Matematický časopis

Bohdan Zelinka

The Number of Non-Isomorphic Hamiltonian Circuits in an n-Dimensional Cube

Matematický časopis, Vol. 24 (1974), No. 3, 203--208
Persistent URL: http://dml.cz/dmlcz/126972

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE NUMBER OF NON-ISOMORPHIC HAMILTONIAN CIRCUITS IN AN n-DIMENSIONAL CUBE

BOHDAN ZELINKA

There is the following problem with applications to error-correcting codes and to control mechanisms:

How many non-isomorphic Hamiltonian circuits are there in the $\overline{\mathbf{5}}$-cube?
For $n=2,3$ and 4 , the n-cube is known to have respectively 1,1 and 9 non-isomorphic Hamiltonian circuits. For $n=5$ bounds have been obtained by E. N. Gilbert [3]. H. L. Abbott [1] and W. H. Mills [5] have contributed to the problem for a general n and the lower and upper bounds $(\sqrt{7})^{2^{n}}$ and $(n / 2)^{2 n}$ are known. L. Moser conjectured that the correct asymptotic result is $(n / e)^{2 n}$. His conjecture is quoted in [4], where the above mentioned problem is referred to as an unsolved one.

Two Hamiltonian circuits in a graph G are called isomorphic, if and only if there exists an automorphism of G which maps one of them onto the other. This a restriction of the usual sense of the concept of isomorphism. In the usual sense obviously any two Hamiltonian circuits of the same graph are isomorphic, because they have equal lengths.

The graph of the n-dimensional cube (or shortly the n-dimensional cube, or more shortly the n-cube), where n is a positive integer, is the undirected graph whose vertices are all possible n-dimensional vectors whose co-ordinates are zeroes and ones and in which two vertices $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$ are joined by an edge if and only if $a_{i} \neq b_{i}$ exactly for one i, l $\leqq i \leqq n$.

In this paper we shall not solve the above problem, but we shall show how this problem can be transferred to a problem of finding the number of words of some formal language. Even after this transfer the solution seems to be a difficult job, even for a computer and even for $n=5$. But maybe some way for further research will be shown by the results of this paper.

First we shall define the formal languages $L_{n}, L_{n}^{\prime}, L_{n}^{\prime \prime}$.
The alphabet of all three languages $L_{n}, L_{n}^{\prime}, L_{n}^{\prime \prime}$ is $A_{n}=\{1,2, \ldots, n\}$.
A word w over this alphabet belongs to L_{n}, if and only if the following conditions are satisfied:
(i) the length of w is 2^{n};
(ii) any symbol of the alphabet A_{n} appears in w an even number of times;
(iii) for each non-empty proper subword of w there exists at least one symbol of A_{n} which appears in it an odd number of times.

A word w ower the alphabet A_{n} belongs to L_{μ}^{\prime}, if and only if it belongs to L_{n} and satisfies the following condition:
(iv) if $w=a_{1} a_{2} \ldots a_{2 n}$, then $a_{1}<a_{2^{n}}$.

A word w over the alphabet A_{n} belongs to $L_{n}^{\prime \prime}$, if and only if it belongs to L_{n}^{\prime} and satisfies the following condition (strengthening of (iv)) :
(v) if $w=a_{1} a_{2} \ldots a_{2^{n}}$ and $a_{i}=k$ for $k \in A_{n}$ and $1 \leqq i \leqq 2^{n}$, then for any $l \in A_{n}, l<k$, there exists $j<i$ such that $a_{j}=l$.

In the inequalities the symbols of A_{n} are taken as numbers in their natural ordering.

If $w=a_{1} a_{2} \ldots a_{2^{n}}$ is a word over the alphabet A_{n}, denote by \bar{w} the word w written in the inverse ordering of symbols. If w, w^{\prime} are two words of the length 2^{n}, we say that w^{\prime} is obtained from w by a cyclic permutation, if and only if $w=a_{1} \ldots a_{2^{n}}, w^{\prime}=b_{1} \ldots b_{2^{n}}, b_{i}=a_{i+k}$ for some fixed k and $i=$ $=1, \ldots, 2^{n}$, the subscript $i+k$ being taken modulo 2^{n}.

Lemma 1. Let w be a word of L_{n}, let w^{\prime} be a word obtained from w by a cyclic permutation. Then $w^{\prime} \in L_{n}$.

