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CONVEX ISOMORPHIC O R D E R E D SETS 

P E T R EMANOVSKY, Olomouc 

(Received May 3, 1991) 

Summary. V. I. Marmazejev introduced in [5] the following concept: two lattices are 
convex isomorphic if their lattices of all convex sublattices are isomorphic. He also gave a 
necessary and sufficient condition under which lattices are convex isomorphic, in particular 
for modular, distributive and complemented lattices. 

The aim of this paper is to generalize this concept to ordered sets and to characterize 
convex isomorphic ordered sets in the general case of modular, distributive or complemented 
ordered sets. These concepts were defined in [1], [2], [4]. 
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1 . THE LATTICE OF CONVEX SUBSETS OF AN ORDERED SET 

Let A = (A , ^ ) be an ordered set. We say that its subset S = (5 , $C) is convex if for 

each x G A the following implication holds: if a, 6 G 5 , a <Z. x ^. b then x G S. The 

set of all convex subsets of the ordered set A will be denoted by CS(A)] evidently 0, 

A G CS(A) and any one-element subset of A is convex. 

Let {Xi; i G I} be an arbitrary system of subsets of the ordered set A. The set of 

all Z G CS(A) such tha t Xi C Z for each i G I will be denoted by CSA(Xi, i G I). 

If {X(; ie I} = {X,Y}, we will denote CSA(Xi)i G I) briefly by CSA(X,Y), and 

for X -= {a} , Y = {6} we will use the brief notation C 5 ^ ( a , 6 ) . 

Def in i t i on 1.1. Let A be an ordered set and let M C A . Let CSA (M) = f]{Ki; 

f E / } , where Ki run over all convex subsets of A which contain the subset M. As 

usual, we write CSA (a, b) instead of CSA {{«5&}}> etc. The set CSA («>&) -s called 

the convex subset of A generated by the elements a, 6. 
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Evidently, CSA (a, b) = [a, 6] for a 1$ b and CSA (<*, 6) = {a, 6} for a || 6. It is also 
evident that CSA (M) = f]CSA(M), in particular CSU (a,6) = f]CSA(a,b). 

Lemma 1.1. Let A he an ordered set and let {Xi; i G 1} be an arbitrary system 

of convex subsets of A. Then (CS(A),C.) is a complete lattice, where f\{X{;; i G 
/} = f]{Xi; i G 1} and V{Xt-; t G /} = f]CSA(Xi,i G /) are the infimum and 

supremum, respectively. 

P r o o f . Clearly 0 is the least element in (CS(A),C ) and f]{Xi;; i G /} 6 
CS(A), thus A { * . ; i € /} = fi{Xi;i G / } . Evidently f]CSA(Xi,i e I) € CS(A). 

Hence V{KV; i 6 /} = f]CSA(Xi,i G / ) and (CS'(-4),C ) is a complete lattice 
according to Theorem 17 in [6]. • 

Let L = (L, ^ ) be a lattice with the least element 0. We say that an element a £ L 

is an atom.in L. if a -̂  0 and for each 6 G L we have: 6 ^ a ==.> (6 = a or 6 = 0). 
The lattice L = (L, ^ ) with the least element 0 is called an atomic lattice if for each 
a G L, a ^ 0 there exists an atom p such that p ^ a. Let .4 = (J4, ^ ) be an ordered 
set, - 4 ^ 0 . Then (CS(A), C ) is obviously an atomic lattice, where 0 is the least 
element and all one-element subsets of A form the set of all its atoms. 

2. CONVEX ISOMORPHIC ORDERED SETS 

Definition 2.1. We say that ordered sets A, A' are convex isomorphic if and 
only if the lattices (C£(.A),C) and (CS(A'),C) are isomorphic. 

Let A be an ordered set and let a, b G A, a ^ b. Denote by [a,b] the interval 
generated by a, b, i.e. [a, b] = {x G A; a ^ x ^ 6}. 

Let F be a mapping of A into B and 0 ^ C C A. Denote by F/C the restriction 

of F onto the subset C, i.e. F/C = FD(C x B). 

As it was mentioned above all one-element subsets of A are atoms in the lattice 
(CS(A),C). Let F be an isomorphism of the lattices (CS(_4),C), (CS(A'),C). 

Since every isomorphism of atomic lattices maps atoms onto atoms we have F({a}) = 

{a'} G CS(A'), where a' G A'. Therefore we can define the following concept: 

Definition 2.2. Let F be an isomorphism of the lattices (CS(A), C ) and 
(CS(A'),C ) . Let / be a mapping of A into A' such that {/(a)} = F({a}) for 
each a G A. We say that the mapping / i s associated with the isomorphism F. 

