Mathematic Bohemia

Oleg Palumbíny
 On existence of Kneser solutions of a certain class of n-th order nonlinear differential equations

Mathematica Bohemica, Vol. 123 (1998), No. 1, 49-65

Persistent URL:
http://dml.cz/dmlcz/126297

Terms of use:

© Institute of Mathematics AS CR, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON EXISTENCE OF KNESER SOLUTIONS OF A CERTAIN CLASS

 OF n-TH ORDER NONLINEAR DIFFERENTIAL EQUATIONSOleg Palumbíny, Trnava
(Received August 7, 1996)

[^0]
1. Introduction

The aim of our paper is to give some conditions for existence of Kneser solutions of the differential equation
(L)

$$
L(y) \equiv 0
$$

where

$$
\begin{aligned}
L(y) & \equiv L_{n} y+\sum_{k=1}^{n-1} P_{k}(t) L_{k} y+P_{0}(t) f(y), \\
L_{0} y(t) & =y(t), \\
L_{1} y(t) & =p_{1}(t)\left(L_{0} y(t)\right)^{\prime}=p_{1}(t) \frac{\mathrm{d} y(t)}{\mathrm{d} t}, \\
L_{k} y(t) & =p_{k}(t)\left(L_{k-1} y(t)\right)^{\prime} \quad \text { for } \quad k=2,3, \ldots, n-1, \\
L_{n} y(t) & =\left(L_{n-1} y(t)\right)^{\prime},
\end{aligned}
$$

n is an arbitrary positive integer, $n \geqslant 2, P_{k}(t), k=0,1, \ldots, n-1, p_{i}(t), i=$ $1,2, \ldots, n-1$ are real-valued continuous functions on the interval $I_{a}=[a, \infty),-\infty<$ $a<\infty ; f(t)$ is a real-valued function continuous on $E_{1}=(-\infty, \infty)$.

If $n=1$, then $L(y) \equiv L_{1} y+P_{0}(t) f(y)=y^{\prime}+P_{0}(t) f(y), P_{0}(t)$ and $f(t)$ are real-valued continuous functions on I_{a} and on E_{1}, respectively.

It is assumed throughout that
(A) $P_{k}(t) \leqslant 0, p_{i}(t)>0$ for all $t \in I_{a}, k=0,1, \ldots, n-1, i=1,2 \ldots, n-1 ; f(0) \neq 0$, $f(t) \geqslant 0$ for all $t \in E_{1} ; P_{0}(t)$ is not identically zero in any subinterval of $I_{a} ; n$ is an arbitrary positive integer, $n \geqslant 2$. If $n=1$, then $P_{0}(t) \leqslant 0$ and $f(t) \geqslant 0$ for all $t \in I_{a}$ and E_{1}, respectively.
The problems of existence of monotone or Kneser solutions for third order ordinary differential equations with quasi-derivatives were studied in several papers ([5], [7], $[8],[10])$. The equation (L), where $p_{i}(t) \equiv 1, i=1,2,3(n=4)$ was studied, for example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were also studied, for instance, in ([1], [3], [13]).
Existence of monotone solutions for n-th order equations with quasi-derivatives was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a Kneser solution of (L) on $[a, \infty)$ for n an even number or for an odd one, respectively. Now we explain the concept of a Kneser solution, and other useful ones:

Definition 1. A nontrivial solution $y(t)$ of a differential equation of the n-th order is called a Kneser solution on $I_{a}=[a, \infty)$ iff $\left(y(t)>0,(-1)^{k} L_{k} y(t) \geqslant 0\right)$ or $\left(y(t)<0,(-1)^{k} L_{k} y(t) \leqslant 0\right)$ for all $t \in I_{a}, k=1,2, \ldots, n-1$.

Definition 2. Let J be an arbitrary type of an interval with endpoints t_{1}, t_{2}, where $-\infty \leqslant t_{1}<t_{2} \leqslant \infty$. The interval J is called the maximum interval of existence of $u: J \rightarrow E_{1}^{n}$, where $u(t)$ is a solution of the differential system $u^{\prime}=F(t, u)$ iff $u(t)$ can be continued neither to the right nor to the left of J.

Definition 3. Let $y^{\prime}=U(t, y)$ be a scalar differential equation. Then $y_{0}(t)$ is called the maximum solution of the Cauchy problem

$$
\begin{equation*}
y^{\prime}=U(t, y), y\left(t_{0}\right)=y_{0} \tag{*}
\end{equation*}
$$

iff $y_{0}(t)$ is a solution of $(*)$ on the maximum interval of existence and if $y(t)$ is another solution of $(*)$, then $y(t) \leqslant y_{0}(t)$ for all t belonging to the common interval of existence of $y(t)$ and $y_{0}(t)$.

We give some preliminary results.

Lemma 1. Let $A(t, s)$ be a nonpositive and continuous function for $a \leqslant t \leqslant$ $s \leqslant t_{0}$. If $g(t), \psi(t)$ are continuous functions in the interval $\left[a, t_{0}\right]$ and

$$
\psi(t) \geqslant g(t)+\int_{i_{0}}^{t} A(t, s) \psi(s) \mathrm{d} s \quad \text { for } t \leqslant\left[a, t_{0}\right]
$$

then every solution $y(t)$ of the integral equation

$$
y(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y(s) \mathrm{d} s
$$

satisfies the inequality $y(t) \leqslant \psi(t)$ in $\left\{a, t_{0}\right]$.
Proof. See [6], page 331.
Lemma 2. (Wintner) Let $U(t, u)$ be a contintous function on a domain $t_{0} \leqslant$ $t \leqslant t_{0}+\alpha, \alpha>0, u \geqslant 0$, let $u(t)$ be a maximum solution of the Cauchy problem $u^{\prime}=U(t, u), u\left(t_{0}\right)=u_{0} \geqslant 0\left(u^{\prime}=U(t, u)\right.$ is a scalar differential equation) existing on [$\left.t_{0}, t_{0}+\alpha\right]$; for example, let $U(t, u)=\psi(u)$, where $\psi(u)$ is a continuous and positive function for $u \geqslant 0$ such that

$$
\int^{\infty} \frac{\mathrm{d} u}{\psi(u)}=\infty
$$

Let us assume $f(t, y)$ to be continuous on $t_{0} \leqslant t \leqslant t_{0}+\alpha, y \in E_{1}^{n}, y$ arbitrary, and to satisfy the condition

$$
|f(t, y)| \leqslant U(t,|y|)
$$

Then the maximum interval of existence of a solution of the Cauchy problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

where $\left|y_{0}\right| \leqslant u_{0}$, is $\left[t_{0}, t_{0}+\alpha\right]$.
Proof. See [2], Theorem III.5.1.

