Matematický časopis

Štefan Znám

On k-Thin Sets and n-Extensive Graphs

Matematický časopis, Vol. 17 (1967), No. 4, 297--307

Persistent URL: http://dml.cz/dmlcz/127008

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON k-THIN SETS AND n-EXTENSIVE GRAPHS

S̃tefan ZnÁM, Bratislava

This article is a sequel to paper [7]. We deal here with the generalised form of a well-known problem from the theory of numbers (originated in 1916 by I. Schur, see [6]); further we give some applications of results in the graph theory (see [4]).

I

Let k, n and p be natural numbers, with $k \geqq 3$.
Definition 1. We say that the set M is a k-thin set if from the condition

$$
a_{1}, a_{2}, \ldots, a_{k-1} \in M
$$

it follows that

$$
a_{1}+a_{2}+\ldots+a_{k-1} \notin M
$$

(the numbers a_{i} need not be different).
Definition 2. The greatest natural number N for which there exist p disjoint k-thin sets $S_{1}, S_{2}, \ldots, S_{p}$ such that

$$
\{n, n+1, \ldots N\}=\bigcup_{i=1}^{p} S_{i}
$$

will be denoted by $\left.f(k, n, p){ }^{1}\right)$.
Remark. The $f(k, 1, p)$ is identical to $f(k, p)$ introduced in paper [7].
In the present paper we shall determine the value, resp. the lower estimation of $f(k, n, p)$. Our main result is

Theorem I. For arbitrary natural $k \geqq 3, n$ and p we have

$$
\begin{equation*}
f(k, n, p) \geqq k f(k, n, p-1)+(k-n-1) \tag{1}
\end{equation*}
$$

[^0]Remark. The special case of this Theorem (case $n=1$) is proved in paper [7]. The proof of Theorem I is completely analogical to the proof of its special case and therefore we shall not demonstrate it here.

Corollary 1. Let u and v be natural numbers, with $v \geqq u$. We have

$$
\begin{equation*}
f(k, n, v) \geqq k^{v-u} f(k, n, u)+\frac{k-n-1}{k-1}\left(k^{v-u}-1\right) \tag{2}
\end{equation*}
$$

Proof of Corollary 1. If we apply the inequality (1) to the number $f(k, n, v)$, we have:

$$
\begin{gathered}
f(k, n, v) \geqq k f(k, n, v-1)+(k-n-1) \geqq k^{2} f(k, n, v-2)+ \\
+k(k-n-1)+(k-n-1) \geqq \ldots \geqq k^{v-u} f(k, n, u)+ \\
+(k-n-1)\left(k^{v-u-1}+k^{v-u-2}+\ldots+k+1\right)= \\
=k^{v-u} f(k, n, u)+\frac{k-n-1}{k-1}\left(k^{v-u}-1\right) .
\end{gathered}
$$

Corollary 2.

$$
\begin{equation*}
f(k, n, p) \geqq \frac{k-2}{k-1}\left(k^{p}-1\right) n+(n-1) \tag{3}
\end{equation*}
$$

Corollary 2 is a special case of Corollary 1 (case of $u=1$; obviously $f(k, n, 1)=(k-1) n-1$ for arbitrary k and $n)$, but we mention it separately due to its great inportance: it gives a lower estimation of $f(k, n, p)$. The estimation (3) is not the best possible and for the case of $n=1, k=3$ it was already improved (see [1]). For an arbitrary $p \geqq 4$ it is true that

$$
f(3,1, p) \geqq \frac{89 \cdot 3^{p-4}-1}{2}
$$

which is obviously better than the estimation following from (3):

$$
f(3,1, p) \geqq \frac{3^{p}-1}{2}
$$

Again, in the case of $p=2$ we have in (3) an equation for an arbitrary n and $k \geqq 3$. We state it in the form of a Theorem:

Theorem II. For an arbitrary n and $k \geqq 3$ we have

$$
f(k, n, 2)=\frac{k-2}{k-1}\left(k^{2}-1\right) n+(n-1)=\left(k^{2}-k-1\right) n-1
$$

${ }^{r}$ Remark. Hence in the case of $p \neq 2$ our problem is solved completely, since we found the exact value of $f(k, n, 2)$.

