Mathematic Bohemia

Bohdan Zelinka

Median properties of graphs with small diameters

Mathematica Bohemica, Vol. 120 (1995), No. 3, 319-323
Persistent URL: http://dml.cz/dmlcz/126008

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

MEDIAN PROPERTIES OF GRAPHS WITH SMALL DIAMETERS

Bohdan Zelinka, Liberec
(Received May 19, 1994)

Summary. Two numerical invariants $\Delta(G)$ and $\Gamma(G)$ of a graph, related to the concept of median, are studied.

Keywords: valence, median, pairing
AMS classification: 05C38, 05C75

In [1] the numerical invariants $\Delta(G)$ and $\Gamma(G)$ of a finite undirected graph were studied. Here we will study them in the case of graphs whose diameter is at most 2.

Let G be a finite connected undirected graph without loops and multiple edges. If v is a vertex of G, then the valence $\Delta_{G}(v)$ of v in G is the sum of distances between v and all other vertices of G. The minimum of $\Delta_{G}(v)$ taken over all vertices v of G is denoted by $\Delta(G)$. Every vertex m of G for which $\Delta_{G}(m)=\Delta(G)$ holds is called a median of G.

A pairing P in G is a partition of the vertex set $V(G)$ of G into disjoint pairs, leaving at most one vertex unpaired (when $n=|V(G)|$ is odd). The symbol $\Gamma_{G}(P)$ denotes the sum of distances between two vertices belonging to the same pair of P. The maximum of $\Gamma_{G}(P)$ taken over all pairings P in G is denoted by $\Gamma(G)$.

In [1] it is proved that for a tree G always $\Delta(G)=\Gamma(G)$ and for a graph G in general $\Gamma(G) \leqslant \Delta(G) \leqslant 2 \Gamma(G)$. In this paper we will consider finite graphs with a diameter at most 2. The number of vertices of a graph will be denoted by n. By $\bar{\beta}$ we denote the edge independence number $\beta(\bar{G})$ of the complement \bar{G} of G. The maximum degree of a vertex in G will be denoted by D to avoid the confusion with the symbol Δ defined above.

We start with three lemmas.

Lemma 1. Let G be graph with n vertices and with the diameter at most 2 , let D be the maximum degree of a vertex of G. Then

$$
\Delta(G)=2 n-D-2
$$

and medians of G are exactly all vertices of degree D.
Proof. Let v be a vertex of G of degree r. Then there are r vertices having distance 1 and $n-r-1$ vertices having distance 2 from v. Thus $\Delta_{G}(v)=r+2(n-$ $r-1)=2 n-r-2$. This value attains its minimum if r is maximum, i.e. if $r=D$. This implies the assertion.

Lemma 2. Let G be a graph with n vertices and with the diameter at most 2, let $\bar{\beta}$ be the edge independence number of its complement \bar{G}. Then.

$$
\Gamma(G)=\left\lfloor\frac{1}{2} n\right\rfloor+\bar{\beta}
$$

Proof. Let P be a pairing of G in which exactly b pairs are nonadjacent; in G these pairs form an independent set of edges and thus $b \leqslant \bar{\beta}$. These pairs have distance 2, while the remaining $\left\lfloor\frac{1}{2} n\right\rfloor-b$ pairs have distance 1 . Thus $\Gamma_{G}(P)=$ $2 b+\left\lfloor\frac{1}{2} n\right\rfloor-b=\left\lfloor\frac{1}{2} n\right\rfloor+b$. This value attains its maximum if b is maximum, i.e. if $b=\bar{\beta}$.

Lemma 3. Let G be a graph with n vertices and with the diameter at most 2 , let D be the maximum degree of a vertex in G, let $\bar{\beta}$ be the edge independence number of its complement \bar{G}. If $\bar{\beta} \geqslant 1$, then $D \geqslant n-2 \bar{\beta}$.

Proof. There exists a set of $\bar{\beta}$ independent edges in \bar{G}; let M be the set of end vertices of these edges. The set $V(G)-M$ induces a complete subgraph of G; otherwise there would be at least $\bar{\beta}+1$ independent edges in \bar{G}, which is not possible. Each vertex of $V(G)-M$ has degree $n-2 \bar{\beta}-1$ in this complete subgraph. As G is connected and $M \neq \emptyset$, there exists at least one edge joining a vertex of $V(G)-M$ with a vertex of M; then this vertex of $V(G)-M$ has degree at least $n-2 \bar{\beta}$ in G and thus $D \geqslant n-2 \bar{\beta}$.

Now we shall characterize the graphs (among graphs with a diameter at most 2) for which the extremal cases $\Delta(G)=\Gamma(G)$ and $\Delta(G)=2 \Gamma(G)$ occur.

