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In [4], a representation of transitive ternary structures by partial semigroups with
units is constructed. The construction proceeds as follows: If (G,t) is a transitive
ternary structure, we put ¢(t) = t U {(z,y, z); there exists z such that (z,y,2) € t or
(z,y,%) € t} and define on ¢(t) a partial binary operation - by

(z.9,2) (5:9:u) = (z,9,u).

Then (c(t), -) is a partial semigroup and (z,y, z) is a left unit of the element (z,y, z) €
c(t), (z,¥,2) is its right unit. This construction is not suitable for cyclically ordered
sets, for if ¢ is a cyclic order then (z,y,z) € ¢ never holds. Here we present another
construction which assigns to any cyclically ordered set a partial semigroup with an
additional unary operation.

Another representation of transitive ternary structures is given in [5].

1. PARTIAL SEMIGROUPS

1.1. Let S # @ be a set, - a partial binary operation on S with the property: if
one of the products (z - y) - z, « - (y - z) is defined then the other is also defined and
(z-y)-z==x-(y-z). Then the structure S = (S, ) is called a partial semigroup.

1.2. Homomorphisms and isomorphisms of partial semigroups are defined in a
standard way. Thus, if S = (S,-), T = (T,-) are partial semigroups and f: $§ = T,
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then f is a homomorphism of Sinto Tif z,y € S, z -y is defined in S then f(z)- f(y)
is defined in T and f(z-y) = f(z)- f(y). A bijective homomorphism of § onto T such
that f~! is a homomorphism of T onto S is an isomorphism; S and T are isomorphic
if there exists an isomorphism of S onto T.

1.3. Let S = (S,-) be a partial semigroup, e € S. The element e is a unit in S if
r €8, e-xis defined implies -2 =z, and y € S, y - e is defined implies y - € = y.
We denote by E(S) the set of all units in S.

The following four lemmas are trivial and known; we present them for the purpose
of the subsequent text.

1.4. Lemma. Let S = (S,") be a partial semigroup, © € S, e1,e2 € E(S). .If both
ey -z and ez - ¢ (both = - ey and x - e3) are defined, then e; = e;.

Proof. Letbothe; -z and e;-z be defined. As ez -z = z, the product e; - (e2 )
is defined. Hence (e; - e3) - x, thus also e; - e is defined and then e; - e2 = €1 = e2.
Dually in the case when z - e;, © - e are defined. [m}

1.5. Let S = (S,-) be a partial semigroup, € S. If there exists e € E(S) such
that e - « is defined, we denote it e = ez (z); if there exists ¢’ € E(S) such that z - ¢
is defined, we denote it ' = egr(z). er(z) and er(z) are called left and right units
of x, respectively.

1.6. Lemma. Let S = (S,-) be a partial semigroup, =,y € S and let = -y be
defined. Then z -y has the left (right) unit iff  (y) has the left (right) unit; in that
cese e (x-y) = er(x) (er(z-y) = er(y))-

Proof. If er(z) = e exists then e -z = z; thus (e - ) -y, hence e - (z - y) is
defined, i.e. € = e (z - y). Conversely, if ey (z - y) = e exists then e - (z - y), hence
(e-z) -y and ez is defined and e = ez (z). Dually for the right units. o

In the sequel we shall deal with partial semigroups S = (S, -) with the property
z €S = both er(z) and er(z) exist;
partial semigroups with this property will be called e-semigroups.

1.7. Lemma. Let S be an e-semigroup and e € E(S). Then er(e) = er(e) =e.
Proof. By definition e (e) - e = e = e (e); similarly for eg(e). [m]
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1.8. Lemma. Let S = (S,-) be an e-semigroup, z,y € S. If x - y is defined then
er(z) = e (y).

Proof. Asaz-ep(z) = x, the product (z - er(z)) - y, thus z - (er(z) - y) and
er(z) -y are defined. Hence egr(z) = eL(y)- o

2. TRANSITIVE TERNARY STRUCTURES

2.1. Let G # @ be a set, T a ternary relation on G. The pair G = (G,T) is called
a ternary structure. The ternary relation T (and the structure G) is
reflexive if (z,z,2) € T for any z € G
¢ transitive if (z,y,2) € T, (z,y,u) € T then (z,y,u) € T.

