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Matematický časopis 20 (1970), No. 4 

ON SIMPLE STOCHASTIC MODELS 

JAN CERNY, JAN VINAR, Kosice 

This paper consists of two parts. The first part deals with the construction 
of stochastic transformers using finite deterministic automata . These trans­
formers will be used in the second part to construct models of finite stochastic 
automata. 

1. STOCHASTIC TRANSFORMERS 

Gill [1] and Sheng [8] have considered the problem of using a suitably 
defined deterministic automaton as a stochastic transformer. In this section, 
some of their results (obtained in part independently by the authors) are 
presented insofar as they are used later on. 

1.1. NOTIONS AND NOTATION 

The automaton si = (A, X, Y, b, X) is a finite, deterministic, non-initial 
Moore automaton whose states (input signals, output signals) form the sets 
A, X, Y, respectively; b is the state transition function, X the output function. 

At every moment t == 0, 1, 2 . . . the automation is in the state a(t), is receiving the 
input signal x(t) and producing the output signal y(t) such that 

a(t + 1) = o(a(t), x(t)) 
y(t) = l(a(t)). 

00 

The transition function b : A X X-> A can be extended to SP(A) x | J Xn, 
n=0 

where SP(A) is the set of all subsets of A. Namely, let B e^(A), x e X, then 

S(B, x) = \Jd(b,x), 
ЬєB 

and if p e [J Xn, then 
n-0 

ô(B,px) = ô(ô(B,p),x). 
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Analogously, the function X can be generalized to a function defined on^(A) 
whose values are in SP(Y). Namely, if B a A, then 

X(B) = {X(a) :aeB}. 

For a detailed description of such automata see [3]. Following [5] we shall 
call such an automaton n-stable if for every x\, ...,xne Xn there exists an 
aeA such that d(A, x±, . . . , xn) = {a}. The automaton is weakly ^-stable 
if for every x\ ... xne Xn there exists y e Y such that X(d(A, x± ... xn)) {y}. 

A discrete probability space is the ordered triple (X, X, fio) = Xo, where X 
is a finite set, //0 a probability measure on the c/-algebra X of all subsets of X. 
An i n d e p e n d e n t s o u r c e belonging to Xo is the probability space (XN, XN, 

oo 

jbt) = X (X, X, /uo). If E e XN is the elementary cylinder determined byr the 
w = l 

condition that the first n symbols are the letters x±, X2, . . . , xn in a given order, 
then [i(x\ ... xn) denotes JU(E). 

R e m a r k : All these notations and definitions are in accordance with [4]. 
Now let X = (XN, XN,/u) and 9) = (YN, YN, v) be independent sources, 

si = (A, X, Y, d, X) a weakly ^-stable automaton, 7 c T and s > 0. We say 
that s/ transforms X into *J) with the maximum error s and the slowing factor n 
if for all y e Y 

My) — 2 ^ ( X l ••• x*)\ < s> 
where the sum is taken over the set {x\ ... xn : X(d(A, x\ ... xn)) = y}. Clearly 
by restricting our attention to weakly w-stable automata we evade the necessity 
of considering the convergence of transition matrices (cf. [1]). If we choose 
every n-ih output symbol, the independence of the output source is ensured 
automatically by the independence of the input source. 

1.2. ABSTRACT SYNTHESIS OF STOCHASTIC TRANSFORMERS 

For abstract synthesis we shall use suitable decompositions of Xn. 

Let X = (XN, XN,/u),y) = (YN,YN,v)be two independent sources belonging 
to (X, JUO) and (Y, vo). Further let e > 0 and n e N be given. The decomposition 
{Ey}yeY of the set Xn is a (X, 3), e, n) — decomposition if for every y e Y 

l 2 ^Xi "-Xn) — v(y)\ < s-
Xi ... Xn^Ey 

Lemma 1. If {Ey}yeYis a (X, 9), s, n) — decomposition, the there exists an 
n-stable automaton s/ = (A, X, Y, d, X) which transforms X into ?) with the 
maximum error e and the slowing factor n. 
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Proof . We use the well-known algorithm of [6] to construct the following 
?i-stable automaton stf = (A, X, Y, d, X): 

A = Xn, X as given, Y = Y, 

d((x\ ... xn), x) = (X2 ... xnx) for all x±X2 ... xnx e Xn+1, 

A(xi ... xn) = y if and only if x± ... xn e Ey. 