Proof of Theorem II. From. (3) it follows that

$$
f(k, n, 2) \geqq\left(k^{2}-k-1\right) n-1
$$

To finish our proof we must show that

$$
f(k, n, 2) \leqq\left(k^{2}-k-1\right) n-1
$$

Hence it is suffucient to show that the numbers

$$
\begin{equation*}
n, n+1, \ldots,\left(k^{2}-k-1\right) n \tag{4}
\end{equation*}
$$

cannot be divided into two k-thin sets for any n and $k \geqq 3$. We shall use the methods used for the proof of analogical assumptions in paper [8].

We shall prove indirectly. Let us suppose that there exists a division of the numbers (4) into two k-thin sets. Let us denote them A and B. Without loss of generality we can suppose that $n \in A$. Since the sum of $k-1$ elements of A cannot belong to A, the number $(k-1) n$ belongs to the set B. From analogical considerations it follows that the number

$$
(k-1)^{2} n=\left(k^{2}-2 k+1\right) n
$$

belongs to the set A (this number is smaller than $\left.\left(k^{2}-k-1\right) n\right)$. We can write

$$
\left(k^{2}-k-1\right) n=(k-2) \cdot n+1 \cdot\left(k^{2}-2 k+1\right) n
$$

The numbers $\left(k^{2}-2 k+1\right) n$ and n are from the set A, hence the number ($k^{2}-k-1$) n belongs to the set B.

Now we shall distinguish two cases:
a) Let $k n \in A$. We have: $n, k n,\left(k^{2}-2 k+1\right) n \in A$, where

$$
\left(k^{2}-2 k+1\right) n=1 \cdot n+(k-2) \cdot k n
$$

($k n$ is smaller than $\left(k^{2}-k-1\right) n$, since $k \geqq 3$). It is a contradiction, because A is a k-thin set.
b) Let $k n \in B$. We have $(k-1) n, k n,\left(k^{2}-k-1\right) n \in B$, where

$$
\left(k^{2}-k-1\right) n=1 \cdot(k-1) n+(k-2) . k n
$$

It is a contradiction, because B is a k-thin set.
From a) and b) it follows that the number kn cannot belong to any of the sets A and B; hence the numbers (4) cannot be divided into two k-thin sets in any way; q.e.d.

Remark. Our method - so simple for the case of $p=2$-is already very
complicated for the case of $p=3$. To prove that the numbers $1,2, \ldots, 14$ cannot be divided into three 3 -thin sets in any way, we must distinguish 17 cases (we have here $k=3, n=1, p=3$). In the cases $p \geqq 4$ it is advisable to use computers.

We give now the second proof of the relation (3) (independent of Theorem I), which gives a good method for the direct division of the numbers

$$
\begin{equation*}
n, n+1, \ldots, \frac{k-2}{k-1}\left(k^{p}-1\right) n+(n-1) \tag{5}
\end{equation*}
$$

into $p k$-thin sets.
Second proof of (3). First we prove relation (3) for the case of $n=1$, i. e. we prove that the numbers

$$
\begin{equation*}
1,2, \ldots, \frac{k-2}{k-1}\left(k^{p}-1\right) \tag{6}
\end{equation*}
$$

can be divided into $p k$-thin sets.
Let us form from the numbers (6) the following sets:

$$
\begin{aligned}
& F_{1}=\{x: x \equiv 1,2, \ldots,(k-2) \quad(\bmod (k-2) k)\} \\
& F_{2}=\left\{x: x \equiv(k-1), k, \ldots,(k-2) k \quad\left(\bmod (k-2) k^{2}\right)\right\} \\
& \vdots \\
& F_{m}=\left\{x: x \equiv \frac{k-2}{k-1}\left(k^{m-1}-1\right)+1, \ldots,(k-2) k^{m-1} \quad\left(\bmod (k-2) k^{m}\right)\right\} \\
& \vdots \\
& F_{p}=\left\{x: x \equiv \frac{k-2}{k-1}\left(k^{p-1}-1\right)+1, \ldots,(k-2) k^{p-1} \quad\left(\bmod (k-2) k^{p}\right)\right\}
\end{aligned}
$$

