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results on representation of generalized Toeplitz and Hankel operators as compression of 
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The classical Toeplitz operator may be characterized as a bounded linear operator 

A on H2 satisfying the relation A = S*AS where S is the (forward) shift operator on 

H2. To identify the symbol it is possible to proceed as follows: it suffices to represent 

A as the compression to H'2 of an operator Y on L2 which satisfies Y = V*YV where 

V is the shift operator on L2. Since Y commutes with the shift, it may be identified 

with the operator of multiplication by a suitable function / G L°°. The dilation Y 

of A is easily seen to be uniquely determined by the requirement that Y be equal to 

V*YV; these observations yield a construction of the symbol in a natural manner. 

Not long ago, Sz.-Nagy and Foias. realized that, replacing the shift by a contraction 

T acting in a certain Hilbert space ,/f, the relation A = TAT* defines a class of 

operators on Jf with properties analogous to those of Toeplitz operators. In analogy 

with the classical case it is natural to examine dilations Y of A satisfying the relation 

Y = UYU* where U is the minimal isometric dilation of T. The operator Y may 

then be considered as a natural generalization of the notion of symbol. 

A study of the analogous problem for Hankel operators, undertaken by P. Vrbova 

and the author, revealed a surprising fact. In order to obtain a natural extension 

of the classical notion of symbol for operators of Hankel type and a corresponding 

analogy of Nehari's theorem it was necessary to study liftings of intertwining relations 

of the form A T ; = T2X. The classical Hankel operator may be characterized as a. 
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bounded linear operator X of H'2 into H'l which intertwines the forward shift on H2 

and the backward shift on Hi. 

X(V\H'2) = (V\HlyX 

where V is the shift operator on L'2 = ,//'2 © ,/f2. The problem is to construct a 

dilation Y: Jf\ -+ J/2 satisfying YU{ = U2Y where U\ and U2 are respectively the 

minimal isometric dilations of Ti and T2, acting on X\ and J ^ respectively. In the 

case of Toeplitz operators no additional conditions were necessary for the existence 

of a lifting; surprisingly enough, this is no more true in the case of the relation 

XT{ = T2X; a further restriction must be imposed on X to guarantee the existence 

of a lifting; the difficulty lies in the fact that this additional condition is trivially 

satisfied in the classical case so that its meaning only manifests itself in the general 

situation. 

The additional assumption which ensures the validity of an analogy of Nehari's 

theorem appears in the form of a boundedness condition to be imposed on A': 

( j r A i , A a ) < j 8 | P ( i « i ) A i | | P ( * ) f t B | 

the P(S?i) being the orthogonal projections in the space Xi onto the unitary part 

of M~i in the Wold decomposition of {/;. The authors of [2] called this condition 

^•-boundedness. 

In the present note we intend to sketch an approach to the study of generalized 

Toeplitz and Hankel operators based on factorization, reducing in this manner the 

problem to the particular case where T{ is an isometry and T2 a coisometry. (This 

will become evident after the perusal of the comments following lemma 2.4.) As 

opposed to [1] and [2] we obtain a considerable simplification of the proofs, in the 

Toeplitz case explicit formulae for the symbol. 

1. T H E CHARACTERISTIC RELATIONS FOR T O E P L I T Z AND H A N K E L 

We begin by replacing the forward and backward shift by an isometry and a 

coisometry respectively. 

P r o p o s i t i o n 1.1. Let S9. be a Hilbert space, & a closed subspace of'&?.. Let V 

be a coisometry on 0f, such that & is invariant with respect to V and V\&> is an 

isometry. Suppose that the smallest V reducing subspace of :J? containing ,'^ is yrf 

itself. Denote by P the orthogonal projection of $ onto 3?. Then 

1° PV* = (V\&>)*P 
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2° V is unitary 

3° (I - P)Vnx -> 0 for every x 6 _?. 

P r o o f . For as e « ; l i e _•», we have 

(V*_,ft) = (_,V/i) = (P_,Vft) = ( P _ , ( V | ^ ) _ ) = ((V\<?)*Px,h). 

