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RELATIVE ACT IDEALS 

EUGENE M. NORRIS 

To Professor Alexander Doniphan Wallace 

Introduction 

An act is such a continuous function m: 8 X X -> X that S is a topological 
semigroup, X is a topological space and m(s, m(t, x)) = m(st, x) identically. 
We write AB = {m(s, x): s e A and x e B) for subsets A ^ 8 and B c X, 
noting that AB = 0 ((3 denotes the empty set) if either A = 0 or b = C. 
We denote singleton subsets {x} by x, so that m(s, a:) is written sx; context 
will distinguish between multiplication in S and the values of m. All spaces 
are assumed to be Hausdorff. We use A*, A° and A\B to denote the closure 
of A, the interior of A, and the set whose elements are in A but not in B, 
An act m: 8 x X -> X will be denoted by (S, X), as no confusion can arise 
here; m may be referred to as the action of S upon X. We write (vl, J&) < 
< (C, D) just in case A ^ C ^ S and B ^ D ^ X. The i artial order so 
defined is that of the product of the lattices 8P(S) and &(X) of subsets of £ 
and of X respectively. We recall that the lattice operations v and A are given 
by coordinatewise unions (for v) and coordinatewise intersections (for ) 
respectively. A subact of an act (8, X) is a pair (T, Y) ^ (S, X) such t h a t T 
is a subsemigroup of S and TY c= Y. Throughout this paper, (T, Y) is supposed 
to be a subact of an act (S, X). For any pair (A, B) ^ (S, X) we call A i t s 
input and B its state space. We shall call (A, B) compact if both A and B are 
compact sets, and we extend this convention to include other topological 
properties, notably open and closed. A reference for the algebraic theory of 
semigroups is [2], while [7] serves for topological £emigroups. This paper 
extends some results from the author's dissertation [6]. The encouragement 
of Professor A. R. B e d n a r e k , the support of the National Science Founda
tion (GP 6505) and the inspiration of Professor A. D. W a l l a c e are gratefully 
acknowledged. The author wishes to thank the referee for his invaluable 
suggestions. The alternate proof of Proposition 4 (i) is due to the referee. 
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Relative Ideals 

A pair of nonvoid sets (A, B) < (S, X) is a left (respectively, right) (T, Y)-
ideal of (S, X) if A is a left (right) T-ideal of S and TB c B (respectively, 
AFcB). The pair (A, B) is a (T, Y)-ideal if it is both a left and right (T, Y)-
ideal. 

The notion of T-ideal (left, right) is due to A. D. W a l l a c e [8, 9]. If a semi
group S is considered as an act (S, S), the action being just semigroup multi
plication, then each left or right T-ideal A of S corresponds to the left or 
right (T, T)-ideal (A, A) of (S, S). The reader is invited to make a comparison 
with the (Hi, H2)-ideals of H r m o v a [3]. (T, Y)-ideals will be referred to 
generically as relative ideals of (S, X). Of course, each ideal of the semigroup T 
is a T-ideal, and a T-ideal contained in T is just an ideal of T. 

We record first an elementary result which is needed several times in the 
sequel. I ts proof, which wre omit, rests only upon the continuity of the action. 

Lemma 1. If (A, B) ^ (S, X) then A*B* <= (AB)*. 
Applying lemma 1 and the definitions of left and right (T, Y)-ideals gives 

an immediate proof of the next result. 

Corollary 2. If (A, B) is a left (right) (T, Y)-ideal, so is (A*,B*). 
The following theorem, stated here in our own notation, is due to A. D. 

W a l l a c e and is well knowrn to topologists. A proof may be found in [4]. 

Theorem 3. (Wallace). Suppose W is an open subset of X and (A, B) ^ 
^ (S, X) is such a compact pair that AB ^ W. Then there exists such an open 

pair (U,V)>(A, B) that UV c W. 

