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TWO INEQUALITIES FOR SERIES AND SUMS 

HORST ALZER 
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Summary. In this paper we refine an inequality for infinite series due to Astala, Gehring 
and Hayman, and sharpen and extend a Holder-type inequality due to Daykin and Eliezer. 
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1. A N INEQUALITY FOR INFINITE SERIES 

In 1985 K. Astala and F.W. Gehring [1] presented a proof for the following in

equality. 

P r o p o s i t i o n 1. Suppose that B \>. 1 and (a*) (k = 1, 2, . . . ) is a sequence of 

non-negative real numbers such that 

Y^ak^ Ban 
k=n 

for alln^l. IfO<p< 1, then 

(i.i) £<s;cx, 
7 1 = 1 

where 

c*= m 

BP - { в - i y 
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We note that Astala and Gehring applied this result to prove an interesting distor

tion property of quasi-conformal mappings. In 1986 W. K. Hayman [4] showed that in 

inequality (1.1) the constant C* can be replaced by C = Bp/(Bp - (B - l)p) and that 

this constant is the best possible. Furthermore, Hayman established that the sign 

of equality holds in (1.1) (with C instead of C*) if and only if an = a i ( l — 1/B)"-"1 

(n = 1, 2, . . . ) . In 1988 G. Bennett [2] provided a very short and elegant proof of 

Hayman's version. In this section we show that a modification of Bennett's proof 

leads to a refinement of inequality (1.1) with C instead of C* under the slightly 

restrictive assumption that all ak 's are positive. 

T h e o r e m 1. Let (a.),) (k = 1,2,. . .) be a sequence of positive real numbers, and 

suppose that there exists a constant B > 1 such that 

(1-2) an = Y^ak^Ban 
k=n 

holds for all n > 1. # 0 <p < 1, then 

(1.3) D'^hana
p

n-
2(Ban-an) + Yja

p
n^Cap, 

n = l n = l 

where 

°---5-i- - -<"-{^H-
The sign of equality holds in (1.3) if and onJy if 

' l \ » - i 
( n - 1 , 2 , . . . ) . 

P r o o f . Let p £ (0,1); we denote by / the function 

f(x) = -(l-(l-x)p), . 6 ( 0 , 1 ) , 

Then we obtain 

and 

ГW-Êf',)(-!)*!.(*-!)•*-». 
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Since ( - l ) * ^ ) > 0 for k > 2, we conclude f"(x) > 0 for all x e (0,1). Thus, / is 
strictly convex on (0,1), which implies 

(1.4) f(x)>f(y) + (x-y)f'(y) 

for all x, y e (0,1), with equality holding if and only if x = y. Setting x = an/an 

and y = 1/B in (1.4) we get after simple calculation 

(1.5) an - <+1 > <-^fQ+an-W{^ - i)/'(i). 

Form (1.2) and (1.5) we obtain 

(1.6) f(i)B^±a^f(^)±ana^ 
n = l n = l 

.EK-<+ 1)-fG)|<-v(J-i). 

Further, from (1.6) and (1.2) we get 

B-if'Q/fQ}±anan-HanB-an) + ±aPn 

n = l n = l 

. B'-P B „ 
^ .,. ,„,a\ $ 

Since 

and 

/ (1/Б)" 1 ^ / (1 /ß )" 1 ' 

, - p Щ g ) = й i -ЛP(B-Г' 
/(1/ß) IBP-(B-1)P 

B BP 

f(l/B) BP-(B-1)P' 

we obtain inequality (1.3). Moreover, we conclude that the sign of equality is valid 
in (1.3) if and only if an/an = 1/B for all n >• 1, and this is true if and only if 
an = a i ( l - 1/B)"-1 for all n ^ 1. • 

R e m a r k . Since D >- 0 and Ban - an >- 0 (n >- 1), it follows that (1.3) refines 
inequality (1.1) with C instead ofC*. 
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2. A N INEQUALITY FOR SUMS 

In 1968 D.E. Daykin and C.J. Eliezer [3] presented several interesting inequalities 

which are closely related to the classical Holder inequality 

(2.1) £akbk<(£al) "(£bl) ' (p, q > 0; 1/p + 1/q = 1). 
k=i 4 = i ' 4 = i ' 

One of their results is 

Proposit ion 2. Let p, q, ak and bk (k = 1, . . . , n) be positive real numbers. If 

l/p + 1/q < 1, then 

/ n , (l /p) + (l/<j) 1 T / ™ \ l /P / " N 1/q 

M (£•*) < .•[(£«) (£l) 
+(t°i-'n)""(i°i>>i 

4=i 7 4 = i 

We note that this theorem has been quoted in the well-known book [5, p. 53] 

and in the recently published monograph [6, p. 104]. The proof for (2.2) given by 

Daykin and Eliezer is quite complicated. Apparently, it has been overlooked that 

an application of the Cauchy-Schwarz inequality provides not only a very short and 

simple proof but leads also to a refinement of (2.2). Moreover, it turns out that the 

assumption "l/p+ 1/q < 1" can be dropped. 

Theorem 2. Ifp, q, ak and bk (k = 1, ..., n) are positive real numbers, then 

(2.3) 
x ( l /p)+( l /«) / n n s l/(2p) , n 

^akbk) $ ( £ « £ • £ < « (E-JE-j-2 
k=l ' 4 = 1 k=l ' V / c = l k=l 

The sign of equality holds in (2.3) if and only if there exist real numbers Ci and C2 

such that a £ _ 1 = C\bk and bq
k~

l = C2ak (k = 1, . . . , n). 

P r o o f . Applying the Cauchy-Schwarz inequality we obtain 

(2.4) £ < £ al~Pbi = £ « / 2 ) 2 £ ( % " p / 2 ^ ) 2 » ( £ akbk)2. 
*=1 k=l k=l k=l v k = l ' 

Since p > 0, this implies 

(2.5) 
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/ » n s l/(2p) / n 

( £ < £ « ) >(£< 
Ч f c = l k = l ' Ч ) c = l 



Similarly, we get 

/ " " \!/(-«) / n \ 1 / i 

(-•«) (X>25>ftH >(l>fc) • 
V f c = l fc=l 7 4=1 y 

Form (2.5) and (2.6) we obtain inequality (2.3). The sign of equality holds in 

(2.3) if and only if it holds in (2.5) and (2.6), and this is true if and only if there 

exist real numbers d and C2 such that av
k
/2 = Ciak~

v,2bk and bq
k
/2 = C2akbl~g/2 

(k = l,...,n). 0 

R e m a r k s . 1) li p = q = 2, then (2.3) reduces to the Cauchy-Schwarz inequal

ity. 

2) Using the arithmetic mean-geometric mean inequality (xy)1/2 <, \(x + y), we 

conclude that (2.3) is sharper than (2.2). 

3) It is natural to ask whether the two upper bounds for ~~ akbk which are given 

in (2.1) and (2.3) can be compared if p, q > 0, 1/p + 1/q = 1. Let us denote the 

bounds given in (2.1) and (2.3) by Bi and B2, respectively, li p = q = 2, then 

Bi = B2. Let us assume that p > 2 > q > 1 and n >. 2. Then we obtain for all 

sufficiently small a\ that B\ < B2. On the other hand, if we set ai = ... = a„ = 1, 

bi = 1 and b2 = ... = bn = e > 0, then we get for all sufficiently small e that 

S i > B2. Hence, the two bounds cannot be compared in general. 
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