Lemma 3. Let (A) hold, and let there exist real nonnegative constants a_{1}, a_{2} such that $f(t) \leqslant a_{1}|t|+a_{2}$ for all $t \in E_{1}$. Let initial values $L_{k} y(a)=b_{k}$ be given for $k=0,1, \ldots, n-1$. Then there exists a solution $y(t)$ of (L) on $[a, \infty)$, which fulfils these initial conditions.

Proof. See [4], Lemma 3.

Lemma 4. Let us assume $g(t, z)$ to be continuous on $t_{0}-\alpha \leqslant t \leqslant t_{0}, \alpha$ a positive constant, $z \in E_{1}^{n}, z$ is arbitrary and satisfies a condition

$$
|g(t, z)| \leqslant \psi(|z|)
$$

where $\psi(t)$ is a continuous and positive function for $t \geqslant 0$ such that

$$
\int^{\infty} \frac{\mathrm{d} t}{\psi(t)}=\infty
$$

Then the maximum interval of existence of a solution of the Cauchy problem

$$
z^{\prime}=g(t, z), z\left(t_{0}\right)=z_{0}
$$

is $\left[t_{0}-\alpha, t_{0}\right]$.
Proof. Let us consider the Cauchy problem
(u)

$$
u^{\prime}=\psi(u), u\left(-t_{0}\right)=u_{0}=\left|z_{0}\right|
$$

According to the assumptions, the problem (u) admits a single solution $u_{0}(t)$ on $\left[-t_{0}, \infty\right)$, where

$$
u_{0}(t)=R_{-1}\left(t+t_{0}\right)
$$

and $R:\left[u_{0}, \infty\right) \rightarrow[0, \infty), R(u)=\int_{u_{0}}^{u} \frac{1}{\psi(t)} \mathrm{d} t, R_{-1}(R(u))=u, u \in\left[u_{0}, \infty\right)$. Let us consider the Cauchy problems
(U) $\quad u^{\prime}=U(t, u)=\psi(u), u\left(-t_{0}\right)=u_{0}=\left|z_{0}\right|,(t, u) \in\left[-t_{0},-t_{0}+\alpha\right] \times[0, \infty)$,
(y) $y^{\prime}(t)=g(-t,-y), y\left(-t_{0}\right)=-z_{0},(t, y) \in\left[-t_{0},-t_{0}+\alpha\right] \times E_{1}^{n}$,
(z) $z^{\prime}(t)=g(t, z), z\left(t_{0}\right)=z_{0},(t, z) \in\left[t_{0}-\alpha, t_{0}\right] \times E_{1}^{n}$.

Then $u_{0}(t)=R_{-1}\left(t+t_{0}\right)$ is the maximum solution of (U) on the maximum interval of existence $\left[-t_{0},-t_{0}+\alpha\right]$. According to Lemma 2 there exists a solution $y_{0}(t)$ of (y) on $\left[-t_{0},-t_{0}+\alpha\right]$. Then the Cauchy problem (z) admits the solution $z_{0}(t)=-y_{0}(-t)$ on $\left[t_{0}-\alpha, t_{0}\right]$ because of

$$
z_{0}^{\prime}(t)=y_{0}^{\prime}(-t)=g\left(t,-y_{0}(-t)\right)=g\left(t, z_{0}(t)\right)
$$

on $\left[t_{0}-\alpha, t_{0}\right]$. So the maximum interval of existence of (z) is $\left[t_{0}-\alpha, t_{0}\right]$.

Lemma 5. Let (A) hold, and let there exist nonnegative real constants a_{1}, a_{2} such that $f(t) \leqslant a_{1}|t|+a_{2}$ for all $t \in E_{1}$. Let initial values $L_{k} y\left(t_{0}\right)=b_{k}$ be given for $k=0,1, \ldots, n-1, t_{0}>a$. Then there exists a solution $y(t)$ of (L) on $[a, \infty)$, which fulfils these initial conditions.

Proof. According to Lemma 3 there exists a solution of (L) on $\left[t_{0}, \infty\right)$ such that the initial conditions hold. To prove our lemma we need to prove existence of a solution $y(t)$ of (L$)$ on $\left[a, t_{0}\right]$ satisfying the given initial conditions. Consider now the following system (S), which corresponds to the equation (L):

$$
\begin{align*}
& u_{k}^{\prime}(t)=\frac{u_{k+1}(t)}{p_{k}(t)}, \quad k=1,2, \ldots, n-1 \\
& u_{n}^{\prime}(t)=-\sum_{k=1}^{n-1} P_{k}(t) u_{k+1}(t)-P_{0}(t) f\left(u_{1}(t)\right) \tag{S}
\end{align*}
$$

where $u_{k}(t)=L_{k-1} y(t), k=1,2, \ldots, n, f_{k}=u_{k+1} / p_{k}, k=1, \ldots, n-1, f_{n}=$ $-\sum P_{k} u_{k+1}-P_{0} f\left(u_{1}\right), F=\left(f_{1}, f_{2}, \ldots, f_{n}\right), u=\left(u_{1}, u_{2}, \ldots, u_{n}\right), u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots\right.$, $\left.u_{n}^{\prime}\right),|u|=\sum_{k=1}^{n}\left|u_{k}\right|,|F|=\sum_{k=1}^{n}\left|f_{k}\right|,(t, u) \in\left[a, t_{0}\right] \times E_{1}^{n}$. Then

$$
\begin{aligned}
|F(t, u)| & =\sum_{k=1}^{n-1}\left|\frac{u_{k+1}}{p_{k}}\right|+\left|-\sum_{k=1}^{n-1} P_{k} u_{k+1}-P_{0} f\left(u_{1}\right)\right| \\
& \leqslant \sum_{k=1}^{n-1}\left(-P_{k}+\frac{1}{p_{k}}\right)\left|u_{k+1}\right|-P_{0}\left(a_{1}\left|u_{1}\right|+a_{2}\right) \leqslant K_{1}|u|+K_{2}=\psi(|u|)
\end{aligned}
$$

where K_{1}, K_{2} are appropriate positive real constants. It is obvious that

$$
\int^{\infty} \frac{\mathrm{d} s}{\psi(s)}=\infty
$$

for $s \in E_{1}, s>0$. Lemma 4 yields existence of a solution of (S) on [$\left.a, t_{0}\right]$. This fact implies existence of a solution $y(t)$ of the equation (L) on $\left[a, t_{0}\right]$ which satisfies the given initial conditions. The lemma is proved.