2.2. Homomorphisms and isomorphisms of ternary structures are defined obvi-
ously. Thus, if G = (G,T), H = (H,S) are ternary structures and f: G — H then
[ is a homomorphism of G into H if

(z.9,2) €T = (f(e), f(), fz)) € .

If f is a bijective homomorphism of G onto H such that f~! is a homomorphism of
H onto G then f is an isomorphism of G onto H; G and H are isomorphic if there is
an isomorphism of G onto H.

2.3. Let G = (G,T) be a reflexive and transitive ternary structure. We define a
partial binary operation - on the set T in the following way: if m; = (z1,71,%1) € T,
mg = (1‘2', Y2, 22) € T then m; - my is defined iff

T3 =Y = 21 = Z2 and then m; - ma = mg or
Ty = Y2 = 22 = z; and then my -my = m, or
%2 = 21, Y2 = 1 and then my - my = (1,91, 22)-
In other words, we put
(@,2,1) - (2,9, 2) = (2,9, 2)
(@,2) - (2,5,2) = (2,3, )
(@.9:2) - (5,08 = (2,3.):

2.4. Theorem. Let G = (G,T) be a reflexive and transitive ternary structure,
let - be a partial operation on T defined in 2.3. Then T = (T, ) is an e-semigroup
in which E(T) = {(z,,z);z € G} and er(m) = (z,z,z), er(m) = (2,2,2) for any
m=(z,y,2) €T.

Proof. Let my,my,m3 € T and let (m; - mz) - mg be defined. If some of the
elements my,ma,m3 has a form (2, z, 1) then it is easy to show that m, - (m2 - m3)
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is defined and (m; - mz) - my = my - (ma - m3). If, for instance, mo = (z, 2, 2) then
necessarily m1 = (z,y,2) for some z,y € G and m; - my; = m;. Thus my - m3 is
defined so that my = (z, 2, 2) or ma = (2,¥,) for some u € G. In both cases mz-mg
is defined and my - m3 = mg so that m; - (ma - m3) is defined and m, - (mz - m3) =
my - m3 = (M) - my) - m3. In the other cases m; = (z,y,2), ms = (z,¥,u) so that
my - my = (z,y, u); then necessarily mz = (u,,v) so that (m; - my) -m3 = (z,y,v).
We see that my - ms is defined and mg - m3 = (z,y,v) so that m; - (mz - m3) is
defined and my - (my - m3) = (x,y,v) = (1 - m2) - m3. Similarly in the case when
my - (m2 - m3) is defined; thus (T',) is a partial semigroup.

As T is reflexive, (z,z,z) € T for any « € G. From the definition of the operation -
it follows that (z,z,z) - m = m whenever (z,z,z) - m is defined for some m € T;
similarly m - (z,z,z) = m if m - (z,z,z) is defined. Hence {(z,z,z);z € G} C E(T).
Let m = (z,¥,2) € T and assume that £ =y = z does not hold. Then (z,z,2) € T
and m - (z,2,2) =m # (2,2, z) so that m ¢ E(T). Thus E(T) = {(z,s,z);z € G}.

If m = (z,y,2) € T then (z,z,) = eL(m), (2,2,2) = er(m) by the definition of
the operation - . Thus T is an e-semigroup. a

3. CYOLICALLY ORDERED SETS

3.1. Let G = (G, T) be a ternary structure. The relation T (and the structure G)
is called
asymmetric if (z,y,2) € T = (z,y,2) ¢ T
antisymmetric if (z,y,2) €T, (z,9,2) ET > 2=y =2
cyclic if (z,y,2) € T = (y,2,z) € T.
A ternary structure G is called a cyclically ordered set ([1], (3], [6]) if it is asymmetric,
cyclic and transitive.

3.2. Remark. Let G = (G, T) be a cyclic ternary structure. Then:
(1) If T is asymmetric and (z,y,2) €T, thenz £y # z # z.
(2) If T is antisymmetric and (z,y,2) € T, theneitherc =y =zorz £y # z # z.

