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A SECOND LOOK ON DEFINITION AND EQUIVALENT NORMS 

OF SOBOLEV SPACES 

J. NAUMANN, Berlin, C. G. SlMADER, Bayreuth 

(Received December 21, 1998) 

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday 

Abstract, Sobolev's original definition of his spaces Lm,p(Q) is revisited. It only assumed 
that Q C Rn is a domain. With elementary methods, essentially based on Poincare's 
inequality for balls (or cubes), the existence of intermediate derivates of functions u £ 
Lm,p(U) with respect to appropriate norms, and equivalence of these norms is proved. 
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USG 1991: 46E35 

1. INTRODUCTION 

In 1936-38, S. L. Sobolev introduced in his pioneering works [10], [11] spaces of in-
tegrable functions having weak derivatives in Lp. These function spaces have turned 
out to be an appropriate framework for studying boundary value problems for par
tial differential equations by using methods of functional analysis. A presentation 
of these results obtained up to 1949-50 may be found in Sobolev's monograph [12]. 
On the other hand, these function spaces became a research field of independent 
interest, and since that time the theory of these spaces has undergone an enormous 
development (cf.e.g. [2], [5], [9], [13]). 

The commonly used definition of these spaces in the contemporary literature is as 
follows. Let H C Un be an open set, let m € ^ and 1 < p ^ +oo. Then the vector 
space 

Wm>p(tt) := {u e LP(Q): 3 Dau 6 LP(Q) V |a| ^ m) 
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is nowadays called "Sobolev space". Here Dau әi CÏ 
U 

dx\ l ...'dx 
f ïW. 
lì. 

denotes the weak 

(or generalized) derivative of u corresponding to the multi-index a = { a i , . . . , a n ) 
(|a| = a i + . . . + a n ) (cf. e.g. [1], [4], [8], [14]). Wm<p(ti.) is a Banach space with 
respect to the norm 

Y, №"и 
i/p 

p 
L-ҶП) if 1 < p < +oo, 

u 
ŕïlőra 

И/ tм-iҶÍÎ) 

J 2 il-C>0f«II.Ł~<0> Іf p = +O0. 
a|^m 

The above definition of the space Wm,p(0) fits very well the weak formulation of 
boundary value problems for partial differential equations on bounded domains, but 
it is less convenient when unbounded domains are under consideration. To see this, 
let us consider 

fi:= {xe Un: \x\ > l } , 

u(x) : 
x 2~n 

log jx 

if n > 3, x Є fì, 

if n = 2, x Є fì. 

It is readily seen that 

u Є Lf (fì) for any 1 < q < +oo 

u І Lp(fì), 
дu 

дxi 
Є Lp(fì) (i = 1 , . . . ,n) for any p > n 

71 — 1 

Au = 0 in n , u = 0 on 50 . 

Therefore, for the function space setting of boundary value problems for PDE's in 
unbounded domains, the following definition seems to be more adequate:1 

Lm'p(Ù) := {u Є Líoc(fì): Э D a u Є Lp(fì) V|a m }• 

This is a slight generalization of Sobolev's original definition [10], [11], [12] where 
he used functions in L1(H) in place of L^O) [notice that the letters W and L for 
the notation of the above spaces in [12] vary in the contemporary literature]. Our 
definition of Lm,p(fi) coincides with that in [6], [7]. 

To furnish Lm,p(Q) with a norm, we assume throughout this paper that U C Rn 

is a domain, and we fix any G CC H,2 and define for every u G Lm,p(Q) 

t-J|m-p,n,G : u LҶG) + Mm,P,fЬ 

1 Without any further reference, in all that follows we restrict our discussion to the case 
1 ^ p < +oo. 

2 That is, G is open and bounded and GCSl. Clearly, we assume G ^ 0. 
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where 

í u\m>p]Q := f 2 ^ i l D " w V ^ ItňťV 11 p 

t a ™m 
ЫҶП) 

(note that ||u||m,p;fi.G = 0 implies in particular |u|m.->;n = 0, hence u = P (=-. poly
nomial of degree < m - 1; cf. Theorem B below) a.e.on G, and ||P||Li(G) = 0 gives 
P •— 0 on G and thus u ~ P — 0 a.e. on ft). 