Thus I7* is a lifting of (V|_P)*; this proves 1°. Since Sf. is the closed linear span of 

elements of the form V*kh, k nonnegative, h _ 3?, it suffices to prove the identity 

V*Vx ~ x for these elements. For k = 0 we use the isometry of (V\&>). Since 

(V\.9>)* (V\i?)h = h for h e &> we have PV*Vh = h for each h 6 &. Since 

\h\ = \PV*Vh\ ^ |V*V/l| ^ \h\ we have the equality |PV*V_| = |V*V/i| whence 

PV'Vh = V*Vh so that h = PV*Vh = V*Vh. If k > 0, we use the identity 

VV* = 1. Thus V*V • V*kh = V*VV*V*k-lh = V*kh. This completes the proof 

of 2°. 

The operators (/ — P)Vn being equibounded it suffices to prove 3° for elements 

from a dense set. If _ is of the form V*kh with h € J0* then Vnx will be in _P as 

soon as n > fe; thus (I - P)V"x = 0. • 

The following proposition shows that an operator Y £ D(iif.) which commutes 

with V may be recovered from its compression to _P. 

Propos i t ion 1.2. Suppose Y 6 B(&) commutes with V. If X is the compression 

to &> ofY then 

Y = \imV*nXPVn 

in the strong operator topology. The compression satisfies the identity 

(V\&)*X(V\&>) =x. 

P r o o f . The first assertion is the consequence to the following two identities 

y _ V*nPYVn = V*nPLYVn = V*n(PJ-Vn)Y 

V*nPYVn = V*nPYPVn + V*nPY(PxVn). 

The second assertion is a consequence of 1° in Proposition (1.1). Indeed, 

(v\9>)*x(v\&>) = (V\&>)*PYV\@> 

= PV*YV\&> = PV*VY\& = X. 



For the rest of the present chapter we shall consider the following situation. 
Suppose we are given two triplets 

tfu&uVi 

such that Vi is unitary on &+ and ^ is a closed subspace of 8$i invariant with 
respect to Vi. Furthermore we assume that the smallest Vi reducing subspace of :#', 
containing &>i is the space £#i itself. 

Definition 1.3. An operator X: iP\ -+ 2?2 is said to be of type T if 

X = (V2\^2yX(V\\^\); 

observe that (V\\&>\) is an isometry and (V^l^)* a coisometry. 

Proposition 1.4. Suppose Y: 3f.\ —> 0$2 satisties YV\ = V2Y. Then X = 
P2Y\&>\ is of type T and 

Y = UmV2
nXP\Vn 

in the strong operator topology. 

Proof . Using 1°, we obtain 

(V2\&2YP2Y(V\\&>\) = P2V2*Y(V\\0>\) = P2YV\(V\\&\) = P2Y\£?\. 

The second assertion is a consequence of the following identities 

Y - V2*
nP2YP\V\ = Y - V.rP2YVn + V2*

nP2YPfV\n 

= V*nYVn - V.rP2YV\n + V2*
nP2Y(P\±V1

n) 

= V2*
nPi-YV\ + VlnP2Y(Pj-V\) 

= V2*
n(P2^VnY + V2*

nP2Y(Pi
lV1

n). 

D 

Proposition 1.5. Conversely, given X: £P\ -> &>2 oftypeT, there exists exactly 
one Y: e?.\-+ 8?,2 such that YV\ = V2Y and X = P2Y10»\. The sequence V2*

nXP\ Vn 

is convergent in the weak operator topology; its limit Y satisfies YV\ = V2Y and 
X = P2Y\0>\. Furthermore, \Y\ = \X\. 

Proof . Given nonnegative integers p,q and two elements h\ £ &\,h2 6 &>2, 
consider an n > p + q. 

(V2*
nXP\V\ • V\-h\,V.ph2) = (XP\Vrph\.V2

n-qh2) 

= ((v2\^2y
n-«x(V\\^\)n-ph\,h2) 
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In order to evaluate the last expression we distinguish two cases. If p - q = t ^ 0 

then n — q = n— p + t and the scalar product equals 

((V2 |^2)*<Xfti,ft2). 

If q - p = t > 0 then n -p = n — q + t and we obtain 

(x(vi|.^irfti,ft2). 

The operators V2*
nXPiV" being equibounded and the sequence being stationary for 

large n, this proves the convergence. The limit operator Y satisfies, for hi £ t'>V 

and h2 € i^2, 

(Yft1 ,ft2)=lim(V2*nAPiV1
nfti,ft2) 

= l im(XPiY 1
n f t i , (Y 2 | ^ 2 ) n f t 2 ) 

= Um((V2 |^2)*"AY1
nfti ,ft2) 

= (Xfti,ft2). 

