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EDGE BASES OF COMPLETE UNIFORM HYPERGRAPHS
JIRI NOVAK

Let H = (V, E) be a finite simple hypergraph, let 17" = {v1, vz, ..., vn}
be its vertex set, let £ = {e1, e., ..., em} be its edge set. Let the rank of the
hypergraphbe k,i. e. max |e; = k.(See e. g. [1], p. 373.) Evidently the relation
le; M e;] < k — 1 holds for two ~rbitrary edges.

Definition 1. Let » < k — 1 b a non-negative integer. An edge basis of the
degree r of the hypergraph H is a . et of edges B, < E for which the following holds:

1) If e;, ej € By, then |e; N ej| < 7,
2) If e; € E — By, then there exists an e; € B, such that le; N e;| = r 4 1.
An edge basis vs called mintmal [maximal] if it has a minimal [maximal] possible

number of edges.
1t is clear that in H there always exists a minimal and a maximal edge basis

of degree r.
In the following we shall consider only complete k-uniform hypergraphs

in which |V| =n, |[E| = (Z), 0<r<k—1<mn, k>3 Edge bases will be

denoted by B(n, k, r). At first we shall introduce the known theorems on edge
bases B(n, k, r).

Theorem 1. |B(n, k, r)| < rﬁ —iJ(n)/(k) .
E—rl\r r

The proof is in [5], p. 258.

Theorem 2. Let n=(k— 1) t+s, 0<s<k—1, Mn, k) =k-—2).

. (n? — s?))2(k — 1) + ( ; ).T/m [B(n, k, 1)| > ((;) — M(n, k)) / (];) =

d(n, k).

Theorem 3. Minimal bases B(n, k, 1) with d(n, k) edges exist if and only if n
18 divisible by k — 1 and for ny = nj(k — 1) there exist a tactical system S (2, k, n1).
The proof of both these theorems are in [2], p. 399.
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nin—1
Theorem 4. Maximal bases B(n, 3, 1) have [g[ ; H edges,ifn == 5 (mod

—1
6), l%{n " ” — 1 edges, if n = 5 (mod 6).

The proof is in [6].

Definition 2. Edge bases B(n, k, r) tn whick the number of edges is equal to

n—rl{n k
[ }( ) / ( ) are called dense.
E—r|\r ¥

The question, when dense edge bases exist is not completely solved. The
following theorem concerns this topic:

Theorem 5. Dense edge bases B(n, 3, 1). or B(n, 4, 2) exist if and only if n =
=0,1,2, 3 (mod 6),orn =1, 2, 3, 4 (mod 6), respectively.

The proof is in [4], pp. 137 and 139.

The aim of this paper is to construct minimal edge bases B(n, 3, 1) for each
positive integer » > 3. If we apply Theorem 3, we obtain the solution easily,
if n is even and there exists a tactical system S(2, 3, n/2), 1. e. a Steiner triple
system.

It is well known that there exist Steiner triple systems for n; = 6f 4+ 1, or
ny = 6f - 3 resp. This implies » = 12¢ 4 2, or » = 12¢ 4+ 6 resp. In these two
cases we construct a minimal basis B(n, 3, 1), so that we construct a Steiner
system S of triples of the elements 1, 2, ..., n/2 and a Steiner system S of
triples of the elements n/2 + 1, n/2 + 2, ..., n. Then B(n, 3,1) = S; U S:.
This assertion is proved also in paper [2], p. 401.

We have to construct minimal bases B(n, 3, 1) in the remaining cases. i. e.
forn =12t +14,2=0,1, ..., 11, ¢ £ 2, 6. In our considerations we shall use
some theorems on Eulerian graphs without triangles.

1. Graphs assigned to B(n, 3, 1)

There exist Eulerian graphs of the order n without triangles. We shall
denote them by U(n, p), where p denotes the number of edges. If p is maximal
at the given n, we put p = m(n).

Theorem 6. If n > 4, then

n?4 for n = 0 (mod 4),
m(n) = |(n — 12+ 4+ 1 forn = 1 (mod 4),
n2f4 — 1 for n = 2 (mod 4),
(n — 1)%4 for n = 3 (mod 4).
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The proof is in [3]. This pajer contains also a construction of extremal
graphs U(n, m(n)).