Theorem 1. Let G be a graph with $n \geqslant 3$ vertices and with the diameter at most 2. Then $\Delta(G)=2 \Gamma(G)$ if and only if n is odd and G is a complete graph with n vertices.

Proof. Let $\Delta(G)=2 \Gamma(G)$. According to Lemmas 1 and 2 this means $2 n-D-$ $2=2\left(\left\lfloor\frac{1}{2} n\right\rfloor+\bar{\beta}\right)$. If n is even, this implies $D+2 \bar{\beta}=n-2$. If $D \leqslant n-2$, then G is not a complete graph. The complement G contains at least one edge and thus $\bar{\beta} \geqslant 1$. According to Lemma 3 then $D+2 \bar{\beta} \geqslant n$, which is a contradiction. If $D=n-1$, then G is a complete graph and $\Delta(G)=n-1, \Gamma(G)=\frac{1}{2} n$, therefore $\Delta(G) \neq 2 \Gamma(G)$. If n is odd, then $D+2 \bar{\beta}=n-1$. If $D \leqslant n-2$, then again $\bar{\beta} \geqslant 1$ and $D+2 \bar{\beta} \geqslant n$, which is a contradiction. Therefore the only possibility is $D=n-1$ and n odd. Then G is a complete graph with n vertices, $\Delta(G)=n-1, \Gamma(G)=\frac{1}{2}(n-1)$ and the assertion is true.

Now for every $n \geqslant 3$ we define a graph H_{n} and its spanning tree T_{n}. If n is odd, then the vertices of H_{n} are u_{i}, v_{i} for $i=1, \ldots, \frac{1}{2}(n-1)$ and w. For each $i=1, \ldots$, $\frac{1}{2}(n-1)$ the pair $\left\{u_{i}, v_{i}\right\}$ is non-adjacent. All other pairs of different vertices are adjacent. The tree T_{n} is the star with the center w which is a spanning tree of H_{n}.

If n is even, then the vertices of H_{n} are u_{i}, v_{i} for $i=1,2, \ldots, \frac{1}{2} n$. For each $i=2, \ldots, \frac{1}{2} n$ the pair $\left\{u_{i}, v_{i}\right\}$ is non-adjacent. All other pairs of different vertices are adjacent. The tree T_{n} is the star with the center u_{1} which is a spanning tree of H_{n}.

For n even we also define another spanning tree T_{n}^{*} of H_{n}. The tree T_{n}^{*} has the edges $u_{1} u_{i}, u_{1} v_{i}$ for $i=2, \ldots, \frac{1}{2} n$ and the edge $v_{1} v_{2}$.

Theorem 2. Let G be a graph with $n \geqslant 3$ vertices and with the diameter at most 2. Then $\Delta(G)=\Gamma(G)$ if and only if G is isomorphic to a spanning subgraph of H_{n} which contains the spanning tree T_{n} in the case of n odd and the spanning tree T_{n} or T_{n}^{*} in the case of n even

Proof. Let $\Delta(G)=\Gamma(G)$. According to Lemmas 1 and 2 this is $2 n-D-2=$ $\left\lfloor\frac{1}{2} n\right\rfloor+\bar{\beta}$. If n is even, this implies $D+\bar{\beta}=\frac{3}{2} n-2$. If $D=n-1$, then $\bar{\beta}=\frac{1}{2} n-1$. There exists a set B of $\frac{1}{2} n-1$ independent edges in \bar{G}. Further, there exists a vertex u_{1} of degree $n-1$ in G, i.e. adjacent to all other vertices of G. Evidently it is incident with no edge of B in \bar{G}. The other vertex which is incident with no edge of B will be denoted by v_{1}. The edges of B will be denoted by e_{i} for $i=2, \ldots, \frac{1}{2} n$ and the end vertices of each e_{i} will be denoted by u_{i}, v_{i}. Hence u_{i}, v_{i} are non-adjacent in G for $i=2, \ldots, \frac{1}{2} n$ and G is a spanning subgraph of H_{n}. As v_{1} has degree $n-1$, the tree T_{n} is a spanning tree of G. If $D=n-2$, then $\bar{\beta}=\frac{1}{2} n$. There exists a set B of $\frac{1}{2} n$ independent edges in \bar{G}. We will denote them by e_{i} for $i=1, \ldots, \frac{1}{2} n$ and the end vertices of each e_{i} will be denoted by u_{i}, v_{i}. There exists a vertex of degree $n-2$; without loss of generality let it be u_{1}. As G is connected and v_{1} is not adjacent to u_{1}, it is adjacent to some other vertex; without loss of generality let it be adjacent
to v_{2}. We see that G is a spanning subgraph of H_{n} and T_{n}^{*} is its spanning tree. The inequality $D<n-2$ would imply $\bar{\beta}>\frac{1}{2} n$, which is impossible.