Clearly s/ is w-stable and the rest follows by definition. 

Lemma 2, For every X, *?), s there exists ann e N and a decomposition {Ey}yeY 

of Xn such that {Ey}yeY is a (X, 9), e, n) —decomposition. 
Proo f : Let X = {x\, ..., xm}, p = max /uo(x) and n > (log e — log 2)/log p. 

Then pn < e/2 and JU(X± ...xn) ^ pn < s/2. We denote the elements of the 
(finite) sets Xn = {s1, ..., sm}, Y = {y1, ..., y*}. Evidently we can find 
numbers jo, • • • ,jh, 1 = jo ^ j i ^ . . . ^ jh ^ mn + 1, such that 

h-i 

i=jk-i 

Now we put Eyk = {s^1 ..., s^'1} and {Eyk}k — 1 is the required decom­
position. 

Theorem 1. (A consequence of the lemmas I, 2).For every X = (XN, XN, JLI) 
and ?) = (YN, YN, v), e > 0, there exists a set Y, Y ZD Y, and an n-stable auto­
maton s/ = (A, X, Y, d, X) which transforms X into 9) with the maximum error e 
and the slowing factor n. 

R e m a r k : The estimate for n given by Lemma 2 is rather pessimistic. 
As a rule we can take n much smaller. 

1.3. STRUCTURAL SYNTHESIS 

In constructing the required automaton, it is possible to use one-tact delay 
elements and standard logical elements with two inputs (though there may 
be some advantages in using threshold logic as S h e n g [8] pointed out). 
The memory (cf. [3]) of the automaton will consist of n delay elements joined 
serially, while the combination part will realize the function 

f(xi, ..., xn) = y if and only if x\, ...,xneEy. 

The automaton must furthermore contain a clock, i. e. a counter mod n which 
lets out only every w-th output symbol. The complete structure of the auto­
maton is shown in Fig. 1. 

E x a m p l e 1. Let X = Y = (0, 1}; u0(0) = 0.25, u0(l) = 0.755, v0(0) = 0.535, 
vo(l) 0.465, e = 0.01. 
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L e m m a 2 . gives n = 18. L e t us, however , compu t e d i rec t ly t h e measu res of e lemen t s 
o f X , X2, X 3 : 

X: ju(0) = 0.25, ^(1) == 0.75. 

X 2 : ^(00) = 0.0625, u(01) = u(10) = 0A875 , u(ll) = 0.5625. 
X3: u(000) = 0.015625, u(001) = u(010) = u(100) = 0.046875, u(011) = ^(101) = 

= /i(110) = 0 .H0625 , u(lll) = 0.421875. 

W e see immed ia t e ly t h a t there exis ts a su i table decomposi t ion of X 3 , namely, Ei = 
= {111, 001}, E0 = X 3 — Ei. Then ju(E0) = 0 .531, fi(Ei) = 0.469 (to 3 decimals) . 
{Eo ,E i } is therefore a (3£, ?); 0 .01; 3) — decomposi t ion of X 3 a n d t h e combina t ion p a r t 
m u s t be cons truc ted t o realize t h e function 

f(xl,x2,#3) = (xlx2#3 V xlx2x3) = (xlx2 V #lx2)x3 • 

The a u t o m a t o n — wi thou t t h e clock — is shown in fig. 2. 

v INPUT 

COMBINATION 

PART 

Fig. 1 

CLOCK 

Уp_ 

Fig. 2 

The notion of a Moore automaton can be generalized in the following way: 
OO 

Let Y* = ( J Yn D e t n e set of all output strings (Y° is the set consisting 
n=0 

of the empty string e). We shall call the system ^ = \A, X, Y, 6, X\, where 
A, X, Y and 3 have the same meaning as in the definition of an automaton 
and A is a function defined on A with values in Y*, a non-initial generalized 
sequential machine (ngsm). 