Minimal Relative Ideals 

A (T, Y)-ideal (A,B) (left, right) is said to be minimal if it is minimal 
in the partial order < , i.e. if, whenever (C,D) is a (T, Y)-ideal (left, right) 
and (C, D) < (A, B), then (C, D) = (A, B). 

Proposition 4. (i) / / S contains a minimal left T-ideal then (S, X) contains 
a minimal left (T, Y)-ideal; if, further, T contains a minimal left T-ideal L 
then the minimal left (T, Y)-ideals are precisely the class of all (Ls, Lx) where 
s e S and x e X. 

(ii) •// S contains a minimal right T-ideal then (S, X) contains a minimal 
right (T, Y)-ideal; (A, B) is a minimal right (T, Y)-ideal if and only if A is 
a minimal right T-ideal and (A, B) = (A,aY) for every a e A. 
. P roo f . If L and L\ are any left T-ideals of S and x e X,- then certainly 
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(L1,Lx) is a left (T, Y)-ideal. We shall see from the following argument, 
due in its original form to A. D. W a l l a c e , that (Lly Lx) is minimal, provided 
that L and L\ are minimal. If (A, B) is a left (T, Y)-ideal and (A, B) ^ (Li, Lx) 
then from the hypotheses that A c L1 and A is a left T-ideal follows the 
conclusion that A = L1. Now TB c £ c L^ so the set N = {s e L: sx e B} 
is nonvoid. We compute that (TN)x = T(Nx) ^ TB ^ B, so that TN c N; 
since N ^ L then N = L by the minimality of L, which proves that Lx s= H. 
Hence it follows tha t (Li , Lx) is a minimal left (T, Y)-ideal. Now suppose 
that L c T, i.e. tha t L is a minimal left ideal of T. If (Li, 5 ) is any minimal 
left (T, Y)-ideal then Li is clearly a minimal left T-ideal. If b is any element 
of B then (Li, Lb) ^ (L}, Tb) ^ (L1} B). (L1} Lb) is a left (T, Y)-ideal, since 
T(Lb) = (TL)b ^ Lb, so that (Lu B) = (L1} Lb). Since Lx = Ls for some 
s e S, as is readily verified, part (i) is proved. 

To see part (ii), suppose first tha t A is a minimal right T-ideal; it is immedia
te that (A, AY) is a right (T, Y)-ideal which is minimal. If a e A, then aT 
is a right T-ideal which is contained in A, and so aT = ^4. Then, AY = 
= (aT)Y = a(TY) ^ aY ^ AY, i.e. AY = aY. Hence each pair (A, aY) 
is a minimal right (T, Y)-ideal. Now suppose that (A, B) is any minimal 
right (T, Y)-ideal. Necessarily A is a minimal right T-ideal, for if A1 is a right 
T-ideal contained in A, then, since (AlyB) ^ (A, B) and (A1,B) is a right 
(T, Y)-ideal, it follows tha t (Aly B) = (A, B), i.e. that A± = A, proving 
that A is a minimal right T-ideal. Furthermore, (A, AY) ^ (A, B) and (A, A Y) 
is a right (T, Y)-ideal, so (A, B) = (^4,^4Y) = (A,aY) for any a e A by 
the previous argument. The proof of (ii) is now clear. 

We digress briefly to indicate how 4(i) follows from Theorem 2.2 and Lemma 
2.1 of [3]. Suppose (S, X) is an act, and X' = {1} x X. We let S act on X' 
as follows: m'(s, (1, x)) = (I, m(s, x)) = (1, sx) for all (s, (1, x)) e'S x N'. 
I t is clear that (S, X', m') is an act. Let H = S\J X' KJ {0}, where O ^ S u X'. 
Define on H the binary operation 

( ab, if a, b G S (semigroup product in S) 
m'(a, b), if a e S and b e X' 
0, otherwise 

Then (H, °) is easily seen to be a semigroup and S is a subsemigroup of H. 
If (^1, £ ) ^ (S, X), then (4 , B) is a left (T, X)-ideal of (S, Y) if and only 
if (A,Bf) is a pair of left T-ideals of H, where 5 ' = {1} x B. 