D 

The preceding propositions establish a one to one correspondence between opera

tors Y: Sfi -+ itf-i satisfying 

Y = K2*YVj 

and operators A : &>\ -> SP2 satisfying 

x = ( Y 2 | ^ i
2 ) * A ( y i | ^ i i ) . 

This correspondence is linear and isometric: A is the compression of Y 

X = P 2 Y | ^ i 

and Y is the limit in the strong operator topology of the sequence 

yrApvy. 

Definition 1.6. An operator X: &"i -4 3?2 is said to be of type H if 

x(vl\^i) = (v2\ip2yx. 

Proposi t ion 1.7. Suppose Y:Mi ->• @2 satisfies 

YVi = V.;Y. 
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Then the compression X = P2Y\£?>\ is an operator of type H. Conversely, for each 

operator X: @'\ -+ i?2 of type H there exists a Y : <Jt\ -» V?2 such that Y V3 = V2Y. 

\Y\ = \X\ and X = P2Y\&\. 

P r o o f . Let X be the compression of an operator Y: i%\ —> S9-2 with YV\ = 

V2Y. Then, using 1° of Proposition 1.1, 

x(Vi|^»i) = p 2 y v ! | ^ i = p2v2*Y |^i = {v2\&2yp2Y\<?\ = (v2|^>2)*x 

Conversely suppose X: &\ -* i^2 satisfies 

( V 2 | ^ 2 ) * X = X ( V i | ^ i ) . 

The minimal isometric dilation of ( V ^ i ^ ) * being V2* o n ^ 2 , the commutant lifting 

theorem yields the existence of an operator M : 0s\ -> i^2 and such that 

M ( V i | ^ i ) = V2*M, | M | = |A'| 

P2M = X. 

Now consider arbitrary elements h o , . . . , h„ in iy>\. Then 

VJ V2
kMhk = V2" V^ V2"

1-kMhk 

= V?M VJ V ; / -% = V2"MV7 £ V'-fcj 

whence 

|VJV2
fcMh,|^|M||V;v7l7,t|. 

It follows that there exists a linear mapping Y of norm ^ |A"| such that 

YVikh = VkMh 

for every k ^ 0 and every h 6 &\. Let us prove that Y\\ = V2Y. It suffices to 

prove 

yViVj**h = v2*yVj**h 

for every h E 9*\ and every k ^ 0. For k = 0 the relation to be proved reduces to 

MVih = V2*Mh. 

If k > 0, we have 

yViVj**h = yVj**-1h = v2
k~xMh = \qv2

kMh = v2*yv1*
fch. 
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As it could be expected, the correspondence between an operator Y: t%\ —> ^ 2 

satisfying YV\ = V£Y and its compression is many to one. There is only a consid

erably weaker analogy of (1.5) linking symbols and their restrictions. 

R e m a r k 1.7. There is a one-to-one correspondence between operators Y: 

<%\ -> 3%2 satisfying 

YV\ = V2*Y 

and operators M: Z?\ -* £#2 satisfying 

M(V\\3»\) = V2*M. 

y is determined by its restriction to & 

Y = KmV2
n(Y\&>\)P\V? 

in the strong operator topology. 

P r o o f . In view of the cquiboundedness of the operators V2YP1V" it suffices 

to prove the convergence for elements of a dense set. Suppose x = Vikh for some 

k J: 0 and h € &\. If n > k then 

V\ • v\ 

= V2
kYh = V2

k(Y\&>\)P\V£ • V{kh 

= Vk(Y\&>\)P\V\kx 

a 

In particular, every operator M : &>\ -> £ff.2 satisfying M(\\\2?{) = V2*M admits 

exactly one extension Y: £%\ -> ^?2 for which 

YV\ = y2*y 

Clearly |K| = \X\. 
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2. G E N E R A L I Z E D T O E P L I T Z AND H A N K E L OPERATORS 

Def in i t ion 2 . 1 . Suppose Ti and T2 are two given contractions on the Hilbert 

spaces Jri?\ and Ji?2 respectively. A bounded linear operator X: 3%\ -> JP2 is said to 

be generalized Toeplitz if 

X = T2XT{, 

generalized Hankel if 

XT{ = T2X. 