R e m a r k : Th is definition is different from t h a t used b y Ginsburg a n d Rose [2]; 
t h e y speak of a gsm which is n o t non-initial since it h a s a dist ingu i shed in i t ia l s t a t e . 
Moreover, t h e y use a funct ion X : A x l ^ Y* which is a generalization of t h e Mealy-rat-
h e r t h a n Moore — a u t o m a t o n . 
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In other words the ngsm differs from our automaton in that to one input symbol 
there may correspond a sequence (empty or not) of output signals. This means that input 
and output of a ngsm have, in general, a different time scale. 

Now let us consider the system Moore automaton — clock as defined above. 
The clock is a finite automaton whose states can be divided into two groups: 
,,good" states which permit the passage of the output signal from the Moore 
automaton, and ,,bad" states which block this signal. A composition of these 
two automata will have the set of states 4 x 0 , where C is the set of the clock 
states . The definition of the transition function is trivial. Let us define a ngsm 
with the above mentioned set of states and transition function. I ts input 
(output) signal sets will be identical to those of the Moore automaton . I ts 
output function will be defined as follows for a e A, c eC, 

,X(a), if c is a ,,good" state, 
X([a, c]) = / 

^e, if c is a ,,bad" state . 

Then obviously the output of this ngsm will exhibit the characteristics of 
a random source with the desired signal probabilities. We can therefore use 
a ngsm to transform any source into an e — approximation of any other source. 
The fact that we do not require the number of input signals to be equal the 
number of output signals permits us to evade considerations of the slowing 
factor. 

R e m a r k : Let us consider the Moore automaton with the state and input signal sets 
the same as in the ngsm just mentioned. I ts output set Y will contain, in addition to 
all output signals of the Moore automaton, the natural zero signal A and the output 
function will be 

A( a, c]) = 1(a) if c is a ,,good" state, 
A( a, c]) —A if c is a ,,bad" state. 

This construction gives us an abstract automaton which ,approximates" the given 
source. 

1.4. GLOBAL PROPERTIES OF .-APPROXIMATIONS 

Let us consider the following. 
E x a m p l e 2: In some random source, let y e Y, ^(y) = 1. Then /bt(yn) = 1 

regardless of n. If in another source vo(y) = 1 — £, then for every s > 0 
lim v(yn) = 0. 

This example shows that even a very good „symbol — by -— symbol" 
^-approximation can exhibit a behaviour strikingly different from that of the 
original source if we consider the set of all strings emitted by these sources. 
This problem will now be investigated in greater detail. 
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Let 0 ^ q <p < 1. Then 

pn _ qn — (p — q) (pn-l _L_ pn-2q -f . . . qn-i) ^ (p — q)npn~1. 

1 
The function f(x) = xpx~x, x e (0, oo), has an absolute maximum for x =•- — — 

lnp 
pn _ qn I 1+lnp 

and therefore ^ — . p lnp = <p(p). 
p — q lnp 

Consider two sources with the same output alphabet y\, . . . , ym. Let 
P1P2 ... Pm be the probabilities of these symbols in the first source, q\q% ... qm 

those for the second source. Let e = max \pt — qt\ 
i 

p = max max (pt, qt). 
i 

Consider the string yklyk% ... ykn. I ts probability for the first source is 
PkiPki • • • Pkn , for the second source it is qklqk2 . . . qkn. We shall now find 
an upper bound for 

W = \pkl...pkn - q^...qkn\. 

Let rk[ = max (pki, qki), ski = min (pki, qki). Then 

W ^ rkl...rkn-skl...skn. 

Of course the relations rki ^ p, \rk. — sk,\ ^ s hold. In the sequel we shall 
use the following assertion: 

Let at ^ hi ^ 0, Kt ^ 0, (i = 1, 2, . . . , n). Then 

n n n n 

n at—JT b{ ^ YI (<*( + * o - n (6* + *o • 
^=1 i=i ^=1 ?=i 

Now r^ ^ p. Let *fa = ski + (p - rki). 
Obviously for i = 1, . . . , n 

ht> P — e-

Finally, 

IV ^ rklrk2 ...rkn — sklsk2 ... skn ^ p* — tkl ... tkn < pn — (p — e)n ^ e . cp(p). 