Lemma 6. Let (A) hold, and let $y(t)$ be a solution of (L) on $\left[t_{1}, \infty\right)$, where $t_{1} \geqslant a$. Let (B) hold, where $\left(s_{0}=s\right)$

$$
\begin{equation*}
\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s) \leqslant 0, \quad N_{n}(t) \leqslant 0, \quad n \geqslant 2 \tag{B}
\end{equation*}
$$

and

$$
\begin{aligned}
M_{k}(t, s)= & \int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{t}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \ldots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1} \\
M_{1}(t, s)= & -P_{n-1}(s), \quad N_{n}(t)=\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s \\
G_{k}(s)= & L_{n-k} y\left(t_{2}\right)+(-1)^{1} L_{n-k+1} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)}+(-1)^{2} L_{n-k+2} y\left(t_{2}\right) \\
& \times \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots+(-1)^{k-2} L_{n-2} y\left(t_{2}\right) \\
& \times \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \ldots \int_{s_{k-3}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1, G_{1}(s)=0$.
a) Let n be an even number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \geqslant 0$ for $k=0,1, \ldots, n-1$. Then $(-1)^{k} L_{k} y(t) \geqslant 0$ for $t \in\left[t_{1}, t_{2}\right], k=0,1, \ldots, n-1$.
b) Let n be an odd number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \leqslant 0$ for $k=0,1, \ldots, n-1$. Then $(-1)^{k} L_{k} y(t) \leqslant 0$ for $t \in\left[t_{1}, t_{2}\right], k=0,1, \ldots, n-1$.

Proof. Let $n \geqslant 2$. Integration of the identity $L_{n} y=\left(L_{n-1} y\right)^{\prime}$ over $\left[t_{2}, t\right]$, where $t_{1} \leqslant t \leqslant t_{2}$ (n can be an even number as well as an odd one) yields

$$
\begin{aligned}
& L_{n-1} y(t) \\
& \quad=L_{n-1} y\left(t_{2}\right)-\int_{t_{2}}^{t} \sum_{k=1}^{n-1} P_{k}(s) L_{k} y(s) \mathrm{d} s-\int_{t_{2}}^{t} P_{0}(s) f(y(s)) \mathrm{d} s \\
& \quad=L_{n-1} y\left(t_{2}\right)+\int_{t_{2}}^{t}\left(-P_{0}(s) f(y(s))\right) \mathrm{d} s+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) L_{n-k} y(s)\right) \mathrm{d} s .
\end{aligned}
$$

Let us denote the expression $L_{n-1} y\left(t_{2}\right)+\int_{t_{2}}^{t}\left(-P_{0}(s) f(y(s))\right) \mathrm{d} s$ by $K_{n}(t)$. It is obvious that $K_{n}(t) \leqslant 0$ for all $t \in\left[t_{1}, t_{2}\right]$. We have

$$
L_{n-1} y(t)=K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) L_{n-k} y(s)\right) \mathrm{d} s
$$

It can be proved that

$$
\begin{aligned}
& L_{n-k} y(s) \\
&= L_{n-k} y\left(t_{2}\right)+L_{n-k+1} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \\
&+L_{n-k+2} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots \\
&+L_{n-2} y\left(t_{2}\right) \int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \ldots \int_{t_{2}}^{s_{k-3}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)} \\
&+\int_{t_{2}}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \int_{t_{2}}^{s_{2}} \frac{\mathrm{~d} s_{3}}{p_{n-k+3}\left(s_{3}\right)} \ldots \int_{t_{2}}^{s_{k-2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$. By interchanging the upper and the lower bounds in the previous integrals, we have

$$
\begin{aligned}
& L_{n-k} y(s) \\
&= L_{n-k} y\left(t_{2}\right)+(-1)^{1} L_{n-k+1} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \\
&+(-1)^{2} L_{n-k+2} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)}+\ldots \\
&+(-1)^{k-2} L_{n-2} y\left(t_{2}\right) \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \cdots \int_{s_{k-3}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-2}\left(s_{k-2}\right)} \\
&+(-1)^{k-1} \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \cdots \int_{s_{k-2}}^{t_{2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)} .
\end{aligned}
$$

Denoting the last $(k-1)$-dimensional integral by $I_{k}(s)$, the previous sum by $G_{k}(s)$, $I_{1}(s)=L_{n-1} y(s), G_{1}(s)=0$ for $k=1,2, \ldots, n-1\left(s_{0}=s\right)$ we obtain

$$
L_{n-k} y(s)=G_{k}(s)+(-1)^{k-1} I_{k}(s)
$$

Hence

$$
\begin{aligned}
& L_{n-1} y(t) \\
& =K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s)\left[G_{k}(s)+(-1)^{k-1} I_{k}(s)\right]\right) \mathrm{d} s \\
& =K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s)(-1)^{k-1} I_{k}(s)\right) \mathrm{d} s
\end{aligned}
$$

Denoting $K_{n}(t)+\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right)$ d s by $g_{n}(t)$ and denoting $\int_{t_{2}}^{t}\left(-P_{n-k}(s) \times\right.$ $\left.(-1)^{k-1} I_{k}(s)\right) \mathrm{d} s$ by $(-1)^{k-1} J_{k}(t)$ we have

$$
L_{n-1} y(t)=g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} J_{k}(t),
$$

where $J_{k}(t)$ is the k-dimensional integral

$$
\begin{aligned}
J_{k}(t)=- & \int_{t}^{t_{2}}\left(-P_{n-k}(s)\right) \mathrm{d} s \int_{s}^{t_{2}} \frac{\mathrm{~d} s_{1}}{p_{n-k+1}\left(s_{1}\right)} \int_{s_{1}}^{t_{2}} \frac{\mathrm{~d} s_{2}}{p_{n-k+2}\left(s_{2}\right)} \cdots \\
& \cdots \int_{s_{k-2}}^{t_{2}} \frac{L_{n-1} y\left(s_{k-1}\right) \mathrm{d} s_{k-1}}{p_{n-1}\left(s_{k-1}\right)}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$ and $J_{1}(t)=-\int_{t}^{t_{2}}\left(-P_{n-1}(s) L_{n-1} y(s)\right) \mathrm{d} s$.
By changing the notation of the variables we have