Denote by Ui (acting on J(f{) the minimal isometric dilations of T; respectively. 

The problem to be treated in this section is the following: under what conditions 

may A' be represented as the compression 

X = P(J%)Y\jgi 

of a bounded linear operator Y: Jif\ —> JW2 which satisfies 

Y = U2YU{ 

in the Toeplitz case or 

YU{ = U2Y 

in the Hankel case. 

If we agree to call Y a symbol for X, the following observation shows that, in a 

manner of speaking, symbols are essentially operators from M\ into S?,2, the Mi being 

the unitary part of ^ in the Wold decomposition of U,;. 

L e m m a 2.2. Suppose Y': J^x —> Jtq satisBes one of the relations 

(T) Y = U2YU{ 

(H) YU{ = U2Y. 

Then Y = P{&2)YP{&i). 

P r o o f . In the case of the relation T we have 

YUjU!* = U2YU{U\U{ = U2YU{ = Y 

U2U;Y = U2U;U2YU{ = U2YU* = Y. 
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For the relation H 

YU^U; = U.^YUl • UiUt = UZYUi = Y 

U2Ur2Y = U2U2U2YU = U2YUi = Y. 

Replacing, in each of the relations 

YI\U; = Y, U2U;Y = Y, 

the isometries by their n-th powers and passing to the limit, the proof follows. D 

A bounded linear operator Y: X\ —> Jf2 with Y = P(Sf2)YP(Sfi) satisfies the 
following boundedness condition. For arbitrary fcj G Jt\,k2 e ,Jf2 

\(Ykuk2)\ ^ \Y\ |P(^i)fci | |F(*2)A;2|; 

this estimate is stronger, than boundedness in general—this is why the authors of [2] 

called it ^-boundedness. 

L e m m a 2 .3 . Let Jf be a Hilbert space, T a contraction on Jf. We denote by U 

the minimal isometric dilation ofT acting on Jf and by Sf the U-reducing subspace 

ofX on which U is unitary. Set 3? = (P(Sf)Jf)~. Then 

1° Sf= ^^(Sfnjr-1) 

2° P(0»)h = P(Sf)h for h 6 Jf 

3° P(Jf)P(S?) = P(Jf)P(X) 

4° U*mP(Sy>)h = P(Sf)U*mh for h e Jf' and m ^ 0. 

5° S7> is invariant with respect to U* 

C° Sf. is the smallest U reducing subspace containing S?. 

P r o o f . If x e Sfe Sf then (x,h) = (P(Sf)x,h) = (x,P(S>>)h) = 0 for every 

h e JT whence x e SfnjfL. It follows that Sf.QS? C iifnJfx- On the other hand 

suppose x e(Sfn Jfx) and x L(Sf.Q&>). For each h e Jf 

(x,P{@)h) = (P(Sf)x,h) = (x,h) = 0 

since x e Jfx. It follows that :?: 6 Sf, x _L S?, and x L Sf. O -^ whence x = 0. 

Given h € Jf', we have P(Sf)h 6 Sf. To show that h - P{S$)h _L & it suffices to 

show that (h - P(Sf)h,P(Sf)h') = 0 for every /?' € Jt. This, however, is obvious. 

Using 1°, wc have 

p(jf)P($t) = P(,/f)(P(s?) + P(sf n jfx)) = P(Jt)P(9>) 
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Since U*mh 6 Jf for h e 3tf an<fm ^ 0 it follows from 2° that 

U*mP(&)h = U*mP(3>)h = P(.<%)U*mh = P(g»)U*mh. 

The implication 4° —> 5° is immediate. To prove 6°, denote by M the U reduciu 
subspace of £?• containing 2?. Given any p, we have 

P(^)Uph = UpP(^)he.//' 

whence @, = P(@)X C J/.. C 

Lemma 2.4. Let T be a contraction, U its minimal isometric dilation. Sc 
A = P(@)\je, & = (P(^)JT')-. Then 

AT* = (U*\i?)A 

TA* =A*(U*\L7>)*. 

Proof . 

AT*h = AU*h = P(@.)U*h = U*P(.L#)h = U*Ah = (U*\.9>)Ah. 