The following problems occur in the study of the spaces Lm,p(fi): 

. existence of intermediate derivatives D^u 6 Lfoc(ft) (|/3| ^ ?n — 1) /or any 
u6Lm>r(U)\ 

. completeness of Lm,p(£l) with respect to the norm || • ||m.P;n.G; 

. equivalence of the norms \\'\\mtp;Q,Gk for arbitrary domains Gk CC H (k = 1,2). 

By using the method of spherical projection operators, these problems are settled 
in [12] for bounded domains H which are finite unions of domains each of which is 
starshaped with respect to a ball (cf. also [3], [7], [12]). 

The aim of the present paper is to solve problems 1 .-3. by an entirely different and 
simpler method which is essentially based on Poincare's inequality over balls. This 
inequality can be proved by elementary calculus arguments. Moreover, we introduce 
a new class of norms on Lm'p(Q) which are equivalent to the norm || • ||m,p;n,G' and 
give a better insight into the product space structure of Lm,p(U). 

A more detailed presentation of our approach will appear in a forthcoming publi
cation. 

2. NOTATIONS. PRELIMINARIES 

We introduce the notation for our following discussion: 

V(m):={P = P(x):P(x)= ]T) a / , x G f } 

= vector space of polynomials of degree ^ m in Rn; 

for any set G C Un and x 6 G let 

\$st(xydG) ifG#r\ 
ifG = Rn; 

finally, 
BK(^o)-{^er:|x-a;o|<B}; 

in particular, we denote Bd* ~ BdT\x)-
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2.1 We begin by proving two auxiliary results. 

Theorem A. Let G C Un be a bounded open set. Then for any u € Wm'p(G) 
there exists a uniquely determined polynomial Pu e V(m — 1) such that 

(2.1) / Da(u~Pu)dx = 0 V|a| < m - l , 

G 
(2.2) ||Pu||w/"'~i-*'(G) ^ Ollw|lwm-":1'''(G)5 

where the constant C depends only on m, n, p and mesG-

P r o o f . Let m = 1. Given any u 6 Wl,p(G), then 

p = _ / u(y) dy 
mesG J 

G 

satisfies (2.1), (2.2) (with C = 1). 
Suppose the claim is true for m ^ 1. Let u e Wm+l'p(G). Define 

Q(x) := V ) bpxp, x e En, where bp := — - / D^udy. 
. f7™*/ p! mesO J 
\P\=m G 

Clearly. 

íва(u-Q)dx = 0 \а m 

G 

(2.2') | |Q||VK"^'(G) ^ C|Mlw"-''(G) 

(the constant C involves bounds on \xy\ (\y\ ^ m — 1) over G). The function 
v := u - Q lies in Wm>p(G). Hence, there exists a Pv 6 P(m - 1) such that 

D 7 (г í -P„)dx = 0 V 7 | ^ m - 1 , 

G 

(2.2") IIPuЦи^-^ïҶG) ^ ^IMІИ^-^ЇҶG) ^ C> INIІW^-ÏҶG) 

Thus, Pu :=: (P v 4- Q) € P(m) and 

D a (u - (Pv + QÝj dx = ' G 
/ Da(u - Q) dx = 0 V|a| = m î 

G ^G 
/ D a ( u - Q - P w ) d x = 0 V | a | ^ m - 1 , 

and (2.2) (with m in place of m - 1) is readily deduced from (2.2') and (2.2"). 
The uniqueness of Pu also follows by induction. Q 
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Theorem B. Let G C Un be a domain. Let u € Lm*(G) satisfy D a u = 0 a.e, in 
G for all \a\ = m. Then there exists exactly one P € V(m - 1) such that 

u — P a.e. in G. 

Proof , a) Let x 6 G be arbitrary For 0 < g < dx we consider the standard 
mollifier ue on the ball B2d2 • Then 

\\u ~ ue\\Li{Bilj) ~*0 as o-s-0, 

(DX)( f ) = (Dau)e(0 = 0 V£ € Bd^VH = m. 