A complete bipartite graph in which there are ny vertices of one colour in
a set ¢'1 and ng vertices of the other colour in a set €3 will be denoted by S(n1, n2).
Further let us denote by Si(n1, ne) the graph with n; 4 ns + 1 vertices
obtained from the graph S(n1, n2) in the following way: 1) we add a further
vertex z to S(n1, ns), which will be joined with ¢ vertices uy, ua, ..., u; of the
set C1 and with j vertices v1, v2. . . ., v; of the set Cs. 2) from the graph S(n1, n2)
we delete the edges joining a vertex u; with a vertex v, for k=1, 2, ..., 3;
qa 1,2, ...,7.

The extremal graphs U(n, m(n)), important for us, have the following

structure:
Ifn = 1 (mod 4), then U(n, m(n)) = Sif((n — 1)/2,(n — 1)/2),f=1,3,5, ...,

(n — 3)/2.
If n =3 (mod 4), then U(n, m(n)) is either the graph Sis((» + 1)/2, (n — 3)/2),
f—1, 38,5 ..., (m—5)2, oo the graph Sa((n + 1)/2, (»n — 3)/2), e =
1,35, ..., (n— 1)2.

The graphs, all vertices of which have odd degrees, will be called anfi-Eule-
rign. If an anti-Eulerian graph without triangles has n vertices and p edges,
we denote it by A(n, p). The symbol m(n) denotes the maximal possible number
of edges of an A(n, p).

The following theorem holds for anti-Eulerian graphs 4(n, m(n)):

Theorem 7. 1) m(n) = n2/4 — 1 for n = 0 (mod 4). The graph A(n, m(n))
is the complete bipartite graph S(n/2 + 1, n/2 — 1). 2) m(n) = n¥4 for n =2
(mod 1). The graph A(n, m(n)) is the complete bipartite graph S(n/2, n/2).

Now let us consider the graph G(n, 3, 1) which will be assigned to a basis
B(n, 3, 1). Let v; v; vg be an arbitrary edge of B(n, 3, 1). Then the assigned
graph G(n, 3, 1) must contain the vertices v;, v;, vx and the edges v;v;, vyvy,
vjvy, . Therefore the graph G(n, 3, 1) will be formed by triangles which are
edge disjoint. Necessarily such a graph has all vertices of even degrees, there-
fore it is Eulerian. Further it his the property that for an arbitrary triple of
its vertices there must exist at least one edge joining two of these vertices.
Otherwise we could add such a t1iple of vertices as an edge to the basis B(n, 3, 1)
which is not possible.

Let us denote by G(n, 3, 1) th complementary graph to the graph G(n, 3, 1).
The graph G(n, 3, 1) does not contain triangles and it is either Eulerian if » is
odd, or anti-Eulerian if » is even. The graph G(n, 3, 1) can have at most m(n)
cdges where m(n) has the values from Theorems 6 and 7. This implies that the

graph (/(n, 3, 1) has at least (Z) — m(n) edges. By ¢q let us denote the number
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of edges of the basis B(n, 3, 1). Thus for ¢ the inequality

£) o

(1) q> ————— = di(n),

3
must hold. Thus for each n we determine the least integer d(n) for which
d(n) > dyi(n) holds. If we find a basis B(n, 3, 1) which has d(n) edges, then this

basis is minimal. We shall not study the problem of the number of non-iso-
morphic minimal bases.

2. Lemmas

Lemma 1. Let n = 3 (mod 4). Then the Eulerian graph U(n, m(n)) cannol
be complementary to G(n, 3, 1).

Proof. As we can read in [3], the Eulerian graph U(n, m(n)) has the structure
illustrated in Fig. 1 (where » = 11). The vertex set is decomposed into a vertex
z and two classes 1, C2. We have |C1] = (n + 1)/2, |Cs| = (n — 3) 2. The
vertex z is joined with one vertex u of the set C1 and with vertices v1, v2, ..., vr
of the set C, where f is an odd number, or with a vertex o of the set (s and with
vertices uy, Uz, . . ., Uy of the set Cp, where ¢ is an odd number. In Fig. 1 a case
is illustrated with the edges zw and zv;, 4 = 1, 2, 3. In the following it suffices

to consider only this case because for the other case with the edges zv, zu;,
the consideration is the same.
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Let us denote by U(n) the complementary graph to the graph U(n, m(n)).
The graph U(n) has (g
), (|Cq]), further by an odd number of edges which join the vertex
with vertices of the set C; and finally by the edges which join the vertex
z with vertices of the sets C1, Cz. Note that in the graph U(n) the vertex z is
not joined with the vertex w e (.