Now we prove that
a) all F_{m} are k-thin sets,
b) every number from (6) belongs to at least one of the sets F_{m}.
a) Let $x_{1}, x_{2}, \ldots, x_{k-1} \in F_{m}$ (where m is an arbitrary of the numbers $1,2, \ldots, p$). From the construction of F_{m} it follows that we can find such numbers $y_{1}, y_{2}, \ldots, y_{k-1}$ that we have

$$
\begin{gathered}
x_{1} \equiv y_{1}\left(\bmod (k-2) k^{m}\right), \quad x_{2} \equiv y_{2}\left(\bmod (k-2) k^{m}\right), \ldots, \\
x_{k-1} \equiv y_{k-1}\left(\bmod (k-2) k^{m}\right)
\end{gathered}
$$

where

$$
\begin{equation*}
\frac{k-2}{k-1}\left(k^{m-1}-1\right)+1 \leqq y_{1}, y_{2}, \ldots, y_{k-1} \leqq(k-2) k^{m-1} \tag{7}
\end{equation*}
$$

From (7) it follows:

$$
\begin{gather*}
\sum_{j=1}^{k-1} y_{j} \leqq(k-1)(k-2) k^{m-1}<(k-2) k^{m} \tag{8}\\
\sum_{j=1}^{k-1} y_{j} \geqq(k-2)\left(k^{m-1}-1\right)+(k-1)=(k-2) k^{m-1}+1 \tag{9}
\end{gather*}
$$

Because of (8) and (9) we have:

$$
(k-2) k^{m-1}<\sum_{j=1}^{k-1} y_{j}<(k-2) k^{m}
$$

From the last inequality it follows that the number $\sum_{j=1}^{k-1} y_{j}$ cannot be congruent with any of the numbers of $F_{m}\left(\bmod (k-2) k^{m}\right)$. The same holds for the number

$$
\sum_{j=1}^{k-1} x_{j} \text {, since } \sum_{j=1}^{k-1} x_{j} \equiv \sum_{j=1}^{k-1} y_{j}\left(\bmod (k-2) k^{m}\right) . \text { Hence } \sum_{j=1}^{\cdot k-1} x_{j}
$$

cannot be equal to any of the numbers of F_{m} and F_{m} is a k-thin set. Since m was an arbitrary of the numbers $1,2, \ldots, p$, the proof of part a) is finished.
b) We have to prove that each of the numbers of (6) belongs at least to one of the sets F_{m}. We shall prove it by induction with respect to p.

It is very easy to verify that the assertion is valid for $p=1$.
Let $p>1$. Let us suppose that the assertion is valid for $p-1$ (i. e. that the numbers

$$
1,2, \ldots, \frac{k-2}{k-1}\left(k^{p-1}-1\right)
$$

belong to the sets $F_{1}, F_{2}, \ldots, F_{p-1}$). We shall prove that the assertion is valid for p, too.

The numbers

$$
\frac{k-2}{k-1}\left(k^{p-1}-1\right)+1, \frac{k-2}{k-1}\left(k^{p-1}-1\right)+2, \ldots,(k-2) k^{p-1}
$$

obviously belong to the set F_{p}. We must prove yet that each of the numbers

$$
\begin{equation*}
(k-2) k^{p-1}+1,(k-2) k^{p-1}+2, \ldots, \frac{k-2}{k-1}\left(k^{p}-1\right) \tag{10}
\end{equation*}
$$

belongs at least to one of the sets $\boldsymbol{F}_{\boldsymbol{m}}$. Since

$$
(k-2) k^{p-1}+\frac{k-2}{k-1}\left(k^{p-1}-1\right)=\frac{k-2}{k-1}\left(k^{p}-1\right)
$$

every of the numbers (10) can be written in the form

$$
(k-2) k^{p-1}+Y, \text { where } 1 \leqq Y \leqq \frac{k-2}{k-1}\left(k^{p-1}-1\right) .
$$