Hence there exists a polynomial P ( e ) e V(m - 1) such that ue\p> = P(e)|R, • 

The space P(m - 1) being complete with respect to the norm || • | o ||L1/B *, 

there exists a P(x) e V(m - 1) such that \\p(x) - ue\\Li{Bdx) -* 0 as Q -> 0. Thus, 
u = P(:c) a.e. in B^. 

b) Let x,y e G with B^ n B^ ^ 0. Then B(/J; O Bdy is open and therefore 
p(*) = p(v) on Bdr n B, , i.e. P ( x ) = P(»). 

'г ^y 

c) Let x0 e G be arbitrary, but fixed. Define 

M : = { x € C : P ( x ) = P(*fl)}. 

Clearly, x0 e M. The set M is open, for x e M and y e Bdj imply Bd^ n Bdv +%, 
and by b) we have P(^> = P(x) = P*3*), i.e. Bdx C M. On the other hand, M is 
relatively closed. Indeed, let Xk e M and xk -^ x e G. Then x/, 6 B<^ for all k ^ k0) 

and again using b) gives P(x) = P ^ o ) = p(*o), i,e, x e Af. Thus, M = G. 
d) Set P := P ( x , , ) . Let (?* (k G N) be bounded open sets such that Gk CC 

Gfc+i CC C7 and G = U Gfc* Given any k e M there exist #< G G* (i = 1, . . . ,s) 
S 

such that Ofc C U -3d,. • By a) and c), 

«-PIUҷGfc) < XľHИ"PIЬҶ-B.ia,) = ° 
i-1 

u = P a.e. in Gk, and therefore u = P a.e.in G. D 

2.2 The following result is fundamental to our subsequent discussion. 

Theorem C. (Poincare's inequality). Let BR — BR(x0) be any fixed ball. Then 
there exists a constant G(R) > 0 (depending also on m, n and p) such that 

u Wm'l^(Bn) ^ &(Щ\u\m,,p,BRï 

(2-3) \\fue Wm>v(BR) with f D0udx = 0 V|/?| < m - 1. 

вR 
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An elementary proof of this theorem 3 for m — 1 which is based on potential 
estimates, may be found in [4]. The proof for m > 2 follows by induction. 

3. EXISTENCE OF INTERMEDIATE DERIVATIVES 

Without any further reference, throughout the following discussion we denote by 
ft a domain in Un. Our first xesult in solving problem 1 is 

Theorem 3.1. Let u € Lm,p(Q). Then there exist the weak derivatives 

D̂ <u e Lf0C(H) V | / ? | < m - l . 

P r o o f , a) Let x € O be arbitrary. As above in the proof of Theorem B, for 
0 < Q < dx we consider the standard mollifier ue on B%d*- For any sequence (Qk) 
such that 0 < Qk < dx and Qk —>• 0, we have 

(3.1) I N - ^ e J I L U - ^ ) ~>0. \u-uex\m,P',B,iii: ->0as k-> oo. 

By Theorem A (with G = BdJ, there exists a PU(! € V(m - 1) such that 

(3.2) / D^ (uek - PUeu) dx = 0 V|/5| ^ m - 1. 
2A; 

Define v* := uefc — PuPfc- Then D a ^ = Dauek on B<^ for all \a\ = m. Using (3.1) 
and (3.2), Theorem C gives 

\\Vk ~ Vl\\w™-^>(Bax) ^ C(dx)\uUk - Uo,\mlP;Bli;r ~> 0 

and thus ||v^ - vi\\w™<i>(Bd:r) -> 0 as k,l —>• oo. Hence, there exists v € Wm,p(BdJ 
such that \\v — VA-IIIY^-I^B,*,.) ~* 0 as k —> oo. 

Let (p € C£°(ft). For any multiindex a with |a| = m we have 

J k-->oo J 
Bd- Bd- Bd.4. 