Let us denote f(S) = {/(-c); -c G S} for a subset 5 C A. We can prove: 

Lemma 2.1. F(S) = f(S) for any S G CS(A). 
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P r o o f . If a e S then {a} C 5 and also F({a}) = {/(a)} C F(5) because 
F is an isomorphism. Hence f(a) G F(5) and thus f(S) C F(5). Conversely, if 
a' G F(S) then {a'} C F(5) and F"1 ({a'}) = { / " V ) } £ S because F""1 is an 
isomorphism as well. Then we have f"l(a') G 5 and a' G / ( 5 ) , i.e. F(5) C f(S). 

Thus we get F(5) = / ( 5 ) . D 

Proposition 2.1. /f / is associated with an isomorphism F of the lattices 

(CS(A), C) and (C5(,4'), C ) , then /(C5.4 (M» = CSA> (/(Af)) for any M C A 

P r o o f . Since M C n < ^ ( M ) , we have f(M) C / ( C 5 ^ ( M ) ) . Now, 
/ ( f | C 5 > l ( M ) ) = F(f|C5^(M)) € C5(i4') by Lemma 2.1 and so CSA» (f(M)) C 
/ (CS, i (M)). On the other hand, let Z G CS(A') be such that f(M) C Z. Since 
F is surjective, there exists VV G CS(A) with F(VV) = f(W) = Z. It follows that 
M C VV and, therefore, f]CSA(M) C VV. Consequently, / (nC\SU(M)) C Z and 
we can see that f(CSA (M)) C CSA* (f(M)). D 

T h e o r e m 2 .1 . Let A and A' be ordered sets. Then the following three conditions 

are equivalent: 

(i) The ordered sets A and A' are convex isomorphic. 
(ii) There exists a bijection f: A-^A' such that f(CSA (M» = CSA> (f(M)) for 

any MCA. 

(iii) There exists a bijection f: A -* A' such that f(CSA (a, b)) = CSA> (/(a), /(&)) 

for each a, 6 G A. 

P r o o f . The condition (ii) follows from (i) by Proposition 2.1. Clearly, the third 

condition is a consequence of the second one. 

Now, let / be a bijection satisfying (iii). Denote by P(A) the set of all subsets 
of A and define a mapping F: P(_4) -> P(A') such that F(5) = f(S) for each 
5 G P(A). We are going to prove that for any convex set 5, its image F(5) is also 
convex. Clearly, / ( a ) , f(b) G f(S) = F(5) for each a, 6 G 5. If 5 G CS(A) then 
C5>i (a, 6) .C 5 for arbitrary a, b G 5 and according to (iii) we have [/(a),/(&)] = 
C5.4/ (/(a), /(&)) = / ( C 5 A (a, 6)) C f(S) = F(5). This means that the mapping F 

maps convex subsets of A onto convex subsets of A', and F is a bijection because / is 
a bijection. Evidently, the restriction of the mapping F/CS(A): CS(A) —• CS(A') 

is also a bijection. Since 5 C T <=> F(S) C F(T) for each 5, T G C5 (T4) , the 
mapping F/CS(A) is an isomorphism of the lattices ( C 5 ( J 4 ) , C ) and (C5(^4'),C) . 

• 
The bijection / is called a convex isomorphism. 

E x a m p l e 2.L The ordered sets A, A' in Figure 1 are convex isomorphic be
cause the mapping / satisfies the condition (iii) of Theorem 2.L 
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3. CONVEX ISOMORPHISM OF MODULAR, DISTRIBUTIVE, COMPLEMENTED, 

UNIQUELY COMPLEMENTED AND BOOLEAN ORDERED SETS 

Let A = (A, ^ ) be an ordered set. For S C A denote by L(S) the set {x € A\ 

x ^ a; Va £ 5} and let U(S) = {y € A\a ^. y Va E S}. We will also write 

L(S) = L ( . . . , a , , . . . ) , U(5) = (/( . . . ,a t-, . . .) for 5 = {... ,a„ . . .} C A. 

Modular distributive, complemented, uniquely complemented and boolean ordered 

sets are defined in [1], [2], [4] as follows: 

Definition 3.1. We say that an ordered set A = (A, -$) is 

a) modular if 

Va,6,c £ A\ a <^ c L(U(a,b),c) = L(U(a,L(b,c))); 

b) distributive if 

Va,6,c,€-4; L((/(a,6),c) = L([/(L(a,c), L(6,c))); 

c) complemented if 

Va<E-4 36G-4; L([/(a,6)) = A and U(L(a,6))=,4 

(in this case we say that the elements a, 6 are complemented, or that a is a comple

ment of 6 or 6 is a complement of a); 

d) uniquely complemented if for each a £ A there exists just one complement 

a' € -4; 

e) boolean if A is distributive and complemented. 