Because of the inductional assumption every such Y lies at least in one of the sets $F_{1}, F_{2}, \ldots, F_{p-1}$. The same is valid for the numbers (10), since they are congruent with the related $Y\left(\bmod (k-2) k^{p-1}\right)$, hence also $\left(\bmod (k-2) k^{s}\right)$, where $1 \leqq s \leqq p-1$. A number from (10) belongs therefore into the same set as the Y related to it.
The sets $\boldsymbol{F}_{\boldsymbol{m}}$ are not disjoint, but we can easy get from them a system of disjoint sets. The proof of (3) for $n=1$ is finished.
Now we prove (3) for an arbitrary natural $n>1$, i. e. we prove that the numbers (5) can be divided into $p k$-thin sets.

Let us divide the numbers (5) into n-tuples in the following way:

$$
\begin{aligned}
& a_{1}=\{n, n+1, \ldots, 2 n-1\}, \\
& a_{2}=\{2 n, 2 n+1, \ldots, 3 n-1\}, \\
& \vdots \\
& \vdots \\
& \vdots=\{i n, i n+1, \ldots,(i n+n-1)\}, \\
& \vdots \\
& \vdots \\
& \dot{a}_{k-2}(k n-1)
\end{aligned}=\left\{\frac{k-2}{k-1}\left(k k^{p}-1\right) n, \cdots, \frac{k-2}{k-1}\left(k^{n}-1\right) n+(n-1)\right\} .
$$

: Let us form from the numbers (5) the sets $G_{1}, G_{2}, \ldots, G_{p}$ in the following way: we put the whole n-tuple a_{i} in the set G_{m} if and only if i belongs to the set $\boldsymbol{F}_{\boldsymbol{m}}$ (where $\boldsymbol{F}_{\boldsymbol{m}}$ are the sets introduced above). Every number from (5) belongs exactly to one n-tuple, every n-tuple belongs to at least one set G_{m} (since each of the numbers in (6) belongs to at least one F_{m}), hence each of the numbers in (5) belongs to at least one of the sets G_{m}. We must prove yet that G_{m} are k-thin sets.
Let $x_{1}, x_{2}, \ldots, x_{k-1} \in G_{m}$ (m is an arbitrary of numbers $1,2, \ldots, p$). Let us denote

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{k-1}=x_{0} . \tag{11}
\end{equation*}
$$

It is well-known that every number $x_{i}(i \neq 0 ; 1, \ldots, k-1)$ can be written in the form:

$$
\begin{equation*}
x_{i}=r_{i} n+q_{i} \tag{12}
\end{equation*}
$$

where r_{i} and q_{i} are not negative integers, and

$$
\begin{equation*}
q_{i} \leqq n-1 . \tag{13}
\end{equation*}
$$

If we put (12) in (11) we shall have

$$
\begin{equation*}
n \sum_{i=1}^{k-1} r_{i}+\sum_{i=1}^{k-1} q_{i}=r_{0} n+q_{0} \tag{14}
\end{equation*}
$$

According to (13) $\sum_{i=1}^{k-1} q_{i}<(k-1) n$, hence we can write

$$
\begin{equation*}
\sum_{i=1}^{k-1} q_{i}=(k-j) n+q \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \leqq j \leqq k, 0 \leqq q \leqq n-1 \tag{16}
\end{equation*}
$$

From (14) and (15) we have the following equation

$$
\begin{equation*}
n_{i=1}^{k-1} r_{i}+(k-j) n+q=r_{0} n+q_{0} \tag{17}
\end{equation*}
$$

