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Abstract. We present three results stating when a concrete (= set-representable) quan
tum logic with covering properties (generalization of compatibility) has to be a Boolean 
algebra. These results complete and generalize some previous results [3, 5] and answer 
partially a question posed in [2]. 
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1. BASIC NOTIONS 

Let us recall the main notion we shall deal with in this paper. 

Definition 1.1. A concrete logic is a pair (X,L), where X ^ $ and L C exp X 

such that 

(1) 0 6 L ; 
(2) Ac = X \ A € L whenever A e L: 

(3) \JM £ L whenever M C L is a finite set of mutually disjoint elements. 

A concrete a-logic is a concrete logic (X, L) such that 

(3CT) (JM G L whenever M C L is a countable set of mutually disjoint elements. 

Let us note that the above definition is not given in the most efficient way. In

deed, since 0 is a finite set of mutually disjoint elements and | J 0 = 0, condition (1) 

follows from condition (3). Moreover, it is obvious that condition (3) follows from 

condition (3CT). 
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The following lemma will be useful in the sequel. First, let us observe that if A, 

B e L and A c B, then B \ A = (A U Bc)c e L for every concrete logic (X, L). 

Lemma 1.2. Let (X,L) be a concrete a-logic and let A; e L (i = 1, 2, . . . ) be 

such that Ai D A2Z> •••. Then f) A, e L. 
; = i 

P r o o f . The elements At \ Ai+i e L (i = 1, 2, . . . ) are mutually orthogonal, 

hence Q (^; \ Ai+l) 6 L and fl A; = M \ Q (A> \ -4;+i) EL. D 

2. COVERING PROPERTIES 

Defini t ion 2 . 1 . Let (X,L) be a concrete logic. Y c X and let n be a natural 

number. A covering of Y is a set M C L such that Y = \}M. A covering M is an 

n-covering if card A/ ^ n. 

We say that (X, L) has the n-covering property (finite covering property, resp.) if 

for every A, B 6E L there is an n-covering (finite covering, resp.) of A n B . 

It is well-known that a concrete logic (X, L) is a Boolean algebra if and only if 

.4 n B £ L for every -4, B e L. i. e. if and only if (A", L) has the 1-covering property. 

Thus, the notions of n-covering property (finite covering property), introduced in [3], 

are generalizations of compatibility in Boolean algebras. 

The next lemma will be used in the sequel. 

L e m m a 2.2. Let (X, L) be a concrete logic with the Suite covering property. 

Then for every Unite set F C L there is a finite covering G C L of f) F. 

P r o o f . Let us proceed by induction. First, if F is a one-element subset of L 

(empty set, resp.), then we can put G = F (G = {A'}, resp.). 

Now, let us suppose that there is a natural number n ~£ 1 such that the lemma 

holds for every F C L with card F = n. Let F C L with card F = n + I and let 

A e F. According to the previous assumption, there is a finite covering G C L of 

Pi (F \ {A}). According to the finite covering property, for every B C G there is a 

finite covering GB C L of A n B. Thus, (J GB C L is a finite covering of f) F. 
BeG 

D 
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Before we present the main result of this section, let us prove the following technical 

lemma. 

L e m m a 2 .3 . Let (X, L) be a concrete a-logic and let in, n Js 2 be natural numbers 

such that in ^ n + 1. Let us suppose that for every set F C L with c a r d F ^ n there 

is an m-coverig G C L of f)F. Then for every set F C L with c a r d F ^ n there is 

an (m - l)-covering G C L of f| F . 