V. I. Marmazejev proved in [5] that if L, V are convex isomorphic lattices then 

L is modular (distributive, complemented or boolean), if and only if V is modular 

(distributive, complemented of boolean, respectively). The following examples show 

that a similar theorem does not hold for modular, distributive, complemented and 

boolean ordered sets. 
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E x a m p l e 3.1. The ordered sets Ay A' in Figure 2 are convex isomorphic (an 

arbitrary bijection of A onto A1 satisfies (iii)), but A is modular while Af is not 

modular. 

0 0 0 

a b c 

Fig.2 

/(«) 
l/(c) 

E x a m p l e 3.2. The ordered sets A> A' in Figure 3 are convex isomorphic (an 

arbitrary bijection of A onto A! satisfies (iii)), but A is distributive while A1 is not 

distributive. 

Fig.З 

f(a) f(b) f(c) 

E x a m p l e 3.3. The ordered sets A, A1 in Figure 4 are convex isomorphic (the 

mapping / satisfies (iii)) but A is complemented while A' is not complemented (a 

complement of element f(b) does not exists in A'). 

d<? 

cò 

bà 

Fig.4 

/(<•) 

9 / ( r f ) 

f(c) 

f(Ь) 

E x a m p l e 3.4. The ordered sets A^A' in Figure 5 are convex isomorphic, but 

A is uniquely complemented, even boolean while A' is not complemented because 

the element f(b) has not a complement in A'. Moreover, A is a boolean ordered set 

but A' is not boolean. 
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f(c>) f(b>) f(a>) 

Fig.5 

/(«) f(b) f(c) 

4. OTHER PROPERTIES OF CONVEX ISOMORPHIC ORDERED SETS 

An ordered set A = (A, ^ ) is called directed if for each a, b £ A there exist c, 

d E A such that c^a, c^b^a^d and b ^ d. If yt is a two-element chain and A! 

is a two-element antichain (Fig. 6), then .A, .A' evidently are convex isomorphic, but 

A is directed and A' is not directed. 

0 

Д0) 
O 

/(1) 
0 

Fig.6 

Taking into account the foregoing example, we will investigate ordered sets with 

at least two incomparable elements. Then we obtain the following theorem: 

T h e o r e m 4 .1 . let A, A' be convex isomorphic ordered sets such that both of 

them contain at least two incomparable elements. Then A is directed if and only if 

A1 is directed. 

P r o o f . Let A, A! be convex isomorphic ordered sets. Suppose A is directed 

and A has at least two incomparable elements. Then clearly for each a, b G -4, a -̂  b 

there exist c, d £ A such that c - ^ a , c ^ 6, a ^ d , 6 t ^ d where at least three of the 

elements a, 6, c, d are different. Hence a, 6 G [c, d\ = CSA (c, d), where CSA (c,d) is 

at least a three-element set. If / is a convex isomorphism of A onto A\ then / (a ) , 

f(b) G f(CSA (c,d)) = CSA, (/(c),/(d)) = [/(c), /(d)] (or [/(d), /(c)]) because the 

set f(CSA (c, a*)) also has at least three elements ( / is a bijection). Thus /(c) ^ / ( a ) , 

/(&) < / (d) , (or /(d) -̂  / (a ) , /(&) ^ /(c)) and A' is directed. It is clear that the 

converse implication is also true. • 
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The convex isomorphic ordered sets A, A' in Figure 6 are such that A contains 

the least element 0 and the greatest element 1, but A' contains neither the least nor 

the greatest element . However, if we take ordered sets with at least three elements 

we get the following theorem: 

T h e o r e m 4 .2 . Let A, A' be convex isomorphic ordered sets such that both of 

them contain at least three elements. Then A contains the least and the greatest 

element if and only if A' contains the least and the greatest element. 

P r o o f . Let 0 be the least and 1 the greatest element of the ordered set A. 

Then A = [0,1] = CSA (0,1) whence CSA (0,1) has at least three elements . If / is 

a convex isomorphism of A onto A!, then f(CSA (0,1)) = CSA/ ( / ( 0 ) , / ( l ) ) = A'. 

Since / is a bijection, the set f(CSA (0,1)) also has at least three elements. Hence 

A' = [ / ( 0 ) , / ( l ) ] , i.e. / ( 0 ) is the least and / ( l ) is the greatest element in A' (or 

A' = [ / ( l ) , / ( 0 ) ] , i.e. / ( I ) is the least and / (0 ) is the greatest element in A'). • 
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