( - l ) m / ( D a u Ь d x - ( - l ) m Hm / (Dauek)tpáx 
J fe-»oo / 

ßrf-- в** 

0, 

o 1 /2 
3 If we replace for x € Un the Euclidean norm \x\ - \x\2 ^ (J2 xi) by t h e equivalent 

£ = 1 

norm |x|oo := max {\xi\, i — 1,. . . , n}, then a "ball" £#(#0) with respect to | • |co~norm 
is the cube WR(XO) :=-= {x € Rn: |xf --soil < R, - -= 1, • • • .«}• 1a this case Poincare's 
inequality for m = 1 admits a very simple proof by induction on n. 
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By Theorem B, there exists a polynomial P 6 V(m — 1) satisfying u — v — P a.e. in 
Bdx. Thus, u - (v + P) e Wm'??(BdJ. ___ 

b) Let ft' CC ft be arbitrary. There exist X{ € ft' (i = 1, . . . ,s) such that ft' c 
S 

(J Bd,.. • From a) we have U\B,,... € Wm*p(Bdx.) (i -= 1 , . . . , s). Then, by a standard 
. i ' * J ' - 1 

argument, u € Wm'p(ft') (cf. e.g. [8], [12]). 
OO 

c) Let Uj be subsets of ft satisfying ftj CC ftj+i (j — 1,2,...) and ft = |J Oj. 
j=:l 

Let itj ' 6 Lp(Oj) denote the weak D^~derivative (\/3\ ^m — 1) of u in ft.,-. It follows 
that 

u{ß) uj+1 <pdx = f uf) >áx V(Ѓ» 6 C~( )i 
Q 

(/З) _ я.(/3) i-e. itj^i — u) a.e. in ilj. Therefore we can choose appropriate representatives in 

Uj (not relabelled) such that uf^x(x) — uf*(x) for all x € ft?. Then the function 

u&\x) := uf)(x) for x 6 fy (j = 1,2,...) 
4 

is well defined on ft, u^> 6 Lfoc(ft) and u^> - D ^ a.e. in ft. D 

R e m a r k . Let ft 6 C° (i.e. ft is bounded and the boundary of ft is locally the 
graph of a continuous function). Let u G Lmj3(ft). Using a method from [8] for 
proving the compactness of the imbedding W1,p(ft) c Lp(ft), we obtain: 

D0učLp(tt) V | / ? | ^ m - l 

(cf. also [3]). 

4. NORMS ON Lm'p(U). COMPLETENESS OF Lm,p(ft) 

Let G CC ft. By Theorem 3.1 we may define, for any u € Lm-P(ft), 

D^udx I«|m-1;G := Yl 
IčKm-i G 

Mm,p;íT.,G í= Mm-1;G + |w|m,p;fí-

The norm | * |m,P;fi.G seems to be better adapted to the study of completeness and 
equivalence of various norms on the space Lm,p(ft) than the norm || • ||m,p-n.G con
sidered in the introduction. 

To begin with, we prove 
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Lemma 4.1 . There holds: 
1. | • |m_i ;G is a norm on V(m — I). 
2- | • |m,p;fi,G is a norm on Lm'v(U). 

P r o o f . 1. Let be P € V(m - 1) such that |P |m-i ;G — 0, We may write 
P(x) — 12 0,0X0, x € Kn. In particular, it follows that 

f3\^m-l 

0= Y, [v0Pdx = Y, Ml^mesG. 
\0\-m~l G ,p\=m-l 

i.e., ap = 0 for all \(3\ = m — 1. Repeating this argument gives P == 0. 
2. Assume u G Lm,p(ft) satisfies |u|m,p; Q,G = 0. By Theorem B, u = P a.e.in 0, 

where P € V(m — 1). Then 1. implies u = 0 a.e.in H. 
All the other properties of both norms are readily seen. D 

We now define 

L™'P(Ü) := J u € Lm'p(U): / Ђßu dx = 0 V|/i| ^ m - 1 

G 

Then 

(4.1) Lm»P(fi) = L^'p(n)eV(m - 1 ) | 0 (direct decomposition). 

Indeed, by Theorem A there exists a uniquely determined P^ G V(m — 1) such that 

f D / 5 (u -P u )dx = 0 V|/3| ^ m - 1 . 

G 

Then u0 := (u - Pu) G LG
i,p(H) and u = w0 + Pu. 

Ifi-€LG , P(n)nP(m~-l) | a , i -e. u G P(m-~1) and fl^vdx = Ofor all | /?K m - 1 , 

G 
it follows that v = 0. 