P r o o f . Let F C L with c a r d F ^ n. Let us define by induction se

quences (Aiu...,Ain) 6 Ln, (Bi0,...,Bin) e Ln+l (i = 1, 2, . . . ) as follows: 

Let ( A n , . . . , A i „ ) be such that F = { A n , . . . , . _ , „ } . If (A . i , . . . ,A , „ ) 6 Z," is 

defined for a natural number i ^ 1 then let us take (Bi0,... ,Bin) _ L n + 1 such 

that Bij = 0 for j > 77) and f] Ay = Q -By and let us put A<+i,j = Ay \ By 
j = l " j = 0 

y . 6 { l , . . . , n } ) . 
Let us denote 

Bo = f]Bi0. Bj = [JBij, J 6 { l , . . . , n } . 
i= i i= i 

It is easy to see that the elements Bij, B2j, ... (j e { l , . . . , n } ) are mutually disjoint, 

hence Bj € L for every j £ {1 , n } . Moreover, _J,„ = ••• = _?„ = 0. Further, 

B,:o _> f ) ^ + i J 3 % , o ( i = 1 , 2 , . . . ) . 
i=i 

Hence, according to Lemma 1.2. B0 e L, too. Since 

P | F = _?0u_?1 U - u B , „ _ i 

and since _ 0 U _ i e L (B0 n _ , = 0), the proof is complete. • 

T h e o r e m 2.4. Let (X.L) be a concrete a-logic. Let us suppose that there is a 

natural number n .> 2 sucli that for any set F C L with c a r d F < n there is an 

(n + 1)-covering" of f| F . Tlien (X, L) is a Boolean algebra-

Proof. Using Lemma 2.3 ?j-times, we obtain that (X.L) has the 1-covering 

property, i. e. (X, L) is a Boolean algebra. • 

C o r o l l a r y 2 .5 . Every concrete a-logic with the 3-covering property is a Boolean 

algebra. 

This corollary generalizes [3, Proposition 4.6], where an analogous result is stated 

for concrete _ -logics with the 2-covering property. 
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3. COVERING PROPERTIES AND J A U C H - P I R O N STATES 

Defini t ion 3 .1 . Let (X, L) be a concrete logic. A state on (X, L) is a mapping 

s: L -» [0,1] such that 

(1) s ( X ) = l; 

(2) s(\JM) = ^ s(A) whenever M C L is a finite set of mutually disjoint ele-
A€M 

ments. 

A state s on (X, L) is called Jauch-Piron if for every A, B e L with s(A) = s(B) = 1 

there is a C e L such that C C AnB and s(C) = 1. 

It is easy to see that s(0) = 0 and s(Ac) = 1 - s(A) for every state s on a concrete 

logic (X, L) and for every A e L \ {0}. Further, for every concrete logic (X, L), every 

point i G l carries a two-valued state sx on (A', L) defined by 

Before we present the main result of this section, we need the following definition. 

Defini t ion 3.2. Let (X.L) be a concrete logic and let M, N C L be two 

coverings of Y C X. We say that A is a coarsing of M if for every A e M there is 

a B e N such that Ac B. 

T h e o r e m 3 .3 . Let (X, L) be a concrete logic such that every state on it is Jauch-

Piron. Let us suppose that for every A, B e L every covering of An B admits a 

countable coarsing. Then L is a Boolean algebra. 

P r o o f . It suffices to prove that A n B e L for every A, B e L. Let A, B e L. 

If A n B = 0, the proof is complete. Let us suppose that A n B ^ 0. Then SA.B = 

{s; s is a state on (X,L) with s(A) = s(B) = 1} is nonempty (every point x e AnB 

carries a two-valued state sx e SA,B)- Since every state on (X,L) is Jauch-Piron, 

for every s e SA,B there is a Cs e L such that s(Cs) = 1. Let us take a countable 

coarsing M of the covering {Cs; s e SA,B] of AnB, a countable set Y C A n B 

such that Yn(C\D)7tl& for every CD e M with C \ D ± 0 and, finally, a state s 

that is a tr-convex combination (with non-zero coefficients) of all sy (y S Y). Since 

s € SA,B, there is a £>s 6 M such that s(D s) = 1. Thus, Ds O Y and therefore 

AnB = (JM = Ds eL. • 

Theorem 3.3 seems to be independent of the previous results in [3, 4, 7], never

theless it has corollaries that were obtained using quite a different techniques. (Let 

us note that a unifying look at these attempts is presented in [8].) The following 

corollary was obtained (in a more general form) in [4]. 
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Corol la ry 3.4. Every countable concrete logic such that, every state on it is 

Jauch-Piron is a Boolean algebra. 