Proof. (1) If T is asymmetric and (z,y,2) € T, then & = z is impossible since
(z,y,z) € T contradicts the asymmetry of T. If z = y, i.e. (z,2,2) € T then the
cyclicity of T' implies (z, z,z) € T, a contradiction. Similarly for y = z.

(2) Let T be antisymmetric and (z,y,2) € T. If z = z then (z,y,z) € T and the
antisymmetry implies z =y = z. If z =y, i.e. (z,z,2) € T then (z,2,z) € T and we
have also 2 = y = z. Similarly for y = z. Thuseitherz =y =zorz #y # 2 # z.

The following two lemmas are trivial; their proofs are therefore omitted.
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3.3. Lemma. Let G = (G,T) be a cyclically ordered set. Put C = T U
{(z,2,2);z € G}. Then the ternary relation C is reflexive, antisymmetric, cyclic
and transitive.

3.4. Lemma. Let G = (G,C) be a ternary structure which is reflexive, anti-
symmetric, cyclic and transitive. Put T' = C ~ {(z,2,z);z € G}. Then (G,T) is a
cyclically ordered set.

By 3.3 and 3.4, cyclically ordered sets can be defined as ternary structures which
are reflexive, antisymmetic, cyclic and transitive. In the sequel, this notion will be
used just in this sense (see e.g. [2], where such a relation is called “extended cyclic
order*).

3.5. Let G = (G, C) be a cyclically ordered set, let - be a partial binary operation
on C defined in 2.3. By 2.4, C = (C,) is an e-semigroup. Further, put ¢(m) =
(y, z,x) for any m = (z,y, z) € C; thus ¢ is a unary operation on the set C.

3.6. Lemma. Let G = (G,C) be a cyclically ordered set, C = (C,-) the e-
semigroup from 2.3 and ¢: C' = C the unary operation on C defined in 3.5. Then

(1) ¢* = ido and ¢lgc) = idg)-

(2) er(m) = eL(p*(m)) for anym € C.

(3) If erlmy) = er(ma), er(mi) = en(ma), ec(p(m1) = er(p(ma)) for some
my,my € C then my = m, € E(C).

(4) For my,m2 € C — E(C) the product m; - mq is defined iff er(m1) = er(my),
er(p(m)) = er(p(mz)).

(5) Ifmy,my € C—E(C) and m; -ms is defined then er,(¢(m; -ma)) = er(¢(my)).

Proof. (1) and (2) follow directly from the definiton of the operation ¢.

(3): f my = (2,y,2), ma = (u,v,w) then by 2.4 eL(m1) = (x,2,%), er(my) =
(2:2,2), eLlp(m)) = (y,9,y), and er(m) = (w,u,u), er(mz) = (w,w,w),
er(p(mz)) = (v,v,v). Thus (z,2,2) = (u,u,u), (z,2,2) = (w,w,w), (y,¥,y) =
(v,v,v), ie. u = z, v = y, w = 2 so that m2 = (z,y,2) and antisymmetry of C
implies = y = z. Thus my = mp = (z,7,z) € E(C).

(4): For m;,mz € C'— E(C) the product m, -mq is defined iff m; = (x,y,2), m; =
(2,y,u) for suitable z,y, z,u € G, i.e. iff er(m1) = e (m2), eL(p(m1)) = eL(¢(m2)).

(5): f my,my € C — E(C) and m; - m, is defined then m; = (z,y,2), ma =

= (2,¥,u), and m; - my = (z,y,u). Thus eL(p(mi1 - m2)) = eL(p(m1)). a

3.7. Let § = (S,-,¢) be a partial algebra such that (S, ) is an e-semigroup and ¢
is a unary operation on S having properties (1)~(5) from 3.6. Then S will be called
a c-algebra. If S = (S,,¢), T = (T,-, %) are c-algebras and f: S = T, then f is a
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homomorphism of S into T iff it is a homomorphism of the e-semigroup (S, ) into
the e-semigroup (T,-) and simultaneously a homomorphism of the unar (S, ) into
the unar (7,%), i.e. iff
2,y € S, z-y is defined in § = f(x)- f(y) is defined in T and f(z-y) = f(z)- f(¥)
T €S = (fop)(z) = @e f)(x).