From (13), (16) and (17) it follows that $q_{0} \doteq q$, hence

$$
\sum_{i=1}^{k-1} r_{i}+(k-j)=\dot{r_{0}}
$$

According to the assumption the numbers $x_{1}, x_{2}, \ldots, x_{k-1}$ belong to the set G_{m}, therefore from the construction of n-tuples and the sets G_{m} it follows that the numbers $r_{1}, r_{2}, \ldots, r_{k-1}$ belong to the set F_{m}. Further from the construction of the sets F_{m} the existence of such numbers $t_{i}(i=1,2, \ldots, k-1)$ follows that $r_{i} \equiv t_{i}\left(\bmod (k-2) k^{m}\right)$, where

$$
\begin{equation*}
(k-1)+(k-2)\left(k^{m-1}-1\right) \leqq \sum_{i=1}^{k-1} t_{i} \leqq(k-1)(k-2) k^{m-1} \tag{18}
\end{equation*}
$$

(see (7), (8) and (9)). From (16) and (18) we get the inequalities:

$$
\begin{gathered}
\sum_{i=1}^{k-1} t_{i}+(k-j) \geqq(k-2)\left(k^{m-1}-1\right)+(k-1)+(k-j)>(k-2) k^{m-1} \\
\sum_{i=1}^{k-1} t_{i}+(k-j) \leqq(k-2)(k-1) k^{m-1}+(k-j) \leqq(k-2) k^{m}
\end{gathered}
$$

Hence $\sum_{i=1}^{k-1} t_{i}+(k-j) \notin F_{m}$, thus the number

$$
r_{0}=\sum_{i=1}^{k-1} r_{i}+(k-j) \equiv \sum_{i=1}^{k-1} t_{i}+(k-j) \quad\left(\bmod (k-2) k^{m}\right)
$$

is not from F_{m} either. But from this it follows that $x_{0}=r_{0} n+q_{0} \notin G_{m}$. The proof of (3) is completed.

II

In this part we shall show an application of the above results by the solving of a well-known problem from the graph theory,

Definition 3. Let n and N be arbitrary natural numbers. We shall say that a graph G of N vertices is an n-extensive graph if we can denote all vertices of G with numbers $0,1, \ldots, N-1$ so that two vertices P_{i} and $P_{j}(i, j=0,1, \ldots, N-1)$ are connected by an edge if and only $|i-j| \geqq n$.

Remark. Obviously every complete graph is an 1-extensive graph.
Definition 4. Let the natural numbers n, p and $k_{i} \geqq 2(i=1,2, \ldots, p)$ be given. We shall denote by $g\left(n, p ; k_{1}, k_{2}, \ldots, k_{p}\right)$ the greatest natural number K for which all edges of an arbitrary n-extensive graph of K vertices can be coloured by p colours so that there does not arise any complete subgraph of k_{i} vertices, all edges of which are coloured by the same colour $C_{i}(i=1,2, \ldots, p)\left({ }^{2}\right)$.

Definition 5. A complete subgraph, all edges of which are coluored by the same colour (C_{l}) will be called monochromatic (C_{i}-chromatic).

Papers [4] and [7] deal with the case of $n=1$ (i. e. with the case of the complete graph). The results of our paper give a generalisation of the results of [4] and [7].

We shall determine the lower and the upper estimation of the function $g\left(n, p ; k_{1}, k_{2}, \ldots, k_{p}\right)$.

Theorem III. For an arbitrary natural n, p and $k_{i} \geqq 3(i=1,2, \ldots, p)$ we have

$$
\begin{gather*}
g\left(n, p ; k_{1}, k_{2}, \ldots, k_{p}\right) \leqq \tag{19}\\
\leqq \sum_{i=1}^{p} g\left(n, p ; k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{p}\right)+n .
\end{gather*}
$$

Proof. Let G be an n-extensive graph of

$$
N=\sum_{i=1}^{p} g\left(n, p ; k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{p}\right)+n+1
$$