We ask whether the graph U(n) can be the graph of some basis B(n, 3, 1),
i. e. the graph G(n, 3, 1). Let us suppose that it is so. Then the graph U(n) has
to be composed from edge-disjoint triangles. Each triangle incident with the
vertex « must have both further vertices either in the set C1, or in the set Cs. If
one vertex lay in €7 and another in Cs, then in the graph U(n) there would
exist an edge joining these vertices and different from the edges incident with
the vertex w. But this is not possible. This implies further that the number
of edges joining the vertex u with the vertices of the set Co must be even. We
obtain a contradiction because this number of edges is odd. The graph U(n)
cannot be the graph G(n, 3, 1) and the graph U(n, m(n)) cannot be the graph
G(n, 3,1).

) — m(n) edges and it is formed by the complete graphs

Lemma 2. Let n =12t 4 9, let p1 = 36(2 4 48t + 15. Then the graph
U(n, p1) does not exist.

Proof. Suppose that the graph U(n, p1) exists. We denote by D the sum of
degrees of all its vertices. In the graph U(n, p1) there must exist a vertex
of the degrec at least 6¢ + 4. Otherwise there would be

D < (126 + 9). (Gt + 2) = 7262 + T8¢ + 18 < 7262 + 96¢ | 30 = D.

The existence of a vertex of a certain degree will be a frequent consideration
in the following. We shall refer to 1t as to Consideration 1.

Let « be a vertex of the maximal degree in the graph U(n, p1). Its degree is
equal to 6f + 4 -+ ¢, where ¢ > 0 is an even number. Among the vertices which
are joined with « there must exist at least one vertex y whose degree is exactly
6t + 4 — c. Tt is easy to see that he degree of the vertex y cannot be higher.
If it were so, we should have the number of vertices higher than 12¢ 4 9
because the degree is an even number.

If all vertices adjacent to  had degrees less than 6 4+ 4 — ¢, i. e. at most
6f 2 — ¢, then the following relation would hold:

D644t (6F+4-4¢) (66 +2—c)F (664 —c). (66 + 4+
+¢) = 7202 4+ 90 + 28 — 262 — ¢ < T2 + 96t + 30 = D.

This consideration will be referre | to several times as Consideration 2.
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Therefore we have in the graph U(n, p1) a vertex x of the degree 6f + 4 + ¢
and a vertex y of the degree 6¢ + 4 — ¢ joined by an edge. The vertices adja-
cent to x form a set (1, into which we shall not include the vertex y; the
vertices adjacent to y form a set €z, into which we do not include the vertex x.
We have [C)| == 6t + 3 + ¢, |[Cs] = 6t + 3 — c. These sets of vertices are
disjoint. The remaining vertex will be denoted by z. (Fig. 2.)

As the graph U(n, p1) does not conatin triangles, its edges are
a) the edges incident with x and ¥ whose number is

+ C,
IC,|=6t+3+c

C, 9

ICl=6t+3-¢

Fig. 2

14 6f+3-+ct 6f13—c=12+7,

b) a certain subset of the edge set of the complete bipartite graph S( (1, [Cz)
whose cardinality is at most

(6t + 3 +¢).(6f + 3 — ¢) = 3612 + 36{ + 9 — 2,

c) the edges incident with the vertex z. Let the vertex z be joined withe vertices
of the set C; and f vertices of the set Cs.
Therefore the following holds:

(2)  p1 362 L 48 15 — 120 47 L 362 L 36f — 9 — 2 — g —
+et+f—e.f

If namely ¢ &= 0, f & 0, then from the complete bipartite graph S(C1, C>)
we must omit ¢ . f edges in order that no triangles with the vertex z and further
two vertices in the sets (', Cs might be obtained. Therefore the number of
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edges which join vertices of the set (; with vertices of the set (' is equal to

3662 4 36t + 9 —c2 —e.f — g, where g is a non-negative integer.

Now let us consider a case when the equality in the relation (2) occurs. The
expression e + f — e . fis
a) equal to one if at least one of the numbers e, f is equal to one;
b) equal to zero for e =f =2 or e = f = 0;
c¢) negative for any other choice of the numbers e, f.