$$
\begin{aligned}
J_{k}(t)=- & \int_{t}^{t_{2}}\left(-P_{n-k}\left(s_{k-1}\right)\right) \mathrm{d} s_{k-1} \int_{s_{k-1}}^{t_{2}} \frac{\mathrm{~d} s_{k-2}}{p_{n-k+1}\left(s_{k-2}\right)} \int_{s_{k-2}}^{t_{2}} \frac{\mathrm{~d} s_{k-3}}{p_{n-k+2}\left(s_{k-3}\right)} \cdots \\
& \cdots \int_{s_{1}}^{t_{2}} \frac{L_{n-1} y(s) \mathrm{d} s}{p_{n-1}(s)}
\end{aligned}
$$

$J_{k}(t)$ is a k-dimensional integral on a k-dimensional domain. This domain can be described as an elementary domain in the following way:

$$
\begin{aligned}
& t \leqslant s_{k-1} \leqslant t_{2} \\
& s_{k-1} \leqslant s_{k-2} \leqslant t_{2} \\
& s_{k-2} \leqslant s_{k-3} \leqslant t_{2} \\
& \vdots \\
& s_{2} \leqslant s_{1} \leqslant t_{2} \\
& s_{1} \leqslant s \leqslant t_{2}
\end{aligned}
$$

as well as like

$$
\begin{aligned}
& t \leqslant s \leqslant t_{2} \\
& t \leqslant s_{1} \leqslant s \\
& t \leqslant s_{2} \leqslant s_{1} \\
& \vdots \\
& t \leqslant s_{k-2} \leqslant s_{k-3} \\
& t \leqslant s_{k-1} \leqslant s_{k-2}
\end{aligned}
$$

for $k=2,3, \ldots, n-1$. Hence

$$
\begin{aligned}
& J_{k}(t) \\
& =-\int_{t}^{t_{2}} L_{n-1} y(s) \mathrm{d} s \int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{i}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \cdots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1}
\end{aligned}
$$

The last integral can be rewritten into the form

$$
J_{k}(t)=-\int_{t}^{t_{2}} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s=\int_{t_{2}}^{t} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s
$$

where

$$
M_{k}(t, s)=\int_{t}^{s} \frac{\mathrm{~d} s_{1}}{p_{n-2}\left(s_{1}\right)} \int_{t}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{n-3}\left(s_{2}\right)} \ldots \int_{t}^{s_{k-2}} \frac{-P_{n-k}\left(s_{k-1}\right)}{p_{n-1}(s)} \mathrm{d} s_{k-1}
$$

for $k=2,3, \ldots, n-1, M_{1}(t, s)=-P_{n-1}(s)$. Hence

$$
\begin{aligned}
& L_{n-1} y(t) \\
& =g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} J_{k}(t)=g_{n}(t)+\sum_{k=1}^{n-1}(-1)^{k-1} \int_{t_{2}}^{t} M_{k}(t, s) L_{n-1} y(s) \mathrm{d} s \\
& =g_{n}(t)+\int_{t_{2}}^{t}\left[\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s)\right] L_{n-1} y(s) \mathrm{d} s=g_{n}(t)+\int_{t_{2}}^{t} A_{n}(t, s) L_{n-1} y(s) \mathrm{d} s,
\end{aligned}
$$

where $A_{n}(t, s)=\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s)$. We note that $s \leqslant t_{2}, s_{i} \leqslant t_{2}, t \leqslant s$, $t \leqslant s_{i}$ for $i=1,2, \ldots, n-3$. According to the assumptions of the lemma, we have $g_{n}(t)=K_{n}(t)+N_{n}(t)$ and $g_{n}(t) \leqslant 0, A_{n}(t, s) \leqslant 0$. According to Lemma 1 we have $L_{n-1} y(t) \leqslant 0$ for all $t \in\left[t_{1}, t_{2}\right]$. By virtue of

$$
L_{n-2} y(t)=L_{n-2} y\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{L_{n-1} y(s)}{p_{n-1}(s)} \mathrm{d} s \geqslant L_{n-2} y\left(t_{2}\right) \geqslant 0
$$

we have $L_{n-2} y(t) \geqslant 0$ on $\left[t_{1}, t_{2}\right]$. By using of a similar procedure (n can be an even number or an odd one), we get for $n \geqslant 2$:
a) $(-1)^{k} L_{k} y(t) \geqslant 0$ on $\left[t_{1}, t_{2}\right]$ for $k=0,1, \ldots, n-1$, for n an even number,
b) $(-1)^{k} L_{k} y(t) \leqslant 0$ on $\left[t_{1}, t_{2}\right]$ for $k=0,1, \ldots, n-1$, for n an odd number. If $n=1$, then the assertion of the lemma is obvious.

Lemma 7. Consider a solution $y(t)$ of (L) on $\left[t_{1}, \infty\right), t_{1} \geqslant a$ such that (A) holds, let n be an even number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \geqslant 0$ for $k=0,1, \ldots, n-1$. Let $P_{k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$ for all odd integers $k \in[1, n]$. Then (B) holds.

Proof. We have $G_{k}(s) \geqslant 0$ for all even numbers $k \in[1, n]$, and $G_{k}(s) \leqslant 0$ for all odd ones. If k is an odd number, then $n-k$ is an odd number too, and $P_{n-k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$. Therefore $N_{n}(t)=\int_{t_{2}}^{t} \sum_{k=1}^{n-1}\left(-P_{n-k}(s) G_{k}(s)\right) \mathrm{d} s \leqslant 0$. Similarly, $M_{k}(t, s)=0$ for all odd $k \leqslant n$. So $A_{n}(t, s)=\sum_{k=1}^{n-1}(-1)^{k-1} M_{k}(t, s) \leqslant 0$ because $M_{k}(t, s) \geqslant 0$ for all $k=1,2, \ldots, n-1$.