The second relation follows by taking adjoints; it is instructive, however, to prow 
it directly. For A*: 0» -* Jf we have A* = (P(@)\jt>)* = P(J47)P(@)\3* = 
P(Jf)\&>. For p 6 P? we have 

TA*p = TP(JT)p = P(Jf)Up = P(,%')liP(.%>)p 

= P(jr)P(tf)Up = p(jf)(P(i9>) + p(@c\.ycL))Up 

= p(jr)P(t/>)uP = P(j?)(u*\t?)*p 

= A*(U*\37>)*p. 

c 

Lemma 2.4 makes it possible to reduce the study of generalized Toeplitz and 
Hankel operators to the case where T{ is the isometry [/? | !?\ and T2 the coisometry 

(u;\&2y. 
We shall need the following factorization lemma. To the best of the author's 

knowledge this lemma appears first in [2], 

Lemma 2.5. Suppose M{, ,y£2, .'t(\, S2 are two Hilbert spaces, T: ,/f\ —> 3%%, 
Bi : JV] -+ .//} ,B2:Jf2-> y//2 bounded linear operators. Suppose that 

\(Thl,ha)\^\Bihl\\Bih2\ 
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for all hi E J%i,h2 6 $?i- Then there exists a contraction T0: J£\ -> J£2 such that 

T = B2T0BI 

.41---*^ 

P r o o f . See [2]. D 

Theorem 2.5. Suppose Ti e B(J%[) andT2 e B(JP2) are two given contractions, 

V\, Lt2 their minimal isometric dilations acting on X\,X2 respectively. Suppose X: 

Jg[-+ J% satisfies 

X = T2XT*. 

Then (Xhuh2) ^ \X\ \P(&\)hi\ \P(^2)h2\. There exists exactly one Y: Xi -> X2 

such that. 

Y = U2YU{ 

P(Sfi2)Y\j?{ =X. 

P r o o f . Given hi £ Jf\, h2 6 J^2 and a natural number n, we have 

(Xhuh2) = (TfXTFhuha) = (XTrhuT.rh2) 

so that 

i(A7tl,/i2)i < \x\ \Trhi\ \T.rh2\ = \x\ \v^vrhi\ murh2\ 

and, passing to the limit, 

| ( X / l l , / . 2 ) K | * | | P ( ^ l ) A l | | P ( ^ 2 ) f t 2 | . 

It follows that there exists X„ : 2?x -> ^»2 such that A" = AJXoAi and |A'0| ^ |A"|. 

The relations stated in the preceding lemma yield the identity 

A*2X0A1 = T2A%X0A{Tl = Al(Vt\&2)*Xo(V{\&x)Ax 

This gives, on 2?\, the identity 

A*2X0 = A*2(VZ\&>2)*Xo(VZ\&>1). 



Ul\!?l (CI2'|đ»a)* 

-<^2 

•92 

• Sfái 

J f l -JГ 2 

Since A2 is injective on ̂ 2 > the closure of the range of A2, this identity implies 

Xo = (u2*\&2yxQ(u;\&i) 

Setting Vi = U?\3?i, we now apply Proposition (1.5). 

It follows that there exists an operator C: 0%i -» i^2 such that 

C = V2*CVi 

P(9>2)C\!?i=Xo 

\C\ = \X0\ = \X\. 

Set Y = CP{WV). We prove first that Y = U2YUf. Indeed, 

U2YU* = U2CP(@I)UI = U2CUIP(M{) = v;c\\p{Sf,) = CP(@I) = Y. 

To see that the compression of Y is X, we argue as follows 

P(M)Y = P(jr2)CP(@i) = P(Jf?2)(P(&>2) + P(@2 0 J«|-))CP(.#i) 

= P ( ^ 2 ) P ( ^ 2 ) C P ( ^ i ) . 

When applied to an element h\ £ 3V\ this operator identity yields 

P(Jf2)Yhi = P(M)P(&>i)CAihi = P(je2)X0Aihx = AlX0Aihi = Xhx. 

Uniqueness follows from the fact that an operator satisfying the Toeplitz relation 
Y = U2YU{ is fully determined by its compression to t^i, &2. • 

Theorem 2.6. Suppose X: J?i —> Jfii is a bounded linear operator. Then those 
are equivalent: 
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1° there exists a bounded linear operator Y: X\ -> <X2 such that YU* = U2Y, 

\Y\ ^pandX = P(Jf2)Y\j^ 

2° XT* = T2X and | ( X h i , h 2 ) | < /3 |P(i^i)hi | | P (^a )ha | for all hi £ J f i , / i2 £ .*!,. 