We shall study these possibilities.
a) In this case there must be ¢ = 0, ¢ = 2 in order that the equality (2) may
hold. Therefore the graph U(n, p1) will be obtained so that from the graph

U(n, m(n)) we omit two edges. This follows immediately from the comparison
of the structure of the graph U(n, p;1) with the structure of the graph U(n, m(n)).
But if we omit two edges from a Eulerian graph, we cannot obtain a Eulerian
graph. Therefore this case is not possible.

b) In this case there must be ¢ == 0, ¢ = 1 in order that the relation (2) may
be satisfied.

* Let e = f = 2 and let the vertex z be joined with vertices u;, u» of the set
1 and with vertices v;, vz of th~ set Cs. From the complete bipartite graph
S(C1, C2) we must delete 4 edges w;v;, 7, j = 1, 2. By this the degrees of all
the vertices remain even. But we must delete one more edge according to
g = 1. By this further deleting we change the degrees of two vertices into odd
ones, which is not possible.

If e = f = 0, then by deleting one edge the degrees of two vertices in the
graph U(n, p1) are changed into odd ones. This again is not possible.
c)If e+ f—e.f= —1, thon e =2, f = 3 or inversely. This implies that
the vertex z is of an odd degree, which is not possible.

Ife 4+ f—e.f<< —1, then the relation (2) cannot be satisfied.

Therefore we see that the graph U(n, p1) does not exist.

Lemma 3. The graph A(12, 33) does not exist. The graph A(12, 30) cannot
serve as complementary to G(12, 3, 1).

Proof. Suppose that there exists A(12), 33). Therefore D = 66. In the graph
a vertex of the degree at least 7 must exist according to Consideration 1. We
denote by « the vertex of the maximal degree. Its degree is equal to 7 + ¢,
where ¢ > 0 is an even number. Among the vertices which are adjacent to «
there must be at least one vertex # of the degree 5 — ¢, as it follows from Consi-
deration 2. The vertices adjacent to x form a set C: into which we do not
include y; the vertices adjacent to y form a set C» into which we do not include
x. These sets must be disjoint in order that in the graph no triangle may be
formed. (Fig. 3.) We have |Cy| == 6 + ¢, |Cs] = 4 — ¢. The remaining edges
form a subset of the edge set of the complete bipartite graph S(|Ci|, [Cs]).
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Cz C4
Fig. 3

Totally we can have at most 1 4+6+4c+4+—c+ (6+¢).(4—70)
= 35 — 2¢c — ¢? edges. In order that the number of edges may be equal to
33, necessarily ¢ = 0. We must omit two edges from the complete bipartite
graph S(|Cy!, |Cal). But by omitting any two edges we cannot obtain an anti-
-Eulerian graph from the anti-Eulerian graph A(12, 35) because some vertices
will necessarily have even degrees. Therefore the graph A(12, 33) does not
exist.

This consideration on the non-existence of an anti-Eulerian graph will also
be repeated in the following. (Consideration 3.)

Now let us suppose that there exists the graph 4(12, 30). In the graph there
must exist a vertex x whose degree is at least 5. Therefore we can take into
account the degrees 5, 7, 9.

If the highest degree of a vertexin the graph is 7, then the graph must
have a structure as in Fig. 3, i. e. the vertex of the degree 7 is joined with
a vertex of the degree 5 and further edges join vertices of the set C; with
vertices of the set Cz. According to Consideration 3 a graph A(12, 30) with the
maximal degree 7 cannot exist.

If the highest degree is equal to, 9, the obtained graph can have at most 27
edges. (Fig. 4.)

Suppose that the highest degree is equal to 5. Then all vertices must have
the same degree 5 in order that the sum of all degrees may be 60. Let us denote
two adjacent vertices of the degree 5 by z and y, the sets of adjacent vertices
corresponding to them by Cy, Cs, where |C1| = |C5] = 4, C1 N Oz = 0. The
remaining two vertices in the graph will be denoted by =z, .

Let us suppose that they are not joined by an edge. Then the vertex z must
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[ — [N ~ -
Cs : C.
Fig. 4

be joined only with vertices of bo h sets C1, C2, because its degree is 5. There
are two possibilities:

a) The vertex = is joined with one vertex u of the set ; and with four vertices
of the set Cj, ¢ % j.

b) The vertex = is joined with two vertices u, v of the set ¢; and with three
vertices of the set C;, ¢ + j. (Fig. 5.)