Proof. Any cyclic permutation of the set $\left\{1,2, \ldots, 2^{n}\right\}$ is a power of the cyclic permutation which maps i onto $i+1$ for $i=1, \ldots, 2^{n}-1$ and 2^{n} onto 1 . Therefore it suffices to prove that if the word $w=a_{1} a_{2} \ldots a_{2^{n}} \in$ $\in L_{n}$, then also the word $w^{\prime \prime}=a_{2} a_{3} \ldots a_{2^{n}} a_{1} \in L_{n}$, where $a_{i} \in A_{n}$ for $i=$ $=1, \ldots, 2^{n}$. The word $w^{\prime \prime}$ is evidently also a word on the alphabet A_{n} and its length is 2^{n}. The number of occurrences of any symbol of A_{n} in $w^{\prime \prime}$ is evidently the same as in w, therefore it is also even. Any non-empty proper subwerd of $w^{\prime \prime}$ not containing a_{1} is also a nonempty proper subword of w, therefore at least one symbol of A_{n} occurs in it an odd number of times. The subword a_{1} contains a_{1} exactly once. Therefore it remains to investigate the subwords of the form $a_{j} a_{j+1} \ldots a_{2^{n}} a_{1}$, where $3 \leqq j \leqq 2^{n}$. If each symbol of A_{n} occurs in it an even number of times, then the same holds also for the word $a_{2} a_{3} \ldots a_{j-1}$, because these two subwords form together whole $w^{\prime \prime}$. But $a_{2} a_{3} \ldots a_{j-1}$ is a non-empty proper subword of w, which is a contradiction. Therefore $w^{\prime \prime} \in L_{n}$.

Lemma 2. Let $w \in L_{n}$. Then either $w \in L_{n}^{\prime}$, or $\bar{w} \in L_{\prime \prime}^{\prime}$.
Proof. Let $w=a_{1} a_{2} \ldots a_{2^{n}}$. If $a_{1}<a_{2^{n}}$, then $w \in L_{1 \prime \prime}^{\prime}$. If $a_{1}>a_{2^{n}}$, then $\widetilde{w} \in L_{n}^{\prime}$. It remains to prove that the case $a_{1}=a_{2^{n}}$ cannot occur. Let us take the word $w^{\prime \prime}=a_{2} a_{3} \ldots a_{22^{n}} a_{1}$; according to Lemma $1 w^{\prime \prime} \in L_{n}$. The word $a_{2^{n}} a_{1}$ is a non-empty proper subword of $w^{\prime \prime}$; if $a_{2^{n}}=a_{1}$, then in this word
one symbol of A_{n} would occur twice and other symbols would not occur in it and (iii) would not hold for $w^{\prime \prime}$, which would be a contradiction.

Two words $w=a_{1} a_{2} \ldots a_{2^{n}}, w^{\prime}=b_{1} b_{2} \ldots b_{2^{n}}$ over the alphabet A_{n} are called isomorphic, if and only if for any i and j of the numbers $1,2, \ldots, 2^{n}$ the equality $a_{i}=a_{j}$ is equivalent to $b_{i}=b_{j}$.

Lemma 3. Any two diffierent words from $L_{n}^{\prime \prime}$ are non-isomorphic.
Proof. Let $w=a_{1} a_{2} \ldots a_{2^{n}}, w^{\prime}=b_{1} b_{2} \ldots b_{2^{n}}, w \in L_{n}^{\prime \prime}, w^{\prime} \in L_{n}^{\prime \prime}$ and let w and w^{\prime} be isomorphic. We shall use induction. According to (v) $a_{1}=b_{1}=1$. Now suppose that $a_{1} \ldots a_{i}=b_{1} \ldots b_{i}$ for some i. If b_{1+i} is equal to some b_{j} for $j \leqq i$, then also a_{i+1} is equal to a_{j}. As, according to the assumption, $b_{j}=a_{j}$, also $b_{i+1}=a_{i+1}$ and $a_{1} \ldots a_{i+1}=b_{1} \ldots b_{i+1}$. If b_{i+1} is different from all b_{j} for $j \leqq i$, then according to (v) it is the least of the numbers $1, \ldots, n$ which does not occur in $b_{1} \ldots b_{i}$. The symbol a_{i+1} must be also different from all a_{j} for $j \leqq i$ and it is the least of the numbers $1, \ldots, n$ which does not occur in $a_{1} \ldots a_{i}$. Therefore we have proved $w=w^{\prime}$.