Thus the change in the probability of any string caused by taking an e-appro-
ximation of the original source does not exceed e . (p(p), provided p < 1. 
For p = 1, limpn — (p — s)n = 1 and, as we have shown in example 2, 

n-»oo 

we can construct a string whose probabilities in the two sources differ by 
a number arbitrarily close to 1. 
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Calculation shows that y(p) is an increasing function of p for 0 ^ p ^ 1. 
I t tends to zero as p -> 0 and to infinity as p -> 1. The following table illustrates 
the behaviour of cp(p): 

P = = 0.5 0.6 0.7 0.8 0.9 0.95 0.99 

<p(p) = = 1,06 1.20 1.86 2.06 3.89 7.37 36.60. 

Therefore if we want to get a ,,string" e-approximation, all we have to 
do is to construct a ,,symbol — by — symbol" £/<p(^)-approximation where p 
is the greatest probability in our problem. 

E x a m p l e 3: We have the same sources as in example 1. Here p = 0.535 
and (p{p) ^ 1,20. But 0.535 — 0.531 = 0.004 and 0.469 — 0.465 = 0.004.. 
Therefore our automaton is also a ,,string" 0.01 — approximation. 

2. MODELS OF STOCHASTIC AUTOMATA 

We shall define a stochastic automaton £P = (A, X, F) to be a finite Moore 
stochastic automaton (cf. [7]) with its states (input signals) forming the sets 
A(X) with n(p) elements respectively, and with the transiton mapping F. 
The set Y of the output signals will be identical with A, and the (deterministic) 
/[/-mapping will be such as to generate an identical mapping of A into Y. 

The function — valued mapping F [a, x], defined on A x X, maps A x X into a set 
of probability distributions on A. If at the moment t the automaton is in the state ao 
and accepts subsequently the inputs x(t), . . ., x(t + k — 1), then in t -f- 1, . . ., t -f- k 

k-l 
its states will be ai, . . ., afc with the probability II F[ai, x(t -f- I)] (ai+i). 

i=0 
N o t e : The automaton just described is not the most general device of this nature. 

There are, however, two good reasons for investigating this particular au tomaton : 
a) while it is particularly simple, it can be, in a certain sense, equivalent to any other 
stochastic automaton ([7]), b) all other stochastic automata can be described by matrix 
schemes essentially similar to the one used here. 

2.1. A DETERMINISTIC MODEL 

We shall now show that we can build a model of a stochastic automaton 
using a deterministic automaton and some kind of independent random 
signal sources. 

Let a stochastic automaton Sf = (A,X, F) be given. The set A x X is 
evidently finite and its element can be numbered. Let h(a, x) (a e A, x e X) 
be the ordinal number of the element [a, x] in some ordering of this set. We con­
struct a set of independent signal sources a±9 ..., anp, where an(a,x) generates 
the symbol a' e A with the probability F[a,x](a'). Now let us construct 
a deterministic Moore automaton stf' = (A', X', Y',d,X), where A' = A, 
X' — X X A?>n, Y' = A', X(a) = a for every a e A' and d(a, [x,ai,..., anv]) = 

ah(a,x)> Evidently, if we consider only the first component x of the input 
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signal, then the probability of the state transition from a to a' is F[a, x] (a'). 
To construct this deterministic automaton we use the canonical structural 

synthesis algorithm of [3]. According to this algorithm, the automaton consists 
of two parts : 

1. T h e m e m o r y e l e m e n t — this is a deterministic Moore automaton 
with the set of states B ZD A and a complete transition system. 

This means that a function ju(a, a') : A X A-^ X can be defined on all A x A in 
such a way that d(a, fi(a, a')) = a'. 