Lemma 8. Consider a solution $y(t)$ of (L) on $\left[t_{1}, \infty\right), t_{1} \geqslant a$ such that (A) holds, Iet $n>1$ be an odd number and $t_{2} \in\left(t_{1}, \infty\right)$ such that $(-1)^{k} L_{k} y\left(t_{2}\right) \leqslant 0$ for $k=0,1, \ldots, n-1$. Let $P_{k}(t) \equiv 0$ on $\left[t_{1}, t_{2}\right]$ for all even integers $k \in[1, n]$. Then (B) holds.

Proof. The proof is similar to the proof of the previous lemma, so it is omitted.

Lemma 9. Let $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ be a sequence of solutions of (L) on $\left[t_{0}, \infty\right)$, where $a<t_{0}<n_{0}, n$ is an even number, and $L_{k} y_{m}(m)=(-1)^{k}$ for all $m \geqslant n_{0}, k=$ $0,1, \ldots, n-1$. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all odd integer numbers $k \in[1, n]$. Let $-\infty<\int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=P<0, \int_{t_{0}}^{\infty} P_{k}(s) d s \geqslant-\frac{1}{2}$ for $k=1,2, \ldots, n-1$, let P_{k} be nondecreasing functions for $k=0,1, \ldots, n-1, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for $t \in(-\infty, \infty)$. Then there exists a subsequence of $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ which converges to $\varphi_{0}(t)$. This function $\varphi_{0}(t)$ is a solution of (L) on $\left[t_{0}, \infty\right)$, and $(-1)^{k} L_{k} \varphi_{0}(t) \geqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$.

Proof. Because $L_{n} y_{m}(t) \geqslant 0$ on $\left[t_{0}, m\right]$ for $m=n_{0}, n_{0}+1, \ldots$ (this follows from Lemma 7 and Lemma 6, part a)), we have that $L_{n-1} y_{m}(t)$ is nondecreasing and negative on $\left[t_{0}, n_{0}\right]$ for $m>n_{0}$. If we prove that $L_{n-1} y_{m 2}\left(t_{0}\right)$ is bounded from below, it means $L_{n-1} y_{m}(t)$ is uniformly bounded on $\left[t_{0}, n_{0}\right]$. Using the expression (C) several times, where
(C) $\quad L_{k} y_{m}(s)=L_{k} y_{m}(m)+\int_{m}^{s}\left(L_{k+1} \frac{y_{m}(s)}{p_{k+1}(s)}\right) \mathrm{d} s$ for $k=0,1, \ldots, n-2$,
we obtain for $n>3,2 \leqslant k<n-1\left(s_{0}=s\right)$:
(D)

$$
\begin{aligned}
L_{k} y_{m}(s)= & L_{k} y_{m}(m)+L_{k+1} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \\
& +L_{k+2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)}+\ldots
\end{aligned}
$$

$$
+L_{n-2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)} \ldots \int_{m}^{s_{m-k-3}} \frac{\mathrm{~d} s_{n-k-2}}{p_{n-2}\left(s_{n-k-2}\right)}
$$

$$
+\int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{k+2}\left(s_{2}\right)} \cdots \int_{m}^{s_{n-k}-2} \frac{L_{n-1} y_{m}\left(s_{n-k-1}\right)}{p_{n-1}\left(s_{n-k-1}\right)} \mathrm{d} s_{n-k-1}
$$

Integration of (L) over $\left[t_{0}, m\right]$ yields

$$
\begin{aligned}
& L_{n-1} y_{m}\left(t_{0}\right) \\
& =L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) L_{2 k} y_{m}(s) \mathrm{d} s \\
& =L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s)\left[B_{2 k}(s)+C_{2 k}(s)\right] \mathrm{d} s
\end{aligned}
$$

where $C_{k}(s)$ is the last integral in (D) and $B_{k}(s)$ is the rest of the right-hand side of (D). Let us denote the expression $L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s$ by F_{m}. Then

$$
\begin{aligned}
& L_{n-1} y_{m}\left(t_{0}\right) \\
& =F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) C_{2 k}(s) \mathrm{d} s \\
& \geqslant F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+L_{n-1} y_{m}\left(t_{0}\right) \\
& \quad \times \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s)\left[\int_{m}^{s} \frac{d s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{m}^{s_{1}} \frac{\mathrm{~d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \cdots \int_{m}^{s_{n-2 k-2}} \frac{\mathrm{~d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right] \mathrm{d} s \\
& \geqslant F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s+L_{n-1} y_{m}\left(t_{0}\right) \\
& \quad \times \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty}\left[-P_{2 k}(s)\left[\int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right]\right] \mathrm{d} s .
\end{aligned}
$$

(We have used the fact that the last integral has the dimension $n-2 k$, which is an even number, and $t_{0} \leqslant s_{i} \leqslant m<\infty$ for $\left.i=1,2, \ldots, n-2 k-2, t_{0} \leqslant s \leqslant m<\infty\right)$. An easy arrangement yields

$$
\begin{array}{r}
L_{n-1} y_{m}\left(t_{0}\right)\left[1+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{2}}{p_{2 k+2}\left(s_{2}\right)} \ldots\right. \\
\\
\left.\cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}\right] \geqslant F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s
\end{array}
$$

According to the assumptions, the expression in the parentheses above is a positive number because of $\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty}\left[-P_{2 k}(s)\right] \mathrm{d} s \ldots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)} \leqslant \sum_{k=1}^{\frac{n}{2}-1}\left(\frac{1}{2}\right)^{n-2 k}<1$. Therefore

$$
L_{n-1} y_{m}\left(t_{0}\right) \geqslant \frac{F_{m}+\sum_{k=1}^{\frac{n}{2}-1} \int_{k_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s}{1+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}} .
$$