I t is well known [8] tha t if T is a compact subsemigroup of # then each 
left (right) T-ideal contains a minimal such. This leads immediately to a proof 
of the next result. 
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Corollary 5. If T is compact, then each (T, Y)-ideal (left, right) contains 
a minimal such. 

The next result is concerned only with (S, X)-ideals. 

Theorem 6. Let J5? (respectively, 01) denote the collection of all minimal left 
(right) (S, X)-ideals and suppose both ££ and 8/1 are nonvoid. Then (S, X) has 
a unigue minimal (S, X)-ideal, namely, (K, KX) where K is the minimal ideal 
of S; furthermore, v£>= (K, KX) = v9t. 

Proof . The existence of a minimal left and a minimal right #-ideal imply 
the existence of the minimal ideal K of S as is well known [7J. We first show 
that (K, KX) is the minimal (S, X)-ideal. That (K, KX) is an (S, X)-ideal 
is clear, since S(KX) = (SK)X c KX. Now suppose that (A, B) is any 
(S, X)-ideal; then A is an #-ideal and therefore contains K. Furthermore, 
KX c AX c S J 5 u 4 I c 5 , so that (K, KX) ^ (A, B). I t follows that 
(K, KX) is the unique minimal (S, X)-ideal. 

We prove next the assertion about ££\ I t is well known in the theory of 
semigroups [2] that K is the union of all minimal left #-ideals (any two of 
which are disjoint) and all minimal right /S-ideals. Hence, letting (A, B) = 
= vJSf, we have that A = K. This fact and Proposition 4(i) imply together 
tha t (A, B) ^ (K, KX). To see that KX c; B, suppose that y = kx for some 
k e K and that L is the minimal left #-ideal containing K; then 
y e Lx and (L, Lx) eJ§? by Proposition 4(i), so that Lx c B. Therefore KX c= 
c B and hence we see that (K, KX) = vJ5f. 

The assertion concerning £& is easily seen to hold, for if i$ = (C, D) then, 
as mentioned above, C = K. The union of the collection of all sets aX where 
a belongs to some minimal right $-ideal is seen to be KX and, by virtue 
of Proposition 4(h) is also D. Hence (C, D) = (K, KX). 

Corollary 7. / / (S, X) is compact and connected, then (K, KX) is also com
pact and connected. 

Proof . Since S is compact, the minimal ideal K exists. K is compact and 
connected since S is [7]. KX is the continuous image under the action of the 
compact connected set K X X. 

Maximal Relative Ideals 

A (T, Y)-ideal is proper if both its input and state space are proper subsets 
of S and of X respectively. I t is maximal proper if it is proper and is contained 
in no other proper (T, Y)-ideal. We extend the methods of K o c h and W a l l a c e 
[5] to prove the following result. 
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Theorem 8. / / (T, Y) is closed and (S, X) is compact, then each proper (T, Y)-
ideal is contained in a maximal proper (T, Y)-ideal and each maximal proper 
(T, Y)-ideal is open. 

We shall defer the proof of this theorem until we have established some 
notation and proved a lemma. 

For any pair (A, B) satisfying (0, 0) < (A, B) ^ (S, X) let (A, B) = 
= v {(P, Q) : (P, Q) is a (T, Y)-ideal and (P, Q) ^ (A,B)}. Clearly, (A, B) < 
^ (A,B); if (A,B) contains no (T, Y)-ideal then (A, B) = (0,0), otherwise 
(A, B) is the largest (T, Y)-ideal contained in (A, B). We omit the proof 
of these simple remarks, observing only that the join of any collection of 
(T, Y)-ideals is again a (T, Y)-ideal. 