Isomorphisms of c-algebras are defined in the obvious way.

3.8. Theorem. Let S = (S,-,¢) be a c-algebra. Put G = E(S) and define a
ternary relation C on G by

(z,y,2) € C & thereism € S with z = eg(m), y = er(¢(m)), z = er(m).
Then (G, C) is a cyclically ordered set.

Proof. Ifz € Gthen z € E(S). By 1.7, eL(z) = z, er(z) = x. As ¢|gs) =
idg(s), we have p(z) = z and er(¢(2)) = z. Thus (z,z,7) € C and C is réflexive.

Let {,9,2) € C, (2,y,x) € C. Then there are m1,mz € S such that z = e {m),
y = er{e(m1)), z = ep(mi), 2 = er(m2), y = er(p(m2)), = = er(ma). By (3) we
obtain my =my € E(S) and by 1.7, eL(m1) = er(m1) = my. Further, @(m1) = m1
and er(p(m1)) = my. Thus z =y =z = m,; and C is antisymmetric.

Let (2,¥,2) € C so that £ = e (m), y = er(¢(m)), z = er(m) for some m € S.
By (2), er(m) = er(¢?(m)). Further, from ¢® = ids and from (2) we conclude
er(p(m)) = ep(p*(m)) = e (m). Thus we have y = e(0(m)), z = er(v(p(m))),
z = er(p(m)) so that (y,z,z) € C and C is cyclic.

Let (¢,9,2) € C, (z,y,u) € C. By32eitherz =y=z0orz#y#2#7
and either z = y =worz#y#u#2 lfz=y=zo0rz=y=uthen
z=y=z=uand (2,y,u) € C. Thus assume 7 #y # 2 # &, 2 # y # u # 2. There
are ma,m2 € S such that 2 = ex(my), y = er(@(m1)), z = ep(my), z = er(mz),
y = er(p(ms)), u = ep(mz). Among other this implies mi,m, € S — E(S) for if,
e.g., my € E(S) then er(my) = er(m1) = my by 1.7, i.e. & = 2, a contradiction.
By (4) the product m; - mz is defined. Further, by 1.6, ez (my - m2) = er(m1) = =,
er(mi1 - m2) = er(ma) = u and by (5), er(p(m1 - M2)) = eL(p(my)) =y. Thus we
have & = er(m1 - m2), y = er(@(mi - mz)), u = er(my - m2) so that (z,y,u) € C
and C is transitive.

4. MAPPINGS § AND C

4.1. Let G = (G, C) be a cyclically ordered set, let - be a partial binary operation
on C defined in 2.3 and let ¢ be a unary operation on C defined in 3.5. By 3.6,
C = (C,-,¢) is a c-algebra; we denote it by S(G). Thus, if € is the class of cyclically
ordered sets and 2 is the class of c-algebras, S is a mapping of € into 2:

S: €= A
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4.2. Let S = (S, -, p) be a c-algebra. Let G = E(S) and let C be a ternary relation
on G defined in 3.8. By 3.8, G = (G, C) is a cyclically ordered set; we denote it by
C(S). Thus C is a mapping of A into ¢:

C: A ¢

4.3. Theorem. Let G = (G, C) be a cyclically ordered set. Then G is isomorphic
with (C o S)(G).

Proof. By 24, E(S(G)) = {(z,z,z);z € G}. Define a mapping f: G =
E(S(G)) by f(z) = (z,z,2). Trivielly, f is a bijection of G onto E(S(G)). By
definition, C(S(G)) = (E(S(G)),C') where (my,mz,m3) € C' & thereis m € C
with m; = eg(m), ma = er(p(m)), ms = er(m). Let x,y,2 € G, (z,y,2) € C. If we
denote (z,y,z) = m then (z,,z) = eL(m), (¥,y,y) = eL(p(m)), (2,2,2) = er(m)
in the c-algebra §(G). Thus ((z,z,z), (¥,¥.9), (2,2,2)) € C',ie. (f(z), f(y), f(2)) €
C’ and f is a homomorphism of G onto (C o §)(G).