[^1]vertices. We shall prove indirectly. Let us suppose that we find such a colouring of all edges of G by p colours that there does not arise any C_{i}-chromatic complete subgraph of k_{i} vertices ($i=1,2, \ldots, p$). Let us denote the vertices of G with numbers $0,1, \ldots, N-1$ in such a way that two vertices P_{i} and P_{j} are connected by an edge if and only if $|i-j| \geqq n$ (it is obviously possible, because G is an n-extensive graph of N vertices). The vertex denoted by 0 denote by V_{0}. There exist exactly $n-1$ vertices which are not connected with V_{0} by an edge. Let T_{i} denote the set of this vertices of G which are connected with V_{0} by an edge of colour C_{i}. Let the number of elements of T_{i} be m_{i}. Then we have:
$$
1+\sum_{i=1}^{p} m_{i}+(n-1)=N
$$

From this it follows that we cannot have for every $i(=1,2, \ldots, p)$ inequality

$$
m_{i} \leqq g\left(n, p ; k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{p}\right)
$$

but there exists at least one i for which

$$
m_{i}>g\left(n, p ; k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{x}\right)
$$

Whence it follows that in T_{i} either there exists a C_{s}-chromatic $(s \neq i)$ complete subgraph of k_{s} vertices, or there exists a C_{i}-chromatic complete subgraph of $k_{i}-1$ vertices. If we give to the later the vertex V_{0} (which is connected with all vertices of T_{i} by an edge of colour C_{i}) we shall have a C_{i}-chromatic complete subgraph of k_{i} vertices. It is a contradiction and the proof of the Theorem is finished.

Remark 1. A special case of Theorem III ($n=1$, i. e. the case of complete graphs) is proved in paper [4], the methods of which are used in our paper.

Remark 2. Obviously $g\left(n, p ; k_{1}, \ldots, k_{i-1}, 2, k_{i+1}, \ldots, k_{p}\right)=g(n, p-1$; $k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots k_{p}$), therefore by (19) it can be proved by induction (with respect to p) that the function $g\left(n, p ; k_{1}, \ldots, k_{p}\right)$ is finite for an arbitrary n, p and $k_{i}(i=1,2, \ldots, p)$.

Remark 3. We can state further: by analogical considerations as in the case of $n=1$ (see [4]) we can prove the inequality

$$
\begin{equation*}
g\left(n, p ; k_{1}, \ldots, k_{p}\right) \leqq \frac{\left(k_{1}+\ldots+k_{p}\right)!}{k_{1}!\ldots k_{p}!}+n(p+1)^{\left(k_{1}+\ldots+k_{p}\right)} \tag{20}
\end{equation*}
$$

This upper estimation of the function $g\left(n, p ; k_{1}, \ldots k_{p}\right)$ is very rough and probably can be essentialy improved. For the case of $n=1$ a better estimation is shown in paper [4].

Now we shall deal with the lower estimation of the function $g\left(n, p ; k_{1}, \ldots, k_{p}\right)$. Determining lower estimations we shall use the results of part I of our article. A connection between the problem of colouring the edges of a graph and the problem of division of numbers into k-thin sets was shown first in paper [1].

Further we shall consider only the case $k_{1}=k_{2}=\ldots=k_{p}=k$. For the sake of simplification we introduce the notation $g(n, p ; k, \ldots, k)=g(k, n, p)$. Hence $g(k, n, p)$ is the greatest of such natural numbers for which all edges of any n-extensive graph of $g(k, n, p)$ vertices can be coloured by p colours so that there does not arise any monochromatic complete subgraph of k vertices.

Theorem IV. For an arbitrary natural $k(\geqq 3), n$ and p we have

$$
\begin{equation*}
\dot{g}(k, n, p) \geqq f(k, n, p)+1 \tag{21}
\end{equation*}
$$