We have

$$
\begin{aligned}
F_{m}= & L_{n-1} y_{m}(m)+\int_{t_{0}}^{m} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s \geqslant-1+\int_{t_{0}}^{\infty} P_{0}(s) f\left(y_{m}(s)\right) \mathrm{d} s \\
\geqslant & -1+K \int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=-1+K P, \\
B_{2 k}(s)= & L_{2 k} y_{m}(m)+L_{2 k+1} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)}+\ldots+L_{n-2} y_{m}(m) \int_{m}^{s} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \cdots \\
& \ldots \int_{m}^{s_{n-2 k-3}} \frac{\mathrm{~d} s_{n-2 k-2}}{p_{n-2}\left(s_{n-2 k-2}\right)}=1+1 \int_{s}^{m} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)}+\ldots+1 \int_{s}^{m} \frac{\mathrm{~d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \ldots \\
& \ldots \int_{s_{n-2 k-3}}^{m} \frac{\mathrm{~d} s_{n-2 k-2}}{p_{n-2 k-2}\left(s_{n-2 k-2}\right)} \leqslant 1+(n-2 k-2) \frac{1}{2} \leqslant n
\end{aligned}
$$

because of $s \leqslant m, s_{i} \leqslant m$ for $i=1,2, \ldots, n-2 k-3$. So we have

$$
\begin{aligned}
\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) B_{2 k}(s) \mathrm{d} s & \geqslant n \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{m} P_{2 k}(s) \mathrm{d} s \\
& \geqslant n \sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \geqslant-n\left(\frac{n}{2}-1\right) \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
L_{n-1} y_{m}\left(t_{0}\right) & \geqslant \frac{-1+K P-\frac{n}{2}\left(\frac{n}{2}-1\right)}{1+\sum_{k=1}^{\frac{n}{2}-1} \int_{t_{0}}^{\infty} P_{2 k}(s) \mathrm{d} s \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{1}}{p_{2 k+1}\left(s_{1}\right)} \cdots \int_{t_{0}}^{\infty} \frac{\mathrm{d} s_{n-2 k-1}}{p_{n-1}\left(s_{n-2 k-1}\right)}} \\
& =S_{n-1} \in(-\infty, 0)
\end{aligned}
$$

for $n>3$. If $n=2$, then $L_{n-1} y_{m}\left(t_{0}\right)=F_{m} \geqslant-1+K P \in(-\infty, 0)$. It implies that $\left\{L_{n-1} y_{m}\left(t_{0}\right)\right\}_{m=n_{0}}^{\infty}$ is bounded from below for any fixed even number $n \geqslant 2$. So we have

$$
\begin{aligned}
0 \leqslant L_{n-2} y_{m}\left(t_{0}\right) & =L_{n-2} y_{m}(m)+\int_{t_{0}}^{m} \frac{-L_{n-1} y_{m}(s)}{p_{n-1}(s)} \mathrm{d} s \leqslant 1-L_{n-1} y_{m}\left(t_{0}\right) \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-1}(s)} \\
& \leqslant 1-S_{n-1} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-1}(s)}=S_{n-2} \in(0, \infty), \\
0 \geqslant L_{n-3} y_{m}\left(t_{0}\right) & =L_{n-3} y_{m}(m)+\int_{t_{0}}^{m} \frac{-L_{n-2} y_{m}(s)}{p_{n-2}(s)} \mathrm{d} s \geqslant-1-L_{n-2} y_{m}\left(t_{0}\right) \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-2}(s)} \\
& \geqslant-1-S_{n-2} \int_{t_{0}}^{\infty} \frac{\mathrm{d} s}{p_{n-2}(s)}=S_{n-3} \in(-\infty, 0) .
\end{aligned}
$$

Similarly, it can be proved that $\left\{L_{k} y_{m}\left(t_{0}\right)\right\}_{m=n_{0}}^{\infty}$ is bounded for $k=0,1, \ldots, n-1$. However,

$$
\begin{aligned}
0 & \leqslant L_{n} y_{m}(t)=-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) L_{2 k} y_{m}(t)-P_{0}(t) f\left(y_{m}(t)\right) \\
& \leqslant-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}\left(t_{0}\right) L_{2 k} y_{m}\left(t_{0}\right)-P_{0}\left(t_{0}\right) K \\
& \leqslant-\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}\left(t_{0}\right) S_{2 k}-P_{0}\left(t_{0}\right) K=S_{n} \in(0, \infty)
\end{aligned}
$$

and this implies that $\left\{L_{n} y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ is uniformly bounded on $\left[t_{0}, n_{0}\right]$ for $m \geqslant n_{0}$ and so $L_{n-1} y_{m}(t)$ are uniformly equicontinuous on $\left[t_{0}, n_{0}\right]$ for $m \geqslant n_{0}$. According to Arzelà-Ascoli theorem, there exists a subsequence $\left\{L_{n-1} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ of $\left\{L_{n-1} y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $\left\{L_{n-1} y_{k_{, m}}\right\}_{m=n_{0}}^{\infty}$ converges uniformly on $\left[t_{0}, n_{0}\right]$ to, for example, a function $\varphi_{n-1}(t)$.

To ensure uniform convergence of $\left\{L_{n-2} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ on $\left[t_{0}, n_{0}\right]$ to, for instance, a function $\varphi_{n-2}(t)$, it suffices to show convergence of $\left\{L_{n-2} y_{k_{m}}\right\}_{m=n_{0}}^{\infty}$ at an inner point of $\left[t_{0}, n_{0}\right]$. This follows from the fact that $L_{n-2} y_{k_{m}}\left(t_{0}+\varepsilon\right) \leqslant L_{n-2} y_{k_{m}}\left(t_{0}\right) \leqslant S_{n-2}$ for $\varepsilon>0, \varepsilon<n_{0}-t_{0}$. Then there exists a convergent subsequence $\left\{L_{n-2} y_{k_{1, n}}\left(t_{0}+\right.\right.$ $\varepsilon)\}_{m=n_{0}}^{\infty}$ of $\left\{L_{n-2} y_{k_{m}}\left(t_{0}+\varepsilon\right)\right\}_{m=n_{0}}^{\infty}$ and therefore $\left\{L_{n-2} y_{k_{t, \ldots}}\right\}_{m=n_{0}}^{\infty}$ converges uniformly to $\varphi_{n-2}(t)$ on $\left[t_{0}, n_{0}\right]$. It is obvious that $L_{n-1} y_{k_{l_{m}}} \rightrightarrows \varphi_{n-1}$ on $\left[t_{0}, n_{0}\right]$, too. In a similar way we can prove uniform convergence of a subsequence $\left\{y_{r_{m}}\right\}_{m=n_{4}}^{\infty}$ of $\left\{y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $L_{k} y_{r_{m}}(t) \rightrightarrows \varphi_{k}(t)$ on $\left[t_{0}, n_{0}\right]$ for $k=0,1, \ldots, n$. Due to the fact that uniform convergence makes changing of the order of limit processes possible (a quasi-derivative is a certain kind of limit), we have