Now let n be odd. Then $D+\bar{\beta}=\frac{1}{2}(n-1)$. If $D=n-1$, then $\bar{\beta}=\frac{1}{2}(n-1)$. There exists a set B of $\frac{1}{2}(n-1)$ independent edges in \bar{G}. We denote them by e_{i} for $i=1, \ldots, \frac{1}{2}(n-1)$ and the end vertices of each e_{i} will be denoted by u_{i}, v_{i}. There exists a vertex of degree $n-1$; it is incident with no edge of B in \bar{G} and thus it is the remaining vertex w. Again G is a spanning subgraph of H_{n} and T_{n} is its spanning tree. The inequality $D<n-1$ would imply $\bar{\beta}>\frac{1}{2}(n-1)$, which is impossible.

Now let G be a spanning subgraph of H_{n} and let T_{n} be its spanning tree. If n is odd, then \bar{G} contains $\frac{1}{2}(n-1)$ independent edges $u_{i} v_{i}$ and thus $\bar{\beta}=\frac{1}{2}(n-1)$; it cannot be greater. Further, T_{n} contains a vertex w of degree $n-1$ and so does G; we have $D=n-1$. This implies $\Delta(G)=\Gamma(G)$. If n is even, then \bar{G} contains $\frac{1}{2} n-1$ independent edges $u_{i} v_{i}$ for $i=2, \ldots, \frac{1}{2} n$. As v_{1} has degree. $n-1$, no edge of G is incident with it and therefore $\frac{1}{2} n$ independent edges in G cannot exist and $\bar{\beta}(G)=\frac{1}{2} n-1$. The tree T_{n} contains a vertex v_{1} of degree $n-1$. So does G; we have $D=n-1$. This implies $\Delta(G)=\Gamma(G)$.

Finally, let n be even, let G be a spanning subgraph of H_{n} and suppose that T_{n}^{*} is a spanning tree of G, while T_{n} is not. Then u_{1}, v_{1} are non-adjacent in G. The graph G contains $\frac{1}{2} n$ independent edges $u_{i} v_{i}$ for $i=1, \ldots, \frac{1}{2} n$ and thus $\bar{\beta}=\frac{1}{2} n$. No vertex has degree greater than $n-2$ in G. The tree T_{n}^{*} contains a vertex v_{1} of degree $n-2$ and so does G; we have $D=n-2$. This implies $\Delta(G)=\Gamma(G)$.

In [1] the authors suggest the problem to characterize the graphs G for which the ratio between $\Delta(G)$ and $\Gamma(G)$ is equal to a given number α such that $1 \leqslant \alpha \leqslant 2$. We will not solve this problem; we will only state an existence theorem.

By K_{n} we denote the complete graph with n vertices and by \bar{K}_{n} its complement, i.e., the graph with n vertices and no edges. The Zykov sum $G_{1} \oplus G_{2}$ of two disjoint graphs G_{1}, G_{2} is the graph obtained by joining each vertex of G_{1} with each vertex of G_{2} by an edge. A saturated vertex of a graph is a vertex which is adjacent to all the others.

First we prove a lemma.

Lemma 4. Let n be a positive integer such that $n \geqslant 3$, let b be an integer such that $0 \leqslant b \leqslant \frac{1}{2}(n-1)$. Then there exists a graph G with n vertices, with a saturated vertex and such that $\beta(\bar{G})=b$.

Proof. For $b=0$ this graph is K_{n}. For $0<b \leqslant \frac{1}{2}(n-1)$ it is the Zykov sum $K_{n-2 b} \oplus \bar{K}_{2 b}$ or $K_{n-2 b-1} \oplus \bar{K}_{2 b+1}$ 。

Now we prove a theorem.

Theorem 3. Let α be a rational number, $1 \leqslant \alpha \leqslant 2$. Then there exists a graph G with a saturated vertex and such that $\Delta(G) / \Gamma(G)=\alpha$.

Proof. As α is rational, it can be expressed as p / q, where p, q are positive integers. From various possibilities of this expression we choose one such that $p \geqslant 2$ and in the case of $\alpha=1$ we choose $p=q$ to be even. We put $n=p+1$. In the case of p odd we put $b=q-\frac{1}{2}(p+1)$, in the case of p even we put $b=q-\frac{1}{2} p$. According to Lemma 4 there exists a graph G with n vertices, with a saturated vertex and such that $\beta(\bar{G})=b$, which implies $\Gamma(G)=\left\lfloor\frac{1}{2} n\right\rfloor+b=q$. As G has a saturated vertex, $\Delta(G)=n-1=p$. This implies the assertion.

References

[1] Gerstel O. - Zaks S.: A new characterization of tree medians with applications to distributed algorithms. Networks 24 (1994), 135-144.

Author's address: Bohdan Zelinka, katedra diskrétní matematiky a statistiky Technické university, Voroněžská 13, 46117 Liberec 1, Czech Republic.