We denote by Ji(A) the set AKJ AT KJTAKJ TAT, i.e. the T-ideal gene
rated by A, and we set J2(A, B) = B U TB U Ji(A)Y. For brevity, put 
J(A, B) = (Ji(A), J2(A,B)). Of course, J(A, B) = (0, 0) if and only if (A, P) = 
= (0,0). In the nonvoid case, J(A, B) is a (T, Y)-ideal which is contained 
in any (T, Y)-ideal containing (A, B). 

Lemma 9. Let (A, B) ^ (S, X). Then 

(i) If (A, B) is closed, so is (A, B). 
(ii) If (S, X) is compact, (T, Y) is closed and (A, B) is open, then (A, B) 

is open. 

Proof . Both assertions certainly hold if (A, B) = (0, 0), so we may assume 
without loss of generality that (A, B) contains at least one (T, Y)-ideal. 
If (A,B) is closed, then (A*,B*) ^ (A*,B*) = (A,B), so that (A*,B*) 
is a (T, Y)-ideal contained in (A,B); therefore, (A*,B*) ^ (A, B), proving 
that (A, B) is closed. To see (ii), let (t, x) eA X B. Necessarily there is a 
(T, Y)-ideal (P,Q) ^ (A, B) with teP and xeQ; indeed, from the defini
tion of (A, B) there are (T, Y)-ideals (Pt,Qt), i = V 2, so that t e Pi and 
xeQ2. But (Pi U P2,Qi U f e ) is also a (T, Y)-ideal contained in (A, B). 
By direct computation we can see that J(t,x) ^ (P,Q) ^ (A,B), so that 
J\(t) c= A and J2(t,x) c= B. Since A and B are open sets by hypothesis, we 
may apply Theorem 3 to each of the compact sets whose union is Ji(t) and 
to each of the compact sets whose union is J2(t, x) to obtain a pair (U, V) 
of open neighborhoods of t and of x with the property that J(U, V) ^(A, B). 
Since J(U, V) is a (T, Y)-ideal then (t, x) ^ (U, V) ^ J(U, V) ^ (A, B), 
so that t G U c= A and x e V ^ B, proving (ii). 

P r o o f of Theorem 8. The theorem requires Zorn's Lemma for its proof. 
If (P, Q) is a proper (T, 7)-ideal and (s, x) e S\P x X\Q then (P, Q) ^ 

^ (S/s, Xjx) which is an open proper (T, Y)-ideal, in light of lemma 9; hence 
the collection (gft, < ) of all open proper (T, Y)-ideals containing (P, Q) is 
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nonvoid. Suppose <_f = {(Cx9 -DA) : I e A} is a maximal linearly ordered sub-
collection of <% and let (A, B) = \i<g. (A, B) is open, being the join of open 
pairs, and is a (T, Y)-ideal containing (P, Q). If (A, B) were not proper then 
either A = S or B = X, and the compactness of S or of X, as the case may 
be, would imply that S (or X) is the union of a finite linearly ordered collection 
of proper open subsets, which is absurd. Hence (A, B) is a proper (T, Y)-
ideal containing (P, Q); it is clearly a maximal such. 

The relation between maximal proper T-ideals and maximal proper (T, Y)-
jdeals is not as clear as in the case of minimal ideals. Examples show that 
a maximal proper _T-ideal M need not be the input to any proper (T, Y)-
ideal, even if S, T, X and Y are all compact, for it can happen that 31Y = X. 
The following results illuminate the matter somewhat. For convenience, we 
adopt the terminology of P a a l m a n - d e M i r a n d a [7] and say that (S, X) 
has the maximal property with respect to a subact (T, Y) if each proper (T, Y)-
ideal is contained in a maximal proper (T, Y)-ideal. 

Proposition 10. If (S, X) has the maximal property relative to (T, Y) 
and M is a maximal proper T-ideal, then 31 is the input to a maximal proper 
(T, Y)-ideal if and only if MY ^ X. 