Let 7,9,z € G, (f(), /1), £(2)) € C', ice. (@,2,2), (5,9,1), (2, ,2)) € C'. By
definition there is m € C with (z,z,2) = er(m), (¥,v,¥) = eL(p(m)), (z,2,2) =
er(m). Then m = (z,y,2) and (z,y,2) € C. Hence f is an isomorphism of G onto
(€ 0 8)(G). [m]

4.4. Theorem. Let S = (S,-,¢) be a c-algebra. Then there exists a surjective
homomorphism of § onto (S o C)(S).

Proof. By 3.8,C(S) = (E(S),C) where (e1,€2,e3) € C & there is m € S with
e =er(m), ex = ey (w(m)), e3 = ep(m). Further, by 4.1, S(C(S)) = (C, -, 1) where
- is the partial binary operation on C defined in 2.3 and %: C — C is defined by
P(e1,e2,e3) = (ez,e3,e1). Define a mapping f: S = C by

f(m) = (er(m), e(p(m)), er(m)).

Clearly, f: § — C is surjective. Let mj,mz € S and m; - my be defined. If
my € E(S) then my = er(mz) so that my - ma = m2 and p(m;) = m; by the
property {(1). Further, by 1.7, er(m1) = er(m1) = m1 = ey (mg). Thus f(my) =
(eL(ma),eL(m2), eL(m2)), f(ma) = (er(ma),eL(w(m2)), er(ms)) so that f(m) -
f(ma) is defined in (C, ) and f(m1)-f(mz) = f(m2) = f(m1-my). Analogously in the
case my € E(S). Thus suppose my,ma € S—E(S). By 1.8, eg(m;) = ep(m2), by the
property (4), eL(p(m1)) = eL(p(ma)). Thus f(m1) = (e(my), e (p(m1)), er(m1)),
f(m2) = (er(mi1),er(p(m1)), er(my)). Hence f(m1)- f(mz) is defined in (C,-) and
fma) - f(ma) = (er(ma),er(p(m1)),er(mz)). By 1.6, ey (m1) = ep(my - m3),
er(ma2) = er(my - mg) and by the property (5), er(w(m1)) = er,(w(m1 - my)). Thus
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Flma) - f(mz2) = (er(m1 - m2),er(¢(m1 - m2)), er(my - mz)) = f(my - mz) and f is
a homomorphism of (S, -) onto (C, ).

Let m € S be any element. Then f(m) = (er(m),eL(p(m)),er(m)) and
Fplm) = (erlplm)),es(@?(m)),erle(m). Further, $(f(m) = (ex(p(m)),
er(m),er(m)). By the property (2) and (1), er(m) = eL(¢?(m)) and er(p(m)) =
eL(g*(m) = ex(m). Thus p(f(m)) = (ez(p(m)), eL(¢(m)), cr(p(m))) so that
(o f)(m) = (f op)(m) and f is a homomorphism of (.S, ¢) onto (C,%). Hence f is
a homomorphism of S onto (S o C)(S). [m]

5. EXAMPLES

5.1. Let S = {ey,e2,€3,m1,m2,m3} where ey -e; = ey,ez-e2 = ez,€3-€3 = €3
and
m;=my ey Mp=my e3-Mm3g=ms
my-ep=my Mz -ex=mg m ez =m.
Trivially, (S,-) is an e-semigroup in which E(S,-) = {e1,ez,e3} and ey = e (my) =
er(mz), e2 = er(mg) = er(ms), ez = eL(m3) = er(my). Define further ¢: § — §
by ¢(ei) = e; for i = 1,2,3 and p(m1) = ma, @(ma) = ms, p(ms) =my.
We show that S = (S, -, ¢) is a c-semigroup.
(1) ¢* = ids and p|gs) = idg) is trivial.
(2) Clearly er(e;) = er(v?(ei)) for i = 1,2,3 and further

er(my) = es = er(m3g) = e (9*(m1))

er(my) = e = e (m1) = er(¢*(m2))

er(mg) = e3 = e (my) = er(9*(ms)).