2. T h e c o m b i n a t o r y c i r c u i t which has the following function: upon 
accepting the input signal x and the signal a denoting the state of the auto­
maton, it feeds into the memory element input the signal fi(a, d(a, x)) = 
= Q(a, x). I n this case q(a, x) = ju(a, d(a, [x, a\, ..., anp])) = /u(a, an(a,x))> 

N o t e : The variables a±, ...,anp are considered a part of the system and 
therefore do not appear in the input. 

2.2. APPROXIMATION OF STOCHASTIC AUTOMATA 

Definition: Consider the stochastic automata S?=(A,X,F) and Sf' = 
= \A, X, F'\. The latter is an e-approximation of the former if \F[a, x] (a') — 
— F'[a, x] (a')\ < e for all a e A, a' e A, x e X. 

We have now at our disposal all the means necessary to construct an e-appro­
ximation of any stochastic automaton. Consider especially a stochastic auto­
maton with only one input signal. This automaton will behave like a Markov 
source of multiplicity 1. This solves the question of approximating (in the 
above sense) such sources. The whole process will be best illustrated by an 
example. 

0/0,7,1/0,6 

i/ok^_y-^^__^^ 5 
0/0,8; 1/0,5 Fig- 3 

E x a m p l e 4. Consider a stochastic trigger (Fig. 3). To construct a 0.01-approximation, 
we use a battery of random signal sources in Fig. 4a. I t is left to the reader to verify 
tha t it has the characteristics of Fig. 4b. (Provided of course that we take only every 
fourth output signal to insure independence). 

These generators we shall use to construct the automaton of Fig. 5 which is obviously 
-a 0,01 — approximation of the previous automaton. A comparison with Tab . 1 gives us 

h(0.0) = I, h(0.1) = 2, h(1.0) = 3, h(l . l) = 4 

Our mamory element need have only two states: 0 and 1. We can use, for instance, 
a delay element in which ju(a, b) = b. Then our combination circuit must realize the 
function 

o(a, x) = aHa,x), 
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1 0,4096} 

a 
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Fig. 4a 

0/0,6928 
1/0,5904 

0/0,2048 

1 0,5072 

0/0,1952 
1/0,4928 

Fig .5 
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v(0)* 0,3072 
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I »(0)*0,?952 
v(1) '0.2048 

vЮ)* 0.4928 °4 
v(1) • 0,50/2 

Fig. 4b 
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which gives the following table of its activity (Tab.l) Here the 
vcare" elements of the function. The required function may be 

's denote the ,,don't 

o(a, x, ai, a2, a3, a4> = axai V axai V axaz V axa± = a(xa\ V xa-i V a(xa3 V xaj 

and Fig. 6 shows the combination circuit. 

Tab. 1. 

a X « 1 a2 aз a4 Q 

0 0 0 ~ ~ ~ 0 

1 0 0 1 ~ ~ ~ 

0 

1 

0 1 ~ 0 ~ ~ 0 

0 1 ~ 1 ~ ~ 1 

0 1 0 ~ ~ 0 ~ 

1 

0 

1 0 ~ ~ 1 ~ 1 

1 1 ~ ~ ~ 0 0 

1 1 1 ~ ~ ~ 1 

0 

1 

г 

RANDOM 1 

AUXIUARY 
INPUT 

У 

' • 
°t 

RANDOM 
SOURCES 

a' . 
CLOCK 

°t 
COBІNATORY 

CIRCUIT 

RANDOM 
SOURCES 

°2 * CLOCK o2 
COBІNATORY 

CIRCUIT 

RANDOM 
SOURCES 

<Һ . 

CLOCK 

°з . 

COBІNATORY 
CIRCUIT 

QĹ » *A 

! 
-, 

X 

J 

Fisr. 7 

Now if we connect the source battery, the clock element and the combination circuit 
•as in Fig. 7, we get a system behaving exactly as the automaton of Fig. 5. All it needs 
to function is a random independent signal source whose output is 0 or 1 with the proba­
bilities 1/4 and 3/4, respectively. This is connected to an auxiliary input which consti­
tutes the only difference (externally observable) between our system and the automa­
ton in Fig. 5. 

N o t e . Similarly as in § 1.3 we could construct a single deterministic abstract auto­
maton equivalent to the system in Fig. 7. 
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