Fig. 5
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In the case of a) we can join the vertex » only with the vertex ¢, therefore
its degree is at most 3, not 5.

In the case of b) we can join the vertex w with the vertex t and with a vertex
of (1, therefore its degree is at most 4, not 5.

The assumption that the vertices z, ¢ are not joined by an edge is nost correct.

Thuslet the vertices z, t be joined by the edge z ¢. It is easy to see that in this
case the vertex z must be joined with all vertices of the set C;, the vertex ¢
with all vertices of the set (;, ¢ 7 j. In the graph we have 18 edges now which
are incident with the vertices x, y, z, £. We need 12 more edges which can join
only vertices of the set i with vertices of the set (. From the complete
bipartite graph S(|C:!, |C2|) it is necessary to omit four edges so that each
vertex may have the degree 3. This can be done so that any two omitted edges
are vertex disjoint. Thus we have found an anti-Eulerian graphwithout triangles
with 30 edges, i. e. 4(12, 30).

We ask whether the graph A4 complementary to it with 36 edges can be the
graph G(12, 3, 1) composed of triangles, i. e. whether a decomposition of the
graph A into edge-disjoint triangles is possible. The graph A is shown in Fig. 6.

But four edges joining vertices of the set C; with vertices of the set (%
cannot be put into any triangle. It is so because between the sets of vertices
C1, € there are only these four vertex-disjoint joining edges and the vertices
x, ¥, =, t have the property that none of them is joined with vertices of both sets

Fig. 6



C1, Cs. Therefore the graph A (12, 20) cannot be used for the construction of
the graph G(12, 3, 1).

Lemma 4. The graphs A(12t, 36t2 — 3) and A(12t, 362 — 6) do not exist, if
t>1.

Proof. Let us suppose that there exist anti-Eulerian graphs which have
36t2 — 3, or 36f2 — 6 edges. For them D = 722 — 6, or D = 72> — 12,
respectively.

The highest degree of a vertex in the graph must be at least 6¢ 4 1, which
we obtain from Consideration 1 with the assumtion ¢ > 1.

Let the highest degree of a vertex in the graph be 6 4 ¢,co0dd, 1 < ¢ < 6t —
— 1. The vertex of this degree will be denoted by x. Then, according to Consi-
deration 2, with the assumption ¢ > 1 among the vertices adjacent to x there
must exist at least one vertex y of the degree 6¢ — ¢ exactly. Therefore the
graph has the structure as in Fig. 3 to which it is necessary to add |C:| =
=6t — ¢ — 1, |C4] = 6t 4+ ¢ — 1. No other vertices will be in the graph. For
the number p of edges we have

p< 1412 — 24 (66— ¢c—1). (66 +c — 1) = 362 — ¢2.

For our considerations only the value ¢ = 1 has a meaning, other odd values
of ¢ lead to a smaller number of edges than that which we inverstigate. Ac-
cording to Consideration 3 it is easy to show that the graphs 4(12¢, 36t2 — 3)
and A(12¢, 36(2 — 6) do not exist.

Lemma 5. The graphs A(12t + S, 36t 4 48t + 13) and A(12¢t + 8, 3642 +
-+ 48t 4+ 10) do not exist.

Proof. Let n = 12t 4 8, p1 = 3662 4 48¢ -+ 13, ps = 362 + 48f 4 10. Let
us suppose that A(n, p1), or A(n, p2) exists. Then in such a graph according to
Consideration 1 there must exist at least one vertex of the degree at least
6t + 5. By « we denote the vertex of the highest degree 6f + 5 4 ¢, ¢ > 0,
¢ even. According to Condiseration 2 there must exist a vertex y of the degree
6t 4 3 — ¢ among the vertices adjacent to x.

The structure of the graph is therefore the same as in Fig. 3. Evidently
ICi| = 6t + 4 + ¢, |Cs] = 6t + 2 — ¢. For the number p; of edges, 1 =1, 2,
we have:

pi<14+6+2—cH+ 604+ 4+4cH (6t+-2—¢).(66+4+¢c)=
— 362 + 48t — 15 — 2¢ — c2.