(3) For i # j the relation eg(e:) = e (e;) does not hold. Further
er{my) = epler) but er(mi) #erler)
er(mz) = ep(er),  er(m2) #er(en)
er{ms) = erles),  er(ma) # er(es)
and analogously

er(my) = ep(mz), er(mi) # er(m2)
er(my) = ep(ms), er(ms) # ey (ms)
er(mg) = ep(my), er(ms) # er(my)

so that if m,n € S, er(m) = eL(n), ex(m) = ep(n), eL(p(m)) = e(p(n)) then
m=n € E(S).
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(4), (5) is useless, as the product in S is defined only with units.
We shall construct (SoC)(S). Put G = E(S) = {e1,€e3,e3}. By 3.8,((S) =

where C
Further,
i=1,2,3, and

(G,0)

{(e1, e1,€1), (e2, €2, €2), (€3, €3, €3), (e1, €2, €3), (€2, €3, €1), (€3, €1, €2)} .
= (e;,ei,¢€;) for

(500)S) =

(C,-,1b) where by 2.3, (e;,e;,€;) - (€s, €i,€i)

(e1,e1,€1) - (e1,e2,e3) = (e1, €2, e3)

(e1,e2,e3) - (e3,€3,€3) =
(e2,€2,€2) - (€2, €3, €1
(e2,e3,€1) - (e1,e1,€1
(e3,e3,€3) - (e3,€1,€2

(es,e1.e2) - (€2, €2,€2

)=
)=
es) =
)=

and 9(es, e, €:) = (ei,ei,€:) for i = 1,2,3, Pler, e2,e3) =

(e3,€1,€2), Y(es, e1,69) =

(e1,€2,€3)-

(e1,e2,€3)
(62, 63,61)
(e2,€3,€1)
(e3,e1,€2)

(637 81,62)

(e2,€3,€1), (e, e3,e1) =

The mapping f: .S — C constructed in the proof of Theorem 4.4 is

fle:) = (&5, e1,65)

flm1) = (e, ez,e3), f(m2) = (e2,€3,€1),

fori=1,2,3,

and it is an isomorphism of S onto (S o C)(S).

5.2.

Let S = {e1, ez, e5,€4,€5,my,mg, ..
ey -
e -
€1
e -
e -
€1
€3 *
€3 *
e3 -
€3
€3
€3

my1 - € =M
M1y - €1 = M1q
my6 - €1 = Mig
myr - €1 = it
myg - €1 = Mag

Mmgo - €1 = Mao
mp ez = My
my €3 = My

mi0 - €3 = M1o
mi2 €3 = My2
mys - €3 = Mys
mig - ez = Mg
€5 - My = My
€5 Mg = Mg
€5 Mg = Mg
€5 - M2z = Ma3
€5 - Mas = Mas
€5 ' Mag = Mg

€2
€
€2

€2
ez

€2

€4

eq:
€4 "
ey
eq-

€4

.,Mao} where

mi =mn
M1z = M2
miz = mag
tMg = Mg
*Mys = Mas
mie = Mie
cmg = Mg
Mao = M20
M2 = Ma2
Magq = M24
Mag = Mag
*Mgg = M2g

ms3 €5 = M3

ms - €5 = M3

Mg - €5 = Mg

Mot * €5 = M2y

Mg - €5 = M2g

TMag - €5 = M29,

ma1 -
ma2 -
mg3 -
Mag -
Mas -
Mae *
my -

mg -
mg -
myg -
mzo *

f(ms) = (es, e1, €2),

€y =
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further e; - e; = e; for i = 1,2, 3,4, 5, and
mi - My = My, My - M3 = M5, My - Mz = Mg, M7 - Mg = Mg, M4 * M10 = T12;
my My = Mg, M5 - Mg = M3, Mig - M7 = M5, Mg Mo = Mg, Ma7 - Mae = M21,
M6 * Mg = M3, M2y * Mg = M24, M30 * M24 = M21, M3g - M2g = Ma7.
As

(my - m2) - m3 =my4-mg =me =my -ms =my - (my - m3)