With the decomposition u = u0 + Pu just introduced, we have 

Nm,p; fi,G — |Pu|m-l; G + NoU,p; fi-

Furthermore, if G is a domain with G CC H, then | • |mjp. Q is a norm on LJJ^rYj 
(cf. Theorem B). 

Our principal result in this section is 
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Theorem 4.2. Let (uk) be a sequence of functions in Lm^(Q) such that 

\uk ~~ m\m,P; n ^ ° ils M -» co-

Let x0 €Qbe arbitrary, but fixed, and let PUk -= Pi*'0 € V(m-1) be the polynomial 

from Theorem A: 

D^u* - Pu,)dx = 0 V|/3| C m - 1 (k = 1,2,...). 

B**o 

Then there exists a w e Lm>p(H) such that 

(4.2) « - ( « * - P*jll«^-.,,,oM -+ ° <* * "> °°. W ' C C ° ИЛ"-i,iҷП') 
(4.3) |u - WfcU.p; o -+ ° as k ~> 00. 

P r o o f , a) From Theorem C (Poincare's inequality) it follows that 

||(«fc - FuJ - (ui - PW,)I|^„...,{B^ ) 
0 

V . i„. авЛP 

0 
= ||(Ufc ҷ Ui) - (PUk ҷ P«j)Hw^--^'(Bti ) + \Uk ~ Ul\mtPi Bdx 

^ ( l + (C(4 0 )) p )l«J.-«H P n, P : B d , 0 ~~*° a s k , / ^ o o , 

i.e., (life - P u J is Cauchy in Wm*(BdmQ). 
b) Define 

M:={xe tt: (uk - P.J is Cauchy in Wm>?(BdJ}. 

By a), xQ € M. We shall show that M is open. To this end, let x e M. Given 
any y e B^ we have to show that (uk - PuJ is Cauchy in Wm-v(Bdv). Indeed, let 

PS} € P ( m - l ) satisfy 

D ' V f c - P - i ^ d a ^ O V | / 3 i ^ m - l 

Bd У 

(cf. Theorem A). The same reasoning as in a) gives: (uk - Pi? ) is Cauchy in 

W m , p ( B d J . Denoting E := Bdj: ft Bdl, we find 

^ IICRt* - Uk) - (PUi - Ut)\\wm^]l{Bdx) + ||(«fc - Pi?) - («! ~ ^ J l l v i / — i . P ( B f l , ) 

- * 0 a s k J - » o o . 
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Thus, (PUh - Pif}) is Cauchy in Wm~l>p(E) and therefore also in Wm-~l^(Bdv) 
(since all norms on the finite dimensional space V(m - 1) are equivalent). Hence, 
(uk ~~ Puk) is Cauchy in Wm*(Bdy). 

Next, we shall show that M is relatively closed, i.e., xs e M, xs -> x 6 fi implies 
x € M. Indeed, we have #£D 6 B^ for a sufficiently large s0! and (u* — P^:) *s 

Cauchy in Wm*p(Bdx, )• Since Bdj:x n Bdr ^ 0, we obtain as above that (uk ~ P«*) 
is Cauchy in Wm'p(B°dJ. Thus, M = 0. 

c) Let H' CC H be arbitrary Then there exist Xi 6 Q' (i = 1 , . . . , t) with H7 C 
t 

U -#<-*.- From b) we have: the sequence (uk - PUk) is Cauchy in Wm'p(Bd,.i) 

(i = 1, . . . ,t), and therefore also in Wm,p(0'). Hence, there exists a « 6 WmJ,(ft') 
(possibly depending on W) such that 

U - (îł* - P^)||и/»taҶ£i') -* ° ^ * "* °°-

OO 

d) Let Uj be subsets of Q satisfying ftj CQ Uj+i (j — 1,2,...) and Q = |J £lj> 

Let VJ e Wm*(fy) be the limit function of (uk - P«*) in W™'^) (cf.c)). Then 
^i+i = Vj a.e. in $>,*, and by choosing appropriate representatives of v^ we may 
define a measurable function u on 0, such that u = vy a.e. in Oy (j = 1,2,...). An 
analogous construction for the weak derivatives DaVj gives D a u = DaVj a.e. in flj 
(j = 1,2,...). We obtain u e W£*(n) and (4.2). 

e) It remains to show that u e Lm'p(U) and (4.3). To see this, we note that our 
assumptions imply for any \a\ = m the existence of functions wQ 6 LP(Q) such that 
wa - DaUk\\iv(Q) -+ 0 as k -> oo. Hence, wa = Daw a.e.m Oj- (Oj is from c) and 

the claim follows. 