Proof . If (31, N) is a maximal proper (T, Y)-ideal then MY c N -^ A", 
so the necessity of the condition is clear. For the converse, one need only 
observe that if MY ^ X, then (31, 31Y) is a proper (T, Y)-ideal and is there
fore contained in a maximal proper (T, Y)-ideal (P, Q). But then 31 ___ P 
and P is a proper T-ideal, so the maximality of 31 implies that 31 = P . 
Hence (M, Q) is a maximal proper (T, Y)-ideal. 

For the sake of brevity, we shall use the following notation of A. D. W a l l a c e 
[8, 9]: if A c S and it B and Care subsets of X, let A^-^B = {x e X: Ax _= B} 
and BCi-V = {seS: sC c B}. 

Proposition 11. Suppose (A,B) is a left (respectively, right) (T, Y)-ideal. 
Then 

(i) £Y [ -H is a left (right) T-ideal 
(ii) B c _r.-i-.l_B (respectively, A <_= .BY-"1-). 

P roo f . If (A,B) is a left (T, Y)-ideal and if s e_BY[-U and teT, then 
(ts)Y = t(sY) ^tB^TB^B. Hence ts e -BYl-il, so _BY[--l is a left _T-ideal 
and B c TV--LB. If (A, B) is a right (T, Y)-ideal, s eBYl-V and teTy 

then (st)Y = s(tY) _z s(TY) ___ sY __= B, so that _BY[-il is a right T-ideaL 
Of course, AY _= _B, so that .4 _= _BY[-il. 

Proposition 12. Suppose (M, N) is a maximal proper (J7, Y)-ideal. Then 

(i) Either NY[-H = 31 or NYt-H = £ 
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(ii) Either TC-iW = N or T^W = X 
(iii) I/ NYl_1l = S then M is a maximal proper T-ideal 
(iv) IfTl-^N = X then N is a maximal proper subset of X for which TN c j , 

P roof . Since (M, N) is both a left and a right (T, Y)-ideal, Proposition 11 
implies that .V7H1 i s a T-ideal corAaining M. Now, (NY t-i l , N) is a (T, Y)-
ideal, for (NYr-H)Y c T N c N, and since (if, N) ^ (NY l-H, N), (i) follows 
from the maximality of (M, N). Par t (ii) follows similarly since (M, Tl_1lN) 
is easily seen to be a (T, Y)-ideal containing (M, N). Next, suppose M is 
contained in a T-ideal I, and suppose that NYt_1l = S. Then IY ~ N and 
hence (I, N) is a (T, Y)-ideal containing (M, N); the maximality of (M, N) 
then implies that either M = I or / = S. Hence M is a maximal proper 
T-ideal, proving (iii). To see (iv), suppose N ~\ Q ~\ X and TQ ~\ Q. Since 
Ti-WN = X then TQ c N, which implies that (M, Q) is a proper (T, Y)-
ideal containing (M, N). Hence either Q = N or Q = X. 

We conclude with a generalization of a result of K o c h and W a l l a c e [5], 
as an application of these ideas. 

Proposition 13. If (T, Y) is a closed subact of a compact act (S, X) and if 
(M, N) is such a maximal proper (T, Y)-ideal that the idempotents of T are 
contained in M, then TY <~\ N. 

Proof . If, to the contrary, there is some (t, y) eT X Y such that ty $ N, 
then necessarily y $ N. Since (M, N U Ty) is a (T, Y)-ideal property contain
ing (M, N) then N U Ty = X necessarily. Hence y eTy, so that y = sy 
for some 6* e T, and hence the closed set 2/2/[~1] contains the set {sn: n ^ 1} 
and therefore contains its closure r(s), a compact semigroup containing an 
idempotent e, which satisfies y = ey; but ey e My ~\ N, implying yeN. 
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