It is easy to see that ¢ — 0. We have obtained the graph 4 (n, m(n)) from which
by omitting two or five edges we should obtain A(n, p1), or A(n, p2). But this
is not possible. This implies that the graphs 4(n, p1) and A(n, p2) do not exist.
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Lemma 6. The graph A(12¢t + 10, 36¢2 + 60f + 24) does not exist.
The proof of this lemma is the same as the proof of Lemma 5.

3. The construction of minimal bases B(n, 3, 1)

Let V be a vertex set, |V| = n > 3. We obtain a minimal basis Bnin (2, 3,1)
by the following.

Construction 1. 1) We decompose the set V into two disjoint classes Vy, V.
Let | V1| = n1 be the nearest integer to n/2 for which the Steiner triple system
exists. Let |Vs] = na =n — n1.

2) We construct a maximal basis Bmax (71, 3, 1) from the elements of the set
V1. It is a Steiner triple system.

Further we construct a maximal basis Bm.x (n2, 3, 1) from the elements of
the set Vs according to Theorem 4.

3) We find all pairs of elements of the set V3 which are not contained in the
triples of the basis Bmax (72, 3, 1). To each of these pairs we add one element of
the set Vi. These added elements of the set Vi must be different. Thus we
obtain a set 7' of triples. (It may be empty.)

4) A minimal basis Bmin (7, 3, 1) is formed by two maximal bases Bmax (11,3, 1)
and Bmax (72, 3, 1) and by the set 7" of triples obtained in 3).

Now we shall prove our main theorem.

Theorem 8. Let n > 3 be an integer. We obtain a minimal basis Bmin (0, 3, 1)
by Construction 1.

Proof. 1) Let n = 12¢, ¢ > 1.

Let Buin (12¢, 3, 1) be a minimal basis to which the graph Gmin (12¢, 3, 1) is
assigned. The graph Gmin (12¢, 3, 1) is Eulerian, the complementary graph &
is anti-Eulerian without triangles, i. e. @ = A(12¢, p). For the number p of
edges in G the following relation must hold:

p < m(n) = 3662 — 1.
(We used Theorem 7.)
126y . .. ..
As ( 9 ) is divisible by three, the number p must also be divisible by three.

Therefore the number 36/2 — 1 comes not into account. The further values of
p are 362 — 3 and 36t — 6. According to the Lemmas 3 and 4 the anti-Eule-
rian graphs A(12¢, 3662 — 3), A(12¢, 3612 — 6), A(12, 33) do not exist. The
unique graph 4(12, 30) cannot serve as complementary to (12, 3, 1).

For the construction of the minimal basis Bmia (124, 3, 1) it is necessary to
use an .1(124, 362 — 9) as a complementary graph. In this case the graph
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G(12¢, 3, 1) has 3612 — 6t — 9 edges, therefore the minimal basis has at least
1262 — 2¢ + 3 edges.

In our case we have |Vi| = ny = 6t 4 1, |[V2| = ns = 6 — 1. Now we apply
Construction 1. A maximal basis Bmax (6f 4+ 1, 3, 1), i. e. a Steiner triple system,
6t -+ 1

2
tains [(68 — 1)/3.[(6t — 2)/2]] — 1 = 662 — 3t — 1 triples and 182 — 9¢ —
— 3 pairs of elements of Vz. There arc four pairs of elements of V2 not contained
in the triples of the basis By,,, (6 — 1, 3, 1).

We add four distinct elements of V7 to these pairs and we obtain 4 triples
which form the set 7'.

Now we form the set

B

This is evidently a basis B(lf, 3, 1) which contains 12{2 — 2¢{ 4 3 edges,
therefore it is minimal.

2) Let n = 12¢ + 1.
Let Bmin (126 + 1,3,1) be a minimal basis to which the graph Guin (12641, 3, 1)
is assigned. This graph is Eulerian, the complementary graph G to it is Eulerian
without triangles, i. e. G = U(12t + 1, p). For the number p of edges in &
the following relation must hold according to Theorem 6:

contains ( /3 = 6£2 + ¢ triples, a maximal basis Bmax (66 — 1, 3, 1) con-

6t4-1,3 1)UB,, (6t — 1,3 1)UT.

Illﬂx(

p < mn) = 36(2 + 1.