(ma6 - m7) - Mg = M5 - Mg = Mg = Mg+ Mo = Mg - (M7 - mg)

(mso - Mag) - Mae = Mgy - Thoe = Moy = M30 * Mag = Mo " (Mg - mzﬁ)
and the other products (m; - m;) - my, mi - (m; - my) are not defined, (S,-) is an
e-semigroup in which E(S,-) = {e1, e, e3,€4,€5} and

er(m1) = e1, er(my) = e, ep(m2) = e3, er(M2) = €4, er(ms) = ey, er(mz) =
er(mq) = e1, er(my) = ,eL(m ) = e3, er(ms) = e5, er(m ) = ey, er(ms) = €5
er(my) = ey, er(mq) = e3, er(ms) = e3, er(ms) = &,,e,;(mg) = e1, er(mg) = e,
er(mio) =e1, er(mio) = e, er(Mma1) = ez, er(mu) =e1, ep(miz) =g, er(miz) = €3,
e(mi3) = ez, er(myz) = 4, €L (M1a) = €2, er(M1s) = €1, 1, (M15) = €2, er(1m15) = €3,
er(mag) = ez, er(mis) = ey, e (mir) =es, er(miz) =ei, er(mig) =es, er(1mis) =es,
er(mao) =es, er(mus) = e1, eL{mao) = eq, er(Mao) =e1, e (ma1) = e3, er(ma1) = €2,
er(mas) = 64, er(maz) = eg, e1.(mas) = €5, er(maz) =€y, e (M2q) = €4, er(mas) = e,
er(mss) = R(m25) =e3, e (Mzg) = e, er(Mag) = €3, e (M27) = €3, er(may) = €5,
e1(ag) = €4, en(mas) = €5, eL(M29) = €4, er(M29) = €5, e (M30) = €3, er(M30) = €a.
Put further ¢(e;) = ¢; for i = 1,2,3,4,5 and @(m;) = my410 where summation is
mod 30. We show that S = (S, -, ) is a c-semigroup.

(1) is trivial and follows directly from the definition of ¢.

(2): its verification is a routine; for instance, er(mi) = ez = er(ma) =
er(p?(m1)), er(mys) = e = er(ms) = er(p?(mus)), er(mag) = e5 = ep(mig) =
er(p?(mag)).

(3): As er(m;) # er(ms) for any i < 30, the relation ey (m;) = egle;),
er(m;) = er(e;) holds for no i < 30, j < 5. Further, by simple computa-
tion we see that e;(m;) = er(mj), er(m:) = er(m;) hold only for the fol-
lowing pairs (m;,m;): (mg,maz0), (ms,mag), (me,ma7), (me,mie), (mg,mao),
(maz,ma1), (mas,mys), (mis,ma4), (Mis,ma1), (mis,me7). In all these cases,
however, ey(p(m;)) # er(p(m;)). Thus really m,n € S, er(m) = eg(n),
er(m) = er(n), er(p(m)) = eL(p(n)) = m =n € E(S) and (3) holds.