$$
\begin{aligned}
0 & =\lim _{m \rightarrow \infty} L\left(y_{r_{m}}(t)\right) \\
& =\lim _{m \rightarrow \infty} L_{n} y_{r_{m}}(t)+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) \lim _{m \rightarrow \infty} L_{2 k} y_{r_{m}}(t)+P_{0}(t) f\left(\lim _{m \rightarrow \infty} y_{r_{m}}(t)\right) \\
& =\varphi_{n}(t)+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) \varphi_{2 k}(t)+P_{0}(t) f\left(\varphi_{0}(t)\right)
\end{aligned}
$$

for all $t \in\left[t_{0}, n_{0}\right]$.
But $\varphi_{k}(t)=\lim _{m \rightarrow \infty} L_{k} y_{r_{m}}(t)=L_{k}\left(\lim _{m \rightarrow \infty} y_{r_{m}}(t)\right)=L_{k}\left(\lim _{m \rightarrow \infty} L_{0} y_{r_{m}}(t)\right)=L_{k} \varphi_{0}(t)$, so $\varphi_{0}(t)$ fulfils $\left.\stackrel{m \rightarrow \infty}{(\mathrm{~L}}\right)$ on $\left[t_{0}, n_{0}\right]$. It is important that we are able to continue $\varphi_{0}(t)$ on $\left[t_{0}, n_{0}+1\right]$ in such a way that $\varphi_{0}(t)$ be a solution of (L) on $\left[t_{0}, n_{0}+1\right]$. Indeed, it suffices to repeat the whole previous part of the proof with the sequence $y_{r_{, m}}$ for $m \geqslant n_{0}+1$ instead of y_{m} for $m \geqslant n_{0}$. Now it is obvious that $\varphi_{0}(t)$ can be continued on $\left[t_{0}, n_{0}+v\right]$ (v is an arbitrary integer greater than 1) and therefore $\varphi_{0}(t)$ fulfils (L) on $\left[t_{0}, \infty\right)$. Now let us take an arbitrary point $t_{1} \in\left[t_{0}, \infty\right)$. Then there exists $m_{0} \in\{1,2, \ldots\}$, $t_{1}<m_{0}$ and a subsequence $\left\{y_{s_{m}}\right\}_{m=n_{0}}^{\infty}$ of $\left\{y_{m}\right\}_{m=n_{0}}^{\infty}$ such that $L_{k} y_{s_{m}} \Rightarrow L_{k} \varphi_{0}(t)$ on $\left[t_{0}, m_{0}\right]$. But $(-1)^{k} L_{k} y_{s_{m}}(t) \geqslant 0$ on $\left[t_{0}, m_{0}\right]$. Therefore $(-1)^{k} L_{k} \varphi_{0}\left(t_{1}\right) \geqslant 0$. It implies that $(-1)^{k} L_{k} \varphi_{0}(t) \geqslant 0$ for all $t \geqslant t_{0}, k=0,1, \ldots, n-1$.

Lemma 10. Let $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ be a sequence of solutions of (L) on $\left[t_{0}, \infty\right)$, where $a<t_{0}<n_{0}, n$ is an odd number, and $L_{k} y_{m}(m)=(-1)^{k-1}$ for all $m \geqslant n_{0}$, $k=0,1, \ldots, n-1$. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all even integers $k \in[1, n]$. Let $-\infty<\int_{t_{0}}^{\infty} P_{0}(s) \mathrm{d} s=P<0, \int_{t_{0}}^{\infty} P_{k}(s) \mathrm{d} s \geqslant-\frac{1}{2}$ for $k=1,2, \ldots, n-1$, let P_{k} be nondecreasing functions for $k=0,1, \ldots, n-1, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for $t \in(-\infty, \infty)$. Then there exists a subsequence of $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ which converges to
$\varphi_{0}(t)$. This function $\varphi_{0}(t)$ is a solution of (L) on $\left[t_{0}, \infty\right)$, and $(-1)^{k} L_{k} \varphi_{0}(t) \leqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$.

Proof. The proof is similar to the proof of Lemma 9 (instead of Lemma 6, part a), and Lemma 7 we use Lemma 6, part b) and Lemma 8, respectively), so it is omitted.

Theorem 1. Let n be an even number. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all odd integers $k \in[1, n]$. Let $P_{k}(t)$ be nondecreasing functions on $[a, \infty)$ such that $\int_{a}^{\infty} P_{k}(s) \mathrm{d} s>-\infty$ for $k=0,1, \ldots, n-1, \int_{a}^{\infty} 1 / p_{r}(s) \mathrm{d} s<\infty$ for $r=1,2, \ldots, n-1$, and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for all $t \in(-\infty, \infty)$. Then (L) admits a Kneser solution $y(t)$ on $[a, \infty)$, i.e. $y(t)>0,(-1)^{k} L_{k} y(t) \geqslant 0$ on $[a, \infty)$ for $k=1,2, \ldots, n-1$.

Proof. Let us take $t_{0} \in(a, \infty)$ such that $\int_{t_{0}}^{\infty} P_{k}(s) \mathrm{d} s \geqslant-\frac{1}{2}, \int_{t_{0}}^{\infty} 1 / p_{r}(s) \mathrm{d} s \leqslant \frac{1}{2}$ for $k=1,2, \ldots, n-1 ; r=1,2, \ldots, n-1$. According to Lemma 5 , there exists a sequence $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ of solutions of (L) on $\left[t_{0}, \infty\right)$ such that $L_{k} y_{m}(m)=(-1)^{k}$ for all $m \geqslant$ $n_{0}>t_{0}, k=0,1, \ldots, n-1$. Lemma 7 ensures validity of (B), and Lemma 6, part a), yields that $\left\{y_{m}(t)\right\}_{m=n_{0}}^{\infty}$ has the required properties from Lemma 9. According to the last-mentioned lemma, there exists a function $y(t)$ such that $L(y(t)) \equiv 0$ on $\left[t_{0}, \infty\right),(-1)^{k} L_{k} y(t) \geqslant 0$ on $\left[t_{0}, \infty\right)$ for $k=0,1, \ldots, n-1$. This solution $y(t)$ of (L) on $\left[t_{0}, \infty\right)$ can be continued onto $[a, \infty)$ by Lemma 5. According to Lemma 6 , part a), $y(t)$ is a Kneser solution of (L) on $[a, \infty)$ because $y(t)>0$ on $[a, \infty)$ (this follows from $f(0) \neq 0$).