For the number ¢ of edges in B(12¢ -+ 1, 3, 1) the following relations must hold
according to (1):

q > ((mj’ 1) — (362 + 1))/3, q > 1262 + 21

Now we apply Construction 1. We have |Vi| = ny = 6f + 1, |Vo| = ng =
6¢t. A B, (6t + 1, 3, 1) contains 6t - ¢ triples, a B, (6¢2, 3, 1) contains
6t2 — 2¢ triples. There are 3¢ p: irs of elements from the set V> which are not
contained in the triples of the maximal basis B, (6¢, 3, 1). Thus we have

17| 3t. We form the sct
B, (6t +1,3 1)UB,. (6,3, 1)UT.

It is evidently a basis B(12¢ 4 1, 3, 1) with 122 + 2¢ edges. Therefore it is
minimal.

3) Lot = 126 14,0 = 2, 3, 4, 5, 6.
If we apply the Construction 1 we obtain minimal bases Bmin (126 + 7, 3, 1)
The proof is the same as in 2)

4) Let n = 12¢ + 7.
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The complementary graph to G(n, 3, 1) is Eulerian without triangles. Thus
G = U (12t - 17, p). For the number p of edges in. G the relation

p < m(n) == 362 + 36t 4 9,

must hold. According to Lemma 1 the graph U(12¢ + 7, 362 4 36¢ +9)
cannot be complementary to G(12¢ 4 7, 3, 1). Therefore we must use a U(12¢ +
-+ 17, 3662 4 36¢ + 6). For the number q of edges in a basis B(12t + 7, 3, 1) we
obtain the relation:
12
q= (( t2+ 7) — 362 — 36t — 6)/3 = 1242 - 14¢ + 5.

If we apply Construction 1 for n; = 6¢ + 3, ng = 6¢ - 4, we obtain a basis
with 1262 4 14t + 5 edges, i. é. a minimal basis. We find the numbers of triples
in the bases B, (6t + 3, 3, 1) and B, (6 + 4, 3, 1) and in the set 7' in the
same way as in the previous cases.

5) Let n = 12¢ 4 11.
According to Lemma 1 the graph U(n, m(n)) cannot be complementary to

G(12¢t + 11, 3, 1). The further procedure of the proof in this case is the same
as in the case 4).

6) Let n = 12¢ 4 8.
The graph G(n, 3, 1) is anti-Eulerian without triangles. Thus

G(na 3, 1) = A(n: p):

where p < m(n) == 36£2 4 48¢ + 15.
As the difference (g) — p must be divisible by three, the number of edges

p < 362 4- 48 4- 13 comes into account. According to Lemma 5 the graphs
A(12¢ + 8, 362+ 48t + 13) and A(12f + 8, 362 + 48¢ 4 10) do not exist.
Therefore p < 36/2 48t + 7 and q > 1262  14¢ + 7.

By Construction 1 we obtain a basis B(12f + 8, 3, 1) with 122 14 4 7

edges. Therefore this basis is minimal.
7) Let » = 12¢ 4 9. Ths graph G is Eulerian without trangles, thus G =

= U(12¢ 4 9, p), where p < m(n) = 36¢2 - 48¢ 4- 17 according to Theorem 6.
But as the difference (g) — m(n) is not divisible by three, we have p <

< 36£2 1 48¢ 1+ 15.
According to Lemma 2 the graph U(12t + 9, 362 4 48 4 15) does not

exist. Thus p < 36/2 + 48f - 12 and

g > ((Zf) — 362 48 12) 3= 12024 18t + 8.

\ &
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By Construction 1 we obtain a basis B(12¢ + 9, 3, 1) with 12¢2 | 48/ 4 8
edges, which is therefore minimal.

8) Let m = 12¢ 4~ 10. The graph G is anti-Eulerian without triangles, thus
G = A(12t 4 10, p), p < m(n) = 36t 4 60t - 25 according to Theorem 7.

But as the difference (721') — m(n) is not divisible by three, we have p <

< 3662 L 60¢ - 24.
According to Lemma 6 the graph A(12f + 10, 36 4 60¢ + 24) does not
exist. Thus p < 3662 + 60 + 21, ¢ > 12¢2 + 18t + 8. By Construction 1 we
obtain a minimal basis B(n, 3, 1) with 12¢2 4 18 4 8 edges, which is therefore
minimal.
By this we have exhausted all cases and we have proved the main theorm.
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