C o r o l l a r y 4.3. Let (uk) C Lm* (Q) be Cauchy with respect to the norm 

m,P; n4 Then there exists u € F?,f (fi) such that 

u ujfellw**-1'''̂ ') ™*° as^-^co, vn'cc n, 
|u - uk\m,P; Q -> 0 as k -> co. 

Indeed, the proof of Theorem 4.2 remains true with PUk = 0. If we choose 0' = 
Bd then fD D^udx = lim L, D$ukdx = 0 for |/3| ^ m - I and therefore 

ueL™? (U). 
The following two results give the solution of problem 2 (cf. Introduction). 

That is, we consider the norm j • \miP- Q,G with G = Bdx on the subspace L^,v (O.) 0f 
Lm>p(tt) (cf. Lemma 4.1). ° *** 
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Theorem 4.4. Let G CC ft. Let (uk) C LG
l,p(il) be Cauchy with respect to the 

-»,P; £2- Then there exists u e LG
l,p(ft) such that norm 

u wJt||w»'---í'(0') "~* 0 as k —> co, Vft' CC ft, 

u WA|-П,P; ӣ ~+ 0 as k -> co. 

P r o o f , a) By Theorem A, (and Theorem 3.1), there exists PUh € V(m — 1) so 
that Vk := Uk — PUii € LR,P (ft) (k = 1,2,...), where XQ € ft is an arbitrary, fixed 

point. Then (vk) is Cauchy with respect to the norm | • |mjP; Q, and Corollary 4.3 
guarantees the existence (and uniqueness) of a v e Lg'f (ft) such that 

0 

(4.4) 
v — Vfe\\w'iL-'-p(ӣ') ~~* 0 as k -> oo, Vft' CC ft, 

v Vk\лг,P; ӣ -» 0 as k -> 00. 

b) Again, by Theorem A we find a polynomial Q € V(m — 1) such that u : 
(v + Q) e LG

XiV(tt). It follows that 

u Uk\m,p; Q = \V + Q - Vк - PUк\m,p; ӣ V ^fc|m,p; U -> 0 

as k oo. 

c) Observing that [u |m_1; G = K-fclm-i; G = 0, we obtain from (4.4) with ft' — G 

|<2-PuJm~l; G = | Q - « + ( « - « * ) + (wfe - P t - J U - l ; G 

< IV-fjfclm-l; G 

^ c0(mesC)1//p'| |u-гífc И/»'-I . ÎҶG) - * 0 

as k —> oo, where c$ is a constant which depends on m, n and p only. Since the space 
V(m — 1) is finite dimensional, we have 

Q - Pv, I VП i ; c ~ > 0 iff | |Q-PU A. w m -i./ҶQ') -> 0 for any ft' CC ft 

(cf. Lemma 4.1). Whence 

u Uк Иt"-i.p(ß') v + Q-(vk+
 puk)nw,t^i,P{QI) 

^ \\V — Vk\\wm-l'P(W) "+• IIQ ~~ Pi*fcl|wtr»"--P(fi/) ~^ 0 

as k —> oo. D 

Theorem 4.5. Let G CC ft- Then Lm'p(ft) is a Banach space with respect to 
the norm \-\mtP; n,G-

P r o o f . The claim follows by combining the direct decomposition (41) with 
Lemma 4.1 and Theorem 4.4. C3 

• ^ 
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5. EQUIVALENT NORMS 

We begin by proving a Poincare type inequality. 

Theorem 5.1. Let G CC 0. Then for every ft' CC n there exists a constant 
CQ' > 0, such that 

(5.1) IMIw»*--.i'(n') ^ Cn'Mm.p; n Vu e L^,p(n). 