Lemma 4. Any word of L_{n} is isomorphic with some word of $L_{n}^{\prime \prime}$.
Proof. Let $w=a_{1} a_{2} \ldots a_{2^{n}}$ be a word of L_{n}. For $j=1, \ldots, n$ let $l(j)$ be.the length of the maximal initial subword of w in which less than j pairwise different symbols occur. Now put $b_{l(j)+1}=j$ for $j=1, \ldots, n$ and for each i such that $1 \leqq i \leqq 2^{n}$ and $i \neq l(j)+1$ for all j put $b_{i}=j$ if and only if $a_{i}=a_{l(j)+1}$. From the definition of $l(j)$ it is evident that the symbols $a_{l(j)+1}$ for different j are different, therefore all symbols $1, \ldots, n$ occur among them; thus for any $i=1, \ldots, 2^{n}$ exactly one $j \in A_{n}$ exists such that $a_{i}=a_{l(j)+1}$. Now let $a_{i}=a_{k}$ for some i and k. This element is equal to some $a_{l(j)+1}$ and therefore $b_{i}=b_{k}=j$. On the other hand if $b_{i}=b_{k}$, let $b_{i}=b_{k}=j$. Then $a_{i}=a_{l(j)+1}, a_{k}=a_{l(j)+1}$ and therefore $a_{i}=a_{k}$. We have proved that w and $w^{\prime}=b_{1} b_{2} \ldots b_{2^{n}}$ are isomorphic. It remains to prove that $w^{\prime} \in L_{n}^{\prime \prime}$. Its length is 2^{n}, therefore (1) is satisfied. (ii) and (iii) follow from the isomorphism of w and w^{\prime}. Now if $b_{i}=j$ for some $i, j, 1 \leqq i \leqq 2^{n}, 1 \leqq j \leqq n$, this means that $a_{i}=a_{l(j)+1}$. For any $k<l$ the symbol $b_{l(k)+1}=k$ and evidently it precedes $b_{l(j)+1}$, because $l(k)<l(j)$ for $k<j$. In the subword $b_{1} \ldots$ $\mathrm{b}_{l(j)}$ only $j-1$ different symbols of A_{n} occur; from the above mentioned it follows that they are $1, \ldots, j-1$, therefore if $b_{i}=j$, then $i \geqq l(j)+1$ and, as $b_{l(j)+1}$ is preceded by all the symbols $1, \ldots, j-1$, so is b_{i}. Thus $w^{\prime} \in L_{\|}^{\prime \prime}$.

Now we shall return to the n-dimensional cube Q_{n}. We remember some well-known results on its automorphism group [2]. Let \boldsymbol{G}_{n} be the automorphism group of the n-dimensional cube. The order of \boldsymbol{G}_{n} is $2^{n} . n!$. Now let \tilde{J}_{n} be the subgroup of $\boldsymbol{\sigma}_{n}$ of the order 2^{n} which is a direct product of n subgroups of the order 2 each of which being generated by an element $f_{i}(i=1, \ldots, n)$
defined so that if $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$ are vertices of Q_{n} and $f_{i}\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)$, then $b_{1}=1-a_{1}, b_{j}=a_{j}$ for $j \neq i, 1 \leqq j \leqq n$. Further let \mathfrak{y}_{n} be the subgroup of \boldsymbol{G}_{n} of the order n ! which consists of all elements h_{π}, where π is a permutation of the set $\{1, \ldots, n\}$, defined so that for any vertex $\left(a_{1}, \ldots, a_{n}\right)$ of Q_{n} we have $h_{\pi}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)$. Each element of \mathfrak{G}_{n} is a product of an element of \mathfrak{J}_{n} with an element of \mathfrak{y}_{n}.

Now for $i=1, \ldots, n$ by \mathbf{v}_{i} we denote the n-dimensional vector whose i-th coordinate is 1 and all other coordinates are equal to 0 . Two vertices of Q_{n} (taken as vectors) are joined by an edge if and only if their difference modulo 2 is some \mathbf{v}_{i} for $i=1, \ldots, n$. Therefore the set of edges of Q_{n} can be decomposed into classes M_{1}, \ldots, M_{n} such that the class M_{i} is the set. of all edges for which the difference modulo 2 of the terminal vertices is \mathbf{v}_{i}.

To any Hamiltonian circuit C of Q_{n} we assign the word $w(C)$ in the following manner. We go round C starting at the vertex $(0,0, \ldots, 0)$ and that of the two edges incident with it which bclongs to M_{i} with smaller i. After crossing an edge of M_{i} we write the symbol i. The obtained word is denoted by $w(C)$ and evidently it is in L_{n}.