Proof. Let G be an arbitrary n-extensive graph of $N=f(k, n, p)+1$ vertices. Let us form p such k-thin sets $I_{1}, I_{2}, \ldots, I_{p}$ that each of the numbers $n, n+1, \ldots, f(k, n, p)$ belongs exactly to one of them (existence of such sets follows from the definition of $f(k, n, p)$). Let us denote the vertices of G with the numbers $0,1, \ldots, N-1$ so that two vertices P_{i} and P_{j} are joined by an edge if an only if $|i-j| \geqq n$ (the possibility of such notation follows from the assumption that G is an n-extensive graph of N vertices). The edge joining the vertices P_{r} and P_{8} is coloured by the colour $C_{m}(m=1,2, \ldots, p)$ if and only if $|s-r| \in I_{m}$. We shall show that this colouring fullfils the demands, i. e. there does not arise any monochromatic complete subgraph of k vertices (Obviously each edge of G is*coloured exactly by one colour). We shall prove indirectly. Let us suppose that by this colouring there arises a C_{t}-chromatic ($i=1,2, \ldots, p$) complete subgraph with the vertices

$$
P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{k}}
$$

We can suppose that

$$
i_{1}>i_{2}>\ldots>i_{k}
$$

G is an n-extensive graph, hence we have:

$$
n \leqq i_{1}-i_{2}, n \leqq i_{2}-i_{3}, \ldots, n \leqq i_{k-1}-i_{k}, n \leqq i_{1}-i_{k}
$$

According to the assumption all edges of this complete subgraph are coloured by the same colour C_{i} and so we have

$$
i_{1}-i_{2} \in I_{i}, i_{2}-i_{3} \in I_{i}, \ldots, i_{k-1}-i_{k} \in I_{i}, i_{1}-i_{k} \in I_{i}
$$

Obviously the following is valid

$$
\left(i_{1}-i_{2}\right)+\left(i_{2}-i_{3}\right)+\ldots+\left(i_{k-1}-i_{k}\right)=\left(i_{1}-i_{k}\right) .
$$

But this is a contradiction because I_{i} is a k-thin set. The proof of the Theorem is completed.

Remark 1. Special cases of (21) are proved in the papers [1] and [7].
Remark 2. It is easy to verify the following assertion: Let G be a subgraph of an $n_{\text {rextensive }}$ graph G^{\prime} of $N=f(k, n, p)+1$ vertices. All edges of G can be coloured by p colours so that there does not arise any monochromatic complete subgraph of k vertices.

Remark 3. From (3) and (21) we have:

$$
g(k, n, p) \geqq \frac{k-2}{k-1}\left(k^{p}-1\right) n+n .
$$

It is a good lower estimation only for the case of a small k (for the case of a great k see [2]).

Remark 4. From (20) and (2i) we have the inequality

$$
f(k, n, p) \leqq \frac{(p k)!}{(k!)^{p}}+n(p+1)^{p k}-1
$$

which gives an upper estimation of $f(k, n, p)$.

REFERENCES

[1] Abott H. L., Moser L., Sum-free sets of integers, Acta arithm. 11 (1966), 393-396.
[2] Erd6s P., Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-299.
[3] Erd0s P., Graph theory and probalitity II., Canad. J. Math. 13 (1961), 346-352.
[4] Greenwood R. E., Gleasson A. M., Combinatorical relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-7.
[5] Rado R., Studien zur Kombinatorik, Math. Z. 36 (1933), 424-480.
[6] Schur I., Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Dtsch. Math.-Ver. 25 (1916), 114-117.
[7] Znám S., Generalisation of a number theoretical result, Mat.-fyz. časop. 16 (1966), 357-361.
[8] Znám S., Megjegyzések Turán Pál egy publikálatlan eredményéhez, Mat. lapok 16 (1963), 307-310.

Received May 24, 1966.
Katedra matematiky Chemickotechnologickej fakulty
Slovenskej vysokej školy technickej, Bratislava

[^0]: ${ }^{(1)}$ From results of [5] the existence of $f(k, n, p)$ for an arbitrary natural $k \geqq 3, n$ and p. follows.

[^1]: ${ }^{(2)}$ The existence of the number $K=g\left(n, p ; k_{1}, k_{2}, \ldots, k_{p}\right)$ for $n=1$ follows from the article [4]; for $n>1$ we shall prove it in our paper.

