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Mat. čas. 24, 1974, No 1, 43—57 

EDGE BASES OF COMPLETE UNIFORM HYPERGRAPHS 

J I R I NOVAK 

Let II = (V, E) be a finite simple hypergraph, let V = {v±, V2, . . ., vn} 
be its vertex set, let E = {e\, eL, . . ., em} be its edge set. Let the rank of the 
hypergraph be k, i. e. max \a = k. (See e. g. [1], p. 373.) Evidently the relation 
\ei n ej\ ^ k — 1 holds for two arbitrary edges. 

Definition 1. Let r ^ k — l b a non-negative integer. An edge basis of the 
degree r of the hypergraph H is a , et of edges Br c E for which the following holds: 
1) If et, ej e Br, then \et n ef\ < r, 
2) If ei eE — Br, then there exists an ej e Br such that \et n ej\ ^ r -f- 1. 
An edge basis is called minimal [maximal] if it has a minimal [maximal] possible 
number of edges. 

I t is clear that in H there always exists a minimal and a maximal edge basis 
of degree r. 

In the following we shall consider only complete .k-imiform hypergraphs 

in which | V\ = n, \E\ = ( U \, 0 ^ r < k — 1 < n, k ^ 3. Edge bases will be 

denoted by B(n, k, r). At first we shall introduce the known theorems on edge 
bases B(n, k, r). 

Theorem 1. \B(n, k, r)\ $ 

The proof is in [5], p. 258. 

Theorem 2. Let n = (k — 1) t + s, 0 ^ s < k — 1, M(n, k) = (k — 2) . 

. (n* - 8*)/2(k - 1) + ( * ) . Tien \B(n, k, 1)| > ( ( g ) ~ M(n> *)) / ( 2 ) ^ 

d(n, k). 

Theorem 3. Minimal bases B(n, k, 1) tvith d(n, k) edges exist if and only if n 
is divisible by k — 1 and for n\ = ?i/(k — 1) there exist a tactical system S (2, k,ni). 

The proof of both these theorems are in [2], p. 399. 
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Theorem 4. Maximal bases B(n, 3, 1) have 

6), 
nïn — 1 

n — 1 
edges, ifn=^.o (mod 

— 1 edges, if n = 5 (mod 6). 

The proof is in [6]. 

Definition 2. Edge bases B(n, Je, r) in which the number of edges is equal to 
n в](:)/й are called dense. 
k 

The question, when dense edge bases exist is not completely solved. The 
following theorem concerns this topic: 

Theorem 5. Dense edge bases B(n, 3, 1). or B(n, 4, 2) exist if and only if n = 
= 0, 1, 2, 3 (mod 6), or n = 1, 2, 3, 4 (mod 6), respectively. 

The proof is in [4], pp. 137 and 139. 
The aim of this paper is to construct minimal edge bases B(n, 3, 1) for each 

positive integer n ^ 3. If we apply Theorem 3, we obtain the solution easily, 
if n is even and there exists a tactical system S(2, 3, n\2), i. e. a Steiner triple 
system. 

I t is well known that there exist Steiner triple systems for n± = Gt -f- 1, or 
m = 6t -f- 3 resp. This implies n = I2t -f- 2, or n = 12l -f- 6 resp. I n these two 
cases we construct a minimal basis B(n, 3, 1), so that we construct a Steiner 
S3^stem S\ of triples of the elements 1,2, . . . , n\2 and a Steiner system #2 of 
triples of the elements n\2 -f 1, n\2 + 2, . . ., n. Then B(n, 3, 1) = Sx U S2. 
This assertion is proved also in paper [2], p. 401. 