Lemma 5. Let C_{1}, C_{2} be two Hamiltonian circuits of Q_{n}. Then the following. two assertions are equivalent:
(a) $w\left(C_{1}\right)$ and $\bar{w}\left(C_{2}\right)$ or $w\left(C_{2}\right)$ are isomorphici
(b) there exists an automorphism from \mathfrak{S}_{n} which maps C_{1} onto C_{2}.

Proof. Assume first that there exists some automorphism $h_{\pi} \in \mathfrak{H}_{n}$ which maps C_{1} onto C_{2}. Let e be an edge of Q_{n} which belongs to M_{i}. This means that its terminal vertices are $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$, where $b_{i}=1-a_{i}$, $b_{j}=a_{j}$ for $j \neq i$. We have $h_{\pi}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{\pi(1)}, \ldots, a_{\pi(n,}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, $h_{\pi}\left(b_{1}, \ldots, b_{n}\right)=\left(b_{\pi(1)}, \ldots, b_{\pi(n)}\right)=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$. If $k=\pi^{-1}(i)$ then $b_{k}^{\prime}=$ $=1-a_{k}^{\prime}, b_{j}^{\prime}=a_{j}^{\prime}$ for $j \neq k$. The edge joining ($a_{1}^{\prime}, \ldots, a_{n}^{\prime}$) and ($b_{1}^{\prime}, \ldots, b_{n}^{\prime}$) belongs to $M_{k}=M_{\pi^{-1}(i)}$. We have proved that h_{π} maps any edge of M_{i} onto an edge of $M_{\pi^{-1}(i)}$ and therefore it maps two edges belonging to the same class onto two edges belonging again to the same class and two edges belonging to different classes again onto two edges belonging to different classes. Further the vertex $(0,0, \ldots, 0)$ remains fixed in all automorphisms of \mathfrak{y}_{n}. Therefore if in $w\left(C_{1}\right)$ we substitute $\pi^{-1}(i)$ for i, we obtain either $w\left(C_{2}\right)$ (if the first symbol is lets than the last), or $\overleftarrow{w}\left(C_{2}\right)$ (otherwise).

Now let $w\left(C_{1}\right), w\left(C_{2}\right)$ be isomorphic. Then there exists a permutation τ of $\{1 \ldots, n\}$ such that if $w\left(C_{1}\right)=a_{1} \ldots a_{2 n}, w\left(C_{2}\right)=b_{1} \ldots b_{2 n}$, then $b_{i}=$ $=\pi^{-1}\left(a_{i}\right)$ for $i=1, \ldots, 2^{n}$. The k-th vertex of C_{1} encountered on the described journey is $\sum_{j=1}^{k-1} \mathbf{u}_{j}$, where $\mathbf{u}_{j}=\mathbf{v}_{i}$, if the j-th edge of C_{1} belongs to M_{i}.

The k-th vertex of C_{2} met on the described journey is $\sum_{j=1}^{k-1} \mathbf{u}_{\pi(j)}$, which is the image of $\sum_{j=1}^{k-1} \mathbf{u}_{j}$ in h_{π}. If $w\left(C_{1}\right)$ and $\bar{w}\left(C_{2}\right)$ are isomorphic, the proof is analogous.

Lemma 6. The following two assertions are equivalent:
(a) the word $w\left(C_{2}\right)$ or $\bar{w}\left(C_{2}\right)$ is obtained from $w\left(C_{1}\right)$ by a cyclic permutation;
(b) there exists an automorphism from \mathfrak{F}_{n} which maps C_{1} onto C_{2}.

Proof. Let there exist a mapping $f \in \mathscr{F}_{n}$ which maps C_{1} onto C_{2}. Then the edge joining two vertices $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$ belongs to the same class as the edge joining $f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)$, because the difference modulo 2 of two vertices is preserved by each f_{i} and therefore also by an arbitrary superposition of these mappings. Therefore if we start from the image of $(0,0, \ldots, 0)$ in f instead of $(0,0, \ldots, 0)$ itself and go according to the word $w\left(C_{1}\right)$, we pass through C_{2} and therefore either $w\left(C_{2}\right)$, or $\bar{w}\left(C_{2}\right)$ is obtained from $w\left(C_{1}\right)$ by a cyclic permutation.