Theorem 2. Let n be an odd number. Let (A) hold, and let $P_{k}(t) \equiv 0$ on $[a, \infty)$ for all even integers $k \in[1, n]$. Let $P_{k}(t)$ be nondecreasing functions on $[a, \infty)$ such that $\int_{a}^{\infty} P_{k}(s) \mathrm{d} s>-\infty$ for $k=0,1, \ldots, n-1, \int_{a}^{\infty} 1 / p_{r}(s) \mathrm{d} s<\infty$ for $r=1,2, \ldots, n-1$ and let K be a real positive constant such that $0 \leqslant f(t) \leqslant K$ for all $t \in(-\infty, \infty)$. Then (L) admits a Kneser solution $y(t)$ on $[a, \infty)$, i.e. $y(t)<0,(-1)^{k} L_{k} y(t) \leqslant 0$ on $[a, \infty)$ for $k=1,2, \ldots, n-1$.

Proof. The proof is similar to that of the previous theorem (instead of Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10, respectively) and so it is omitted.

Example 1. The equation

$$
\left(t^{4}\left(t^{3}\left(t^{2} y^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}-\frac{1}{t^{2}}\left(t^{3}\left(t^{2} y^{\prime}\right)^{\prime}\right)+\left[\left(\frac{72}{t^{8}}-\frac{1296}{t^{4}}\right) \sqrt{1+t^{-18}}\right] \frac{1}{\sqrt{1+y^{2}}} \equiv 0
$$

${ }_{\infty}$ admits a Kneser solution $y(t)=t^{-9}$ on $[1, \infty)$ according to Theorem 1 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2,3, P_{0}(t)$ is nonpositive and nondecreasing on $[1, \infty)$, $\int_{1}^{\infty} P_{k}(t) \mathrm{d} t>-\infty$ for $k=0,1,2,3,0 \leqslant 1 / \sqrt{1+y^{2}} \leqslant 1, f(0) \neq 0$.

Example 2. The equation of the n-th order (n is an even number)

$$
L_{n} y+\sum_{k=1}^{\frac{n}{2}-1} P_{2 k}(t) L_{2 k} y+P_{0}(t) f(y) \equiv 0
$$

where $P_{2 k}(t)=-t^{-2 k-2}$ for $k=0,1, \ldots, \frac{n}{2}-1, p_{r}(t)=t^{3 r}$ for $r=1,2, \ldots, n-1$, $f(t)=e^{-t^{2}}$ admits a Kneser solution on $[1, \infty)$ according to Theorem 1 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2 \ldots, n-1, \int_{1}^{\infty} P_{2 k}(t) \mathrm{d} t>-\infty$ for $k=0,1, \ldots, \frac{n}{2}-1$, $0 \leqslant e^{-t^{2}} \leqslant 1, f(0) \neq 0$.

Example 3. The equation

$$
L_{5} y-\frac{1}{t^{6}} L_{3} y-\frac{1}{t^{2}} L_{1} y+\left(12 t^{-13}+1188 t^{-12}-14256 t^{-3}\right) \frac{\sqrt{1+t^{-48}}}{\sqrt{1+y^{4}}} \equiv 0
$$

where $p_{r}(t)=t^{r+1}$ for $r=1,2,3,4$ admits a Kneser solution $y(t)=-t^{-12}<0$ on $[1, \infty)$ according to Theorem 2 because $\int_{1}^{\infty}\left(1 / p_{r}(t)\right) \mathrm{d} t<\infty$ for $r=1,2,3,4, P_{0}(t)$ is nonpositive and nondecreasing on $[1, \infty), \int_{1}^{\infty} P_{k}(t) \mathrm{d} t>-\infty$ for $k=0,1,2,3,4$, $0 \leqslant \frac{1}{\sqrt{1+y^{4}}} \leqslant 1, f(0) \neq 0$.

References

[1] Barrett, J. H.: Two-point boundary problems for linear self-adjoint differential equations of the fourth-order with middle term. Duke Math. J. 29 (1962), 543-554.
2] Hartman, P.: Ordinary Differential Equations. John Wiley \& Sons, New York, 1964.
[3] Leighton, W.; Nehari, Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325-377.
[4] Palumbiny, O.: On existence of monotone solutions of a certain class of n-th order nonlinear differential equations. To appear.
[5] Philos, Ch. G.: Oscillation and asymptotic behaviour of third order linear differential equations. Bull. Inst. Math. Acad. Sinica 11 (2) (1983), 141-160.
[6] Regenda, J.: Oscillatory and nonoscillatory properties of solutions of the differential equation $y^{(4)}+P(t) y^{\prime \prime}+Q(t) y=0$. Math. Slovaca 28 (1978), 329-342.
[7] Rovder, J.: Comparison theorems for third-order linear differential equations. Bull. Inst. Math. Acad. Sinica 19 (1991), 43-52.
[8] Rovder, J.: Kneser problem for third order nonlinear differential equation. Zbornik vedeckých prác MtF STU Trnava (1993).
[9] Shair, A.: On the oscillation of solutions of a class of linear fourth order differential equations. Pacific J. Math. 34 (1970), 289-299.
[10] Skerlík, A.: Criteria of property A for third order superlinear differential equations. Math. Slovaca 43 (1993), 171-183.
[11] Svec, M : On various properties of the solutions of third and fourth order linear differential equations. Proceedings of the conference held in Prague in September 1962. pp. 187-198.
[12] Švec, $M .:$ Über einige neue Eigenschaften der oszillatorischen Lösungen der linearen homogenen Differentialgleichung vierter Ordnung. Czechoslovak Math. J. 4(79) (1954), 75-94.
[13] Tóthová, M.; Palumbíny, O.: On monotone solutions of the fourth order ordinary differential equations. Czechoslovak Math. J. 45(120) (1995), 737-746.

Author's address: Oleg Palumbiny, Department of Mathematics, Faculty of Material Engineering and Technology, Slovak Technical University, Paulínska 16, 91724 Trnava, Slovakia, e-mail: palum@tf.stuba.sk.

[^0]: Abstract. The paper deals with existence of Kneser solutions of n-th order nonlinear differential equations with quasi-derivatives

 Keywords: nonlinear differential equation, quasi-derivative, monotone solution, Kneser solution

 MSC 1991: 34C10, 34D05

