there exists / € ML such that 

D(f)CD(Q) and P(/?(/)) = 1 . 

Def in i t ion 3 . For each m € A , let dm(n) = m for all n € A . A class Q C . f is 

called d-closed, \i g-dm € 5 for each o 6 G, m € A. 

E.g. , the class ML is (/-closed. 



On Pseudo-Random Sequences and Their Relation to a Class of Stochastical Laws 389 

T h e o r e m 3 . Let Q c T be d-closed and g € Q. If <7 € Q is not bounded, then for 

each 5 € D(Q) 

lira sup {Kj,(Sn | w„) - (n - <7(n))} = oo. (18) 

If limn_oo <7(n) = oo, then for each S € £>(<7), 

Jim {A^(Sn I wn) - (n - g(n))} = oo. (19) 

P r o o f . Let <7 € 5 be unbounded. Then there exists an increasing infinite sequence 

n 0 , n i , . . . of integers such that lim,_oo <7(n,) = oo. Fix m € N, there exists i0 g N such 

tha t , for each i > i0, (g—</,„)(«.,) = t~(n,-) — m. Moreover, #—dm £ Q, so tha t there 

exists j \ € A such tha t , for each n > j \ , 

K*(Sn\wn)>n-(g-dm)(n). (20) 

Let i\ be such that j i < n „ . Take j > ma,x(i0,i\), then 

!^(5„,kn,)-(n,-(ff(n,))= (21) 

= K^(S,H | wn,) - (n. - (g~dm) (n,)) + m > m, 

and (18) is proved. The case when lim„JOo<7(n) = oo can be converted into the just 

proved one by setting n, = i for each i 6 At. • 

The importance of the assertion just proved consists in the fact tha t , as can be easily 

seen, the condition of rf-closeness is satisfied by a number of theoretically and practically 

important classes of functions, e.g., by the class of all recursive functions, by the class 

of primitive recursive functions, or by the class of elementary functions. 

L e m m a 6. Let Q C ML be d-closed. Then for no / € Q the relation f <Q holds. 

P r o o f . Let / € Q, then Y^=nc~'("' < °°> s o t n a t t n e r e exists m 6 At such that 

f(n) > 1 for each n > m. Consequently, (f—d\)(n) = f(n) — 1 < f(n), hence, / -< f—d\ 

does not hold. However, Q is d-closed so that f—d\ £ Q, hence, f <Q cannot hold. 

The following assertion is obvious. 

L e m m a 7. If <7 € ML, then linin-oo g(n) = oo. 

T h e o r e m 4 . Let Q C ML be d-closed and countable. Then 

(a) there exists / € ML such that D(f) C D(Q) and P(D(f)) = 1, P(D(Q)) = 1, 

(b) there is no / e Q such that / -<Q, 

(c) if <7 € Q and S € D(Q), then (19) holds. 
P r o o f . The theorem just cumulates the assertions proved above. O 
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5. RECURSION-THEORETICAL PROPERTIES OF CLASSES D(Q) 

The ideas and results of this chapter take profit of the classical theory of recursive 

functions and can be easily relativized by introducing an oracle A. 

Let us denote by MLR the set of recursive rational-valued functions possessing the 

Martin-L6f property. The following two assertions are evident. 

L e m m a 8. MLR is a (Z-closed and countable subset of ML.. 

Corol lary 2. All the three assertions of Theorem 4 hold for Q = MLR. 

A short reconsideration of the result just achieved from the viewpoint of the theory 

of Martin-Lof tests seems to be useful. A more detailed insight into our model shows, 

tha t this model is equivalent to a generalized notion of Martin-Lof test resulting when 

the condition P(Vm) < 2~ m for each component Vm of the test is replaced by a more 

general condition P(Vm) < 2~' (m>. An analysis of the proof of the assertion claiming 

the existence of a universal Martin-Lof test [1] yields that under the generalization just 

introduced such a universal test exists, if the function / belongs to the class MLRE of 

functions which will be defined below. Theorem 4 and Corollary 2 express the fact just 

mentioned in the terms used in this paper. 

A function / 6 Tsm,, is called effectively summable if there exists a recursive function 

ascribing to each positive rational number r an integer m such that 53^Lm f(n) < r. For 

each / £ " define the function Cj by Cj(n) = c~/(">. By MLRE denote the class of all 

recursive rational-valued functions / such that Cj is effectively summable. As can be 

easily seen, if / € MLRE, then / possesses the Martin-Lof property. The following two 

assertions are obvious. 

L e m m a 9. MLRE is a countable and fZ-closed subset of ML. 

Corol lary 3 . All the three assertions of Theorem 4 hold for Q - MLRE. 

T h e o r e m 5 . Let Q C MLRE be an indexed set of functions, let there exist a recursive 

function G(-, •) such that , for each g € G, there exists i £ N with the property 

G(i, •) — g- Then a function / € MLRE such that / -< Q can be effectively found. 

P r o o f . For each g € Q an integer-valued recursive function g can be effectively found 

such that \g(n) — g(n)\ < 2 for each n £ N. Evidently, each g is effectively summable. 

The set {Cg : g € <?} is a recursive set of effectively summable functions and we may 

apply the proof of Lemma 5 above to this set and to the function h0(n) = c~n~i; all 

steps of this proof are effective. So we construct a function k 6 ^FSum such that C-9 < k 

for each g € Q, k is a recursive and effectively summable rational-valued function and, 

for each ?i € N, k(n) = c~*("' where £ is a recursive function. Setting / = £—d2 we can 
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easily see that / is a recursive function such that C/ is effectively summable and / -<Q. 

D 

Corol lary 4. Let Q be as in Theorem 5. Then a function / g M L R E can be 

effectively found such that D(f) C D(Q) and P(D(f)) = 1, P(D(Q)) = 1. 

(Received February 6, 1991.) 
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