The next corollary of Theorem 3.3 was obtained (in a more general form) in [7]. 

Corol la ry 3.5. Let (X, L) be a concrete logic such that every state on it is Jauch-

Piron. Let us suppose that (X, L) contains only countably many maximal Boolean 

subalgebras and these are complete. Then (X, L) is a Boolean algebra. 

P r o o f . It is easy to see that for every A, B e L every covering of A n B admits 

a countable coarsing. • 

4. COVERING PROPERTIES AND ORTHOCOMPLETENESS 

Defini t ion 4 . 1 . Let Q be a cardinal number. A concrete logic (X,L) is called 

a-orthocomplete if V ^ £ L (supremum with respect to inclusion) whenever M C L 

is a set of mutually disjoint elements with card A/ ^ Q. 

It is obvious that condition (3CT) of Definition 1.1 implies that a concrete a-logic 

is uJo-orthocomplete (CJ0 denotes the countable cardinal)—this is usually denoted as 

o-orthocompleteness. 

The following theorem generalizes a result from [5] and answers partially a question 

posed in [2]. 

T h e o r e m 4.2 . Every c-orthocomplete (c denotes the cardinality of real numbers) 

concrete o-logic with the finite covering property is a Boolean algebra. 

P r o o f . Let (X, L) be a concrete c-logic with the finite covering property and 

let A, B € L. It suffices to prove that An B € L. Let us define by induction finite 

subsets F{ (i = 1, 2, . . . ) of L as follows: First, Fi C L is a finite covering of A n B. 

Now, let a finite set Ft = {At...., An) C L be defined for a natural number i ^ 1. 

Let us denote by G,- the set of all intersections of the form A\' n • • • n An", where 

( e i , . . . , e „ ) € { -1 ,1}" \ { -1}" and A) = Ajt AJ1 = X \ A, (j = 1, . . . , n). G,: 
is a finite set of mutually disjoint subsets of X such that f| F,; = [JGi. According 

to Lemma 2.2, for every Y e G,- there is a finite covering Gy C L of Y. Let us put 

F i + 1 = (J GY. 
reOi 

Let us consider all sequences C i , C 2 , . . . such that C; £ F,• (i = 1, 2, . . . ) and 

C\ D C2 D • • •. According to Lemma 1.2, f) C ; e L for each such sequence. Hence, 
;= i 

we have obtained at. most the continuum of mutually disjoint elements of L such 

that their union is A n B. Since their supremum exists, it is equal to A n B. Thus, 

AtlB e L. • 
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Before we present a corollary of Theorem 4.2, let us recall a result connecting the 

covering properties with Jauch-Piron states [3, Theorem 3.5]. 

T h e o r e m 4.3. Let (X, L) be a concrete logic such that every two-valued state 

on it is Jauch-Piron. Then (X. L) has the finite covering property. 

C o r o l l a r y 4.4. Every c-orthocomplete concrete a-logic such that every two-

valued state on it is Jauch-Piron is a Boolean algebra. 

P r o o f . It follows from Theorem 4.3 and Theorem 4.2. D 

R e m a r k 4.5. The above corollary can be stated in the following (more gen

eral) way: Every c-orthocomplete quantum cr-logic with a closed full set of two-valued 

Jauch-Piron er-states is a Boolean algebra. Indeed, concrete u-logics are exactly rep

resentations of quantum <r-logics with a full set of two-valued cr-states (see e.g. [1, 6]) 

and Theorem 4.3 can be stated for quantum logics with a closed full set of two-valued 

Jauch-Piron states (the set of two-valued states is closed in the product topology 

i n [ 0 , l ] L ) . 

The following question (posed in [2]) remains open. Here we have given the nega

tive answer in the case that the concrete logic in question is also c-orthocomplete. 

Q u e s t i o n 4.6. Is there a concrete cr-logic that is not a Boolean algebra such 

that every state on it is Jauch-Piron? 
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