P r o o f . To see that 1° implies 2°, use lemma (2.2). Since Y = P(^2)YP(^\) 

we have ( X h i , h 2 ) = (Yhuh2) = (P(@2)YP(@i) h i ,ha) = ( V P ( « i ) h i , P(^a)Aa) 

whence 

K X h i . / ^ l ^ / J l P ^ ^ i H T ^ M -

Furthermore, A T ; = P(Jf2)YU*\j?i = P(J€2)U2Y\3^i = T2P(.yS2)Y\j% = T2X-

Now assume 2°. The second assumption together with lemma (2.6) imply that 

there exists a C0: 0>i -> iJ*2 such that X = A2C0.4i and |C0 | ^ ji. Furthermore, 

A\Co(U*i\&i)Ax = A2C0AtT; = XT* = T2X = T2A*2C0Ai = A*(fJ2*|^2)*C0A i . 

We have thus, on &>i, the identity 

A*C0(U*\&i) = A*(U*\0>2)*Co. 

Since A2 is injective on the closure of the range of A2, in other words on i?>2, it 

follows that 

Co(U*\&>1) = (U*\9>2yCo. 

U'\S>i/* 
ð»l 

C0 

(Щ\ă>iГ 

+ i?2 

\AІ 

җ-

Жi • җ 

Since C 0 is of type H, Proposition 1.7 yields the existence of an operator C: 

&i -» ,^ 2 such that C(U*\@i) = U2C on A , | C | = | C 0 | and P ( ^ 2 ) C | ^ > i = C 0 . 

Now we prove an operator identity: 

p(je2)CP(m) = P(je2)P(2?,2)cp(^) 

= P(^a)(P(^a) + P(^2 n J S " ) ) ^ * , . ) 

= P(30>2)P(92)CP(®i). 
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When applied to h e Jif\ this operator identity yields 

P(Jf_)CP(3>\)h = P(Jt_)P(^2)CP(^\)h = P(J/2)C0A\h = A_C0A\h = XI,. 

Now define Y: J__ -¥ S?._ by the formula Y = CP(@_). The preceding identity 

shows that the compression of Y is X. It remains to show that U2Y = YU*. This 

is immediate, since 

U2Y = U2CP{S$i) = CU{P{®_) = CP(S?.\)U{. 

The norm it Y is bounded by ft since 

\Y\ = \CP(&\)\^\C\ = \C0\^ft. 

a 
We conclude with a few comments on the condition of ,^-boundedness. In the 

case of the classical Hankel operator, we have 

jfi = H2, 7] = S* 

Jfi_=H2_, T2 = (V*\Hl)* 

where V denotes the multiplication by z on L2 and S = P+V\H2. Thus U\ — V" on 

L2 and U2 = V on L?. It follows that both U\ and U2 are unitary so that both P(af\) 

and P(S?,2) are identities on L2 and the condition of ^"-boundedness is automatically 

fulfilled. 

To show that an operator X satisfying XTf = T2A" may fail to possess a dilation 

Y with YU\ = U2Y it suffices, by Theorem (2.6), to produce an example of a nonzero 

X with XT\ = T2X and such that either £$\ or S$2 is zero. 

If T is the zero operator on jV then U is the shift operator on H (__°) so that 

St = 0. It follows that, in the case that T\ and T2 are both zero operators on jf[ and 

JV2 respectively, any operator X: 3_\ -> //&_ is generalized Hankel and X cannot be 

^ -bounded unless X = 0. 

E x a m p l e . Consider two Hilbert spaces JV\ and .<//, and define T\ to be zero 

on Jif_ so that U\ is the shift operator Si on H2(J/'\). 

Denote by S the shift operator on H2(J/) and set ^ ° 2 = H2(J/) and T2 = S*. 

Thus U_ equals V2 on L2(y//). Let X be any nonzero operator from Jff_ into ,//2 

with range within ^ # . It follows that 

T2X = S'X = 0 so that T_X = XT\. 

If Y: H2(JT\) -+ T2(.///) satisfies Y = V2YS* then, for each y 6 / / 2 ( JT i ) , 

|y»| = |v?Ysn/l < IY| |5r»| -> o. 
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