(4): If m,n € S~ E(S) and m-n is defined then it is easy to verify er(m) = e, (n),
er(e(m)) = er(p(n)). E.g for mi, ms: er(mi) = es = er(ms), er(p(my)) =
er(mi) = e = eg(mis) = er(@(ms)); for mgo, maa: er(mao) = eq = eL(mas),
er(p(mao)) = er(my) = €1 = er(m4) = ep(p(mo4)). On the other hand, by a
simple computation we find that er(m) = ez (n), er(¢(m)) = er(p(n)) hold for no
other pairs m,n € S — E(S).
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(5) can be verified also by a simple computation. E.g. ep(p(mi - mg)) =
er(p(ms)) = er(mu) = e = er(mn) = er(p(m)), er(p(mig - my)) =
er(p(mis)) = er(mag) = es = er(mag) = er(p(mg)). Thus S = (S,-,p) is a
c-semigroup. We construct (S o C)(S). We have G = E(S) = {ey,e2,e3,€4,€5} and
C(S) = (G,C) where C = {(e1,e1,e1), {2, €2, €2), (€3, €3, €3), (€4, €4, €4), (€5, €5, €5),
(e1,€2,e3), (€3, €2, €4), (€4, €2, €5), (€1, €2, €4), (€3, €2, €5), (€1, €2, €5), (€1, €5, €3),
(e3,e5,e4), (€1, €5,e4), (€1, €4, €3), (€2, €3,€1), (€2, €4,€3), (€2, €5, €4), (€2, €4, €1),
(e2.¢€5,e3), (2, €5, €1), (e5, €3, €1), (€5, €4, €3), (€5, €4, €1), (€4, €3, €1), (€3, €1, €2),
(es,€3,€2), (€5, €4, €2), (€4, 1,€2), (€5,€3,€2), (€5, €1, €2), (€3, €1, 5), (e, €3, €5),
(es,e1,€5), (e3,e1,e4) };
here (e1,e3,€3) = (er(m1),eL(¢p(m1)),er(mi)), (es, ez es) = (er(mg),er(p(ms)),
er(my)) etc. Further (SoC)(S) = (C,-,¢) where (e;,e:,¢:)- (s, €5,€;) = (es, €5, €;) for
i=1,2,3,4,5, (ei,e,€) - (e, e, ex) = (e, €5, €x) - (er, ex,ex) = (e, €5, ex) whenever
(ei,ej,ex) € C and

(e1,€2,e3) - (e3,€2,€4) = (€1, €2,€4)

(e1, €2, €3) - (e3,€2,€5) = (e1, €2, €5)
(e3,€2,e4) - (e4,€2,€5) = (e3,€2,€5)
(61 €2, ¢€. 4) . (64,62,65) = (31,62,65)
(61,65, e3) - (e3,e5,€4) = (e1,es,€4)
(e2,€a,€1) - (e1, 4, €3) = (€2, €4, €3)
(e2,€5,€3) - (€3, €5,€4) = (€2, €5, €4)
(e2,e5,¢1) - (e1,€5,€3) = (e2, €5, €3)
(e2,€5,€1) - (e1,€5,€4) = (€2, €5, €4)
(65,84,61) N (61, €4, €; 3) (55,547 63)
(es,e1,es5) - (es,e1,e2) = (es,e1,e2)
(ease1,65) - (es,€1,€2) = (es,€1,€2)
(es,en,e4) - (es, e1,85) = (e, €1, €5)
(e, en,eq) - (eqs €1,€2) = (e3, €1, €2)

and ¥ (ei, ej,ex) = (e;,ex, €:) if (e;,e;,ex) € C. The mapping f: § — C from the
proof of Theorem 4.4 is f(e;) = (e;, e:,€;) for i = 1,2,3,4,5 and f(my) = (e1, €2, €3),
f(ms) = (e3, 2,€1), f(m3a) = (ea, €2,€5), f(ma) = (€1, €2, €4), f(ms) = (e3,€2,€5),
f(me) = (e1,€2,€5), f(mr) = (e1,e5,€3), f(ms) = (es,€5,€4), f(mg) = (e1,e5,e4),

f(mio) = (er,eq,e3), f(mu) = (e, e3,e1), f(miz) = (e2,eq,€3), f(miz) =
(e2.€5,€4), f(mia) = (ez,eq,€1), f(mis) = (ez es5,e3), f(mis) = (ez,es5,€1),
fimir) = (es,es,en), f(mis) = (es,eqses), f(mi) = (es,eq,e1), f(mao) =
(esse3,€1), f(ma) = (es,e1,e2), f(maz) = (es,e3,e2), f(mas) = (es,eq e2),
f(mas) = (es,e1,e2), f(mas) = (es,es,e2), f(mas) = (es,e1,€2), f(mar) =
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(e3,e1,e5), f(mas) = (es,e3,e5), f(mao) = (es,en,€5), f(Mm30) = (e3,€1,eq); this
mapping is also an isomorphism of S onto (S o C)(S).
In the light of Examples 5.1 and 5.2 we can formulate

Problem. Let S be a c-algebra. What are the necessary and sufficient condi-
tions for S to be isomorphic with (S o C)(S)?
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