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CORRESPONDENCE BETWEEN SEMI-MEASURES 
AND SMALL SYSTEMS 

JOZEF KOMORNIK 

In this paper we present two constructions. They are converse to each 
other and give the bijective correspondence between equivalence classes 
of semi-measures and small systems. 

The notion of semi-measures was introduced probably in [1], for references 
see [2]. Small systems were first studied in [3]; for references see [4], 

Throughout the whole paper the following symbols are used: S is a ring 
of subsets of a non-empty set X; R+ is the set of non-negative real numbers; 
Z+ is the set of non-negative integers; Z' = Z+ U {oo}. For every keZ+ 

we define: oo -f- k = oo, k-00 = 0. 
We also define two functions: 

r: R+->Z' r(x) = inf {neZ+: 2-» ^ x} 

(0 n = 0 
t: Z'->Z' t(n) = \n—\ 0 < n < oo 

(oo n = oo 

Definition 1. (i) A function P : S ->- R+ is called a semi-measure on the ring 
S if it is monotone, subadditive and upper continuous in 0; 

(ii) Two semi-measures P i , P2 on S are called equivalent if Pi(E) = 0 o 
oP2(E) = 0 for every EeS. 

Construction 1. Let P be a given semi-measure on S. For every neZ+ we 
define 

Sn = {EeS:P(E) ^ 3-"}. 

Lemma 1. The system {Sn} obtained by the construction 1 has the following 
properties. For every n e Z + there holds: 

( 1 ) S D S O D . . . D { 0 } 

(2) A <= BeS, BeSn=>AeSn 

(3) A1,A2,A3eSn => Ax u A2 u AdeSHn) 

(4) {^ m }^ = 1 \ 0? Am G S Vne Z+ 3M eZ+ Vm ^ M:AmeSn. 
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Proof . These properties result simply from the definition of {Sn} (1), 
the monotonicity (2), the subadditivity (3) and the upper continuity (4) 
of P. 

Definition 2. (i) By a small system we mean a sequence {Sn} of subsets of S 
ao 

having the properties (1) —(4). We put S^ = H Sn. 
w=0 

(ii) Two small systems {Sn}, {Tn} are said to be equivalent if S^ = T^. 
R e m a r k . If we have a small system {Sn} we can simply observe tha t 

the properties (I) —(3) hold for n = oo. 

Construction 2. Let {Sn} be a given small system. For every E e S we define 
h(E) = sup [n eZ+,Ee Sn} 
f(E) - 2-*(E) 

p(E) = inf {2 f(Et):E = \jEti E{ e S, n e Z+}. 
i-l i-l 

Lemma 2. (i) / is a monotone function. 
(ii) For every ae R+ and E e S there holds f(E) ^ a => E e Sr(a) • 
P roo f : (i) Let A a B. By the property (2) {n : A e Sn} z> {n : B e Sn}> 

hence h(A) ^ h(B) and therefore f(A) ^ f(B). 
(ii) Every value of / is by the definition of the type 2~n, n eZ'. 

Corollary. For every E eS f(E) = 0 oEeSo,. 

Theorem, (i) The function p obtained by the construction 2 is a semi-measure. 
(ii) If we have a semi-measure P and p is a semi-measure obtained by apply

ing the constructions 1 and 2, then P and p are equivalent. 

Proo f . First we prove (i). Let A c B e S, 0 < e G R. There exists {Bi}" i 
n n 

such that B = \J Bt and %f(Bf) ^ p(B) + e. We put Af A n Bt, i 
i 1 i-l 

-- 1, . . ., n. By the monotonicity o f / we get 

p(A) ^ j?f(At) ^ ^f(Bi) < p(B) + e. 
i-l i 1 

The subadditivity and upper continuity of p we i>et also simply from the 
definition of p. 

(ii) To prove the second assertion of the theorem we use the inequality 
f(E) < 2p(E) for every EeS. 

i 

We show that for every EeS and any finite decompozition E = [ J Et 9 
i 1 

Ei e S we have 
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a = 2f(E,) > 1/2 .f(E) (i.e. f(E) < 2a) 
i 1 

I t is evident for a = oo or n = I. In case a < oc we use the induction with 
respect to n. 

Let w ^ 2. We consider two cases. 
(a) f(Et) < a/2 for i = ] , . . . , n. We put 

J-1 
& - max {j : ]£/(.#,) < a/2}. 

< 1 

Then we have I < k < n and 

it 1 k r> 

Zf(Ei) < a/2, 2f{Et) > a/2 i.e. JT / (# , ) ^ a/2. 
* 1 « ' = 1 «-*(•{-1 

Because of the inductive assumption we have 

/( jj Et) < 2 f/(^) < a, /( (J Et) < a 
i-l i-l i-k\-l 

and finally 

f(Ek)^2f(Et)=a. 
i=l 

Using Lemma 2 (ii) and putting a == r(a), we get 

(jEt, Eky (J EteSt'^^EeStw. 
i-l i k+1 

According to the definition 2 we obtain h(E) ^ 1(a) ^ a— hf(E) ^ 2 « f l ^ 
^ 2a. 

(/i) /(ify) ^ a/2 for some i = 1, . . ., n. We can suppose i — n. We obtain 
H-i ii-i 

2 / ( ^ ) ^ a/2> / ( U Ei) ^ a* N o w w e c a n follow as in the case (a). 
/ 1 i 1 

To finish the proof of the theorem we use the relations p(E) ^ f(E) and 
f(E) — 0 o P(E) = 0, which were shown above. 
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