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1. INTRODUCTION 

The concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh 

in his classical paper [7]. Subsequently several authors have applied various basic 

concepts from general topology to fuzzy sets and developed a theory of fuzzy topolog

ical spaces. The concept of a-compactness for topological spaces has been discussed 

in [5]. The purpose of this paper is to introduce and study a-compactness for fuzzy 

topological spaces, thus filling a gap in the existing literature on fuzzy topological 

spaces. 

2. DEFINITIONS 

Throughout this paper (X, T) will denote a fuzzy topological space. If A is a fuzzy 

set in a fuzzy topological space then the closure and interior of A will be as usual 

denoted by C\A and Int A, respectively. We now introduce the following definitions. 

Def in i t ion 2 . 1 . Let A be a fuzzy subset of a fuzzy topological space X. A is 

said to be fuzzy a-open if A C Int CI Int A. The set of all fuzzy a-open subsets of X 

will be denoted by Fa{X). 
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Definit ion 2.2. In a fuzzy topological space (X, T), a family v of fuzzy subsets 

of X is called an a-covering of X iff v covers X and v C Fa(X). 

Definit ion 2 .3 . A fuzzy topological space (X, T) is said to be a-compact if every 

a-open cover of X has a finite subcover. 

Def in i t ion 2.4. Let (X,T) and (Y, S) be fuzzy topological spaces. A mapping 

/ : X -4 Y is called fuzzy a-continuous if the inverse image of each fuzzy open set in 

Y is fuzzy a-open in X. 

Definit ion 2 .5 . A mapping / : X -> Y is said to be fuzzy a-irresolute if the 

inverse image of every fuzzy a-open set in Y is fuzzy a-open in X. 

Defin i t ion 2.6. Let (X, T) and (Y, S) be fuzzy topological spaces and let T{ be 

a fuzzy topology on X which has Fa(X) as a subbase. A mapping / : X -4 Y is 

called fuzzy ^-continuous if / : (X,T() -4 (Y,S) is fuzzy continuous; / is said to be 

fuzzy ^'-continuous if / : (X,T{) -4 (Y,S{) is fuzzy continuous. 

3. RESULTS 

T h e o r e m 3 .1 . Let (X, T) and (Y, S) be fuzzy topological spaces and let T? be a 

fuzzy topology on X which has Fa(X) as a subbase. If f: (X,T) -¥ (Y,S) is fuzzy 

a-continuous, then f is fuzzy ^-continuous. 

P r o o f . Let / be fuzzy a-continuous and let V 6 S. Then / - 1 ( V ) e Fa(X) 

and so / - 1 ( V ) £ 7$. Thus / is fuzzy ^-continuous and this completes the proof. 

D 

T h e o r e m 3.2. Let (X,T) and (Y,S) be fuzzy topological spaces. Let T$ and 5 { 

be respectively the fuzzy topologies on X and Y which have Fa(X) and Fa(Y) as 

subbases. If f: (X, T) -4 (Y, S) is fuzzy a-irresolute then f is fuzzy £'-continuous. 

P r o o f . Let / be fuzzy a-irresolute and let V e S{ . Then 

V = ( J C p | S;„. \ where S,„. 6 Fa(Y, S), 
i 4 = i ' 

and 

rЧv)^rl({j(n^)-ö(Qr^))-
Since / is fuzzy a-irresolute, / - 1 ( S i „ ; ) 6 Fa(X,T). This implies that / X(K) e 

T{ and thus / is fuzzy ^'-continuous. E 
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T h e o r e m 3 .3 . A fuzzy topological space X is a-compact if and only if every 

family of fuzzy a-closed subsets of X with finite intersection property has non-empty 

intersection. 

P r o o f . Evident. D 

T h e o r e m 3.4. Let (X,T) be a fuzzy topological space and T( a fuzzy topology 

on X which has Fa(X) as a subbase. Then (X,T) is a-compact if and only if (X ,T() 

is compact. 

P r o o f . Let (X,T() be compact. Then, since Fa(X) C T? , it follows that (X, T) 

is a-compact. D 

T h e o r e m 3.5. Let (X, T) be a fuzzy topological space which is a-compact. Then 

each T^-closed fuzzy set in X is a-compact. 

P r o o f . Let U be any T rclosed fuzzy set in X. Let {Vpi: ft e / } be a T r o p e n 

cover of U. Since X - U is T r open , {V0i: ft e / } U (X - U) is a T r o p e n cover of 

X. Since X is T r compact , by Theorem 3.4 there exists a finite subset Io C I such 

that 

X = \J{VPi : d e I0} U(X- U). 

This implies that 

U C \J{V0I: Pi e Io}. 

Hence U is a-compact relative to X and this completes the proof. D 

T h e o r e m 3.6. Let a fuzzy topological space (X,T) be a-compact. Then every 

family ofT(-closed fuzzy subsets ofX with finite intersection property has non-empty 

intersection. 

P r o o f . Let X be a-compact. Let U = {B0i : ft e / } be any family of T rclosed 

fuzzy subsets of X with finite intersection property. Suppose fli-Bft : ft e / } = 0. 

Then {X - B0i : ft e / } is a T r o p e n cover of X. Hence it must contain a 

finite subcover {X - BSij: j = l , 2 , . . . , n } for X. This implies that f]{B0ij: 

j = 1,2,... ,n} = 0 and contradicts the assumption that U has finite intersection 

property. D 

T h e o r e m 3.7. Let X and Y be fuzzy topological spaces and let f: X -¥ Y be 

fuzzy £' -continuous. If a fuzzy subset G of X is a-compact relative to X, then f(G) 

is a-compact relative to Y. 

P r o o f . Let {Vp.: ft e / } be a cover of f(G) by 5 r o p e n fuzzy sets in Y. Then 

{/" (Vp^: Pi e / } is a cover of G by T r o p e n fuzzy sets in X. G is a-compact 
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relative to X. Hence by Theorem 3.4, G is T?-compact. So there exists a finite 

subset I0 C I such that 

Gc(J{r1(VA):/9,e/o} 

and so 

/ (G) C {V0i: A 6 / „ } . 

Hence / ( G ) is T^-compact relative to Y. Thus / (G) is a-compact relative to Y and 

this completes the proof. D 

Corollary 3.8. Iff: (X,T) -» (Y, S) is a fuzzy £'-continuous surjective function 

and X is a-compact, then Y is a-compact. 

Corollary 3.9. If f: (X,T) -> (Y, S) is a fuzzy a-irresolute surjective function 

and X is a-compact then Y is a-compact. 

Theorem 3.10. Let A and B be fuzzy subsets of a fuzzy topological space X 

such that A is a-compact relative to X and B is T^-closed in X. Then An B is 

a-compact relative to X. 

P r o o f . Let {Vp{: ft e 1} be a cover of A n B by Tj-open fuzzy subsets of X. 

Since X - B is a T^-open fuzzy set, 

{VPi :/3ieI}U(X-B) 

is a cover of A. A is a-compact and thus T^-compact relative to X. Hence there 

exists a finite subset I0 C I such that 

A C {}{VPi: fc e I0} U(X- B). 

Therefore 

AnB C l j f f i s . : A € I o } . 

Hence A n B is T^-compact. Therefore A n B is a-compact and this completes the 

proof. D 
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