P r o o f . Assume (5.1) fails. Then we find a sequence (uk) c LQ,P(9) satisfying 

Hi**|1 w**---*i»(n') = 1 (k = 1?2,...), \uk\m,p; n -> 0 as k —>• co. 

However, Theorem 4.4 implies ||«fc||iy»»--.i*(n') -+ 0 as k ^ oo, a contradiction. D 

The following theorem plays the key role for our discussion of equivalent norms 
on Lm*(fl). 

Theorem 5.2. Let Gi CC n (i = 1,2). Then there exists a constant K = 

KGX,G2 > 0 such tnat 

(5.2) M-,P ; n,Gi < KMm.p; n,G2 Vu € Lm*(Q). 

P r o o f . We make use of the direct decomposition (4.1) with G = C?2: given any 
u € Lm'p(n), we have u = u02 + P« where u02 € i m f ( n ) . Pu € P(m - 1). By (5.1) 
with n ' = <7i, 

Mm,p; n.Gi = |«02 + Pttjm-l.Gi + |«G2|m,p; 12 

(5.3) < IP«|m-l;Gi + Co(meSCi)l/p ||U02||w"--.>*(Gi) + lU02|m,p; to 

^ IPu|m-l; Gi + (1 +Co(meSCl)
1/p'CGI)|u02|m,p; to-

On the other hand, there exists a constant K0 — K0; GI,G2 > 0 such that 

[P|m„1;G3 ^ Ko|P|m-l; G2 VP € V(m - 1). 

Inserting this inequality with P = Pu into (5.3) gives 

Mm,p; n,Gi ^ K(|P«|m-l; G2 + i^02|m,p; Cl) 
j 
V. 

where K = max{Ko5l +co(mesCiJVp'Ccfi}. Finally, observing that IP-Jm-i. G2 = 
|«02 + P«|m-1; G2, |wQ2|m,p; to = |«02 + Pu\rn)P; to', the claim (5.2) follows. D 
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Theorem 5.3, Let G CC U. Then there exist constants K{ > 0 (i = 1,2) such 

that5 

(5-4) K- u TП ,p; П,G ^ Mm,p; П,G ^ K2|M|m,p; Q,G Vu Є Lm'P(П). 

P r o o f . First of all, we note that 

(5.5) KlilPiÍLl(G) ^ IP|m~l; G ^ K2||P||Li(G) VP € P(m - 1), 

where the constants Ki > 0 (i = 1,2) depend on m, ?i and mesG only. 
Let u € Lm'p(fi). We have the decomposition u = UQ + Pu with uo € L£,J>(^)> 

Pw 6 P(m - 1) (cf.(4.1)). From (5A) (with W = G) we obtain 
CG(mesG)1/p'|«0|m,p; n- Thus by (5.5) 

UO\\LHG) Š 

^llm.p; П,G — ||«0 + PuilLҶG) + І^OІm.p; П 

< max^K f 1 , ! + CG(mesG)1/îł'}(|Pu|m_i;G + Mзim,p; n), 

i.e., the first inequality in (5.4) with K-. = (max{Kfx, 1 + Co(mesG)1/p'}) 

To prove the second inequality in (5.4), we use once more (5.1) (with H' 
obtain 

-І 

G) to 

Mm.p; n,G = IPti|m-l;G + No|m,p; П 

^ K2І|гíO+Pa||LҶG) +K2(mЄSC) /p Цî-ojUľ(G) + Р0Іm,p; ß 

^ K2(||«0 + PuilLҶG) + |«OІm.p; n) 

= K2ІM|m.p; П,G; 

whereK2 = max{K 2 , l -j-GGK2(mesG)1^i}. Q 

Combining Theorem 5.2 and 5.3 gives: Let G* CC H (i = 1,2). Then the norms 
II' ||m,p;n,Gi an(l II * l|m,p; n,G2

 are equivalent From another point of view our choice 
of the norm | • |m,p;n.G (for G CC 0) seems to be very natural, too. If we consider the 
factor space Lm'p(9)/V(m-1) equipped with the usual norm then it is isometrically 
isomorphic to Lm'p(fl). 

5 Cf. the introduction to the definition of the norm m,p; ІÌ,G 
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