Now conversely let $w\left(C_{2}\right)$ be obtained from $w\left(C_{1}\right)$ by a cyclic permutation so that $w\left(C_{1}\right)=a_{1} \ldots a_{22^{n}}, w\left(C_{2}\right)=b_{1} \ldots b_{2^{n}}, b_{i}=a_{i+k}$ for some fixed k. Consider the word $a_{1} \ldots a_{k}$ (an initial subword of $w\left(C_{1}\right)$ of the length k) and take the mapping $f=\prod_{i=1}^{k} f_{a_{i}} \in \mathscr{F}_{n}$. The l-th vertex, of C_{2} is $\sum_{j=1}^{l-1} u_{j}$, where $u_{j}=v_{i}$, if the j-th edge of C_{2} belongs to M_{i}; in other words if $b_{j}=i$. The $(k+l)$-th vertex of C_{1} is $\sum_{j=1}^{k+l-1} u_{j}^{\prime}=\sum_{j=1}^{k} u_{j}^{\prime}+\sum_{j=k+1}^{k+l-1} u_{j}^{\prime}$, where $u_{j}^{\prime}=v_{i}$ if the j-th edge of C_{1} belongs to M_{i}, in other words if $a_{j}=i$. But $\sum_{j=1}^{k} u_{j}=f(0,0, \ldots, 0)$, $\sum_{j+1}^{k+l-1} u_{j}^{\prime}=\sum_{j=1}^{l-1} u_{j}$, because $b_{i}=a_{i+k}$ and therefore $u_{j}=u_{j+k}^{\prime}$. Thus the $(k+l)$-th vertex of C_{1} is the sum of $f(0,0, \ldots, 0)$ and the l-th vertex of C_{2}; the sum $k+l$ can be here taken modulo 2^{n}. From the definition of \mathfrak{F}_{n} we can easily deduce that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f(0,0, \ldots, 0)+\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for any $f \in \mathfrak{F}_{n}$ and any vertex $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of Q_{n}. Therefore $f\left(C_{2}\right)=C_{1}$. If $w\left(C_{1}\right)$ and $\bar{w}\left(C_{2}\right)$ are isomorphic, the proof is analogous. All sums of vectors were taken modulo 2 in this proof.

Now let ϱ be a binary relation on $L_{n}^{\prime \prime}$ such that $\left(w, w^{\prime}\right) \in \varrho$, if either w^{\prime}, or \bar{w}^{\prime} is isomorphic to some word obtained from w by a cyclic permutation. It is easy to prove that ϱ is an equivalence. From the above proved lemmas a theorem follows.

Theorem. The number of non-isomorphic Hamiltonian circuits in an n-dimensional cube is equal to the number of equivalence classes of the equivalence ϱ on $L_{\mu}^{\prime \prime}$.

Thus we have obtained a method for finding this number. We generate $L_{, \prime \prime}^{\prime \prime}$ and the relation ϱ on it and compute the number of equivalence classes of ϱ.

Finally we shall set a problem. A solution of this problem would make this procedure easier.

Problem. Find a sublanguage $L_{n}^{\prime \prime \prime}$ of $L_{n}^{\prime \prime}$ such that
(a) if $w \in L_{n}^{\prime \prime \prime}, w^{\prime} \in L_{n}^{\prime \prime \prime}, w \neq w^{\prime}$, then neither w^{\prime}, nor $\overleftarrow{w}^{\prime}$ is isomorphic to a word obtained from w by a cyclic permutation;
(b) for any $w^{\prime \prime} \in L_{n}^{\prime \prime}$ there exists some $w^{\prime \prime \prime} \in L_{\prime \prime \prime}^{n}$ such that either $w^{\prime \prime}$, or $\bar{w}^{\prime \prime}$ is isomorphic to a word obtained from $w^{\prime \prime \prime}$ by a cyclic permutation;
(c) $L_{n}^{\prime \prime \prime}$ can be characterized by a simple condition (vi) added to (i)-(v).

If such a language were obtained, then the required number of non-isomorphic Hamiltonian circuits in an n-dimensional cube would be equal to the number of elements of $L_{n \prime}^{\prime \prime \prime}$.

REFERENCES

[1] ABBOTT, H. L.: Some problems in combinatorial analysis. Ph. D. thesis, University of Alberta, Edmonton 1965.
[2] COXETER, H. S. M.: Regular Polytopes. 2 ${ }^{\text {nd }}$ ed., MacMillan New York - London 1963.
[3] GILBERT, E. N.: Gray codes and paths on the n-cube. Bell System Techn. J. 37, 1958, 815-826.
[4] GUY, R. K.: Twenty odd questions in combinatorics. Research Paper No. 104, University of Calgary, Calgary 1970.
[5] MILLS, W. H.: Some complete cycles on the n-cube. Proc. Amer. Math. Soc. 14, 1963, 640-643.

Received December 8, 1972

> Katedra matematiky vysoké školy strojni a textilni Komenského 2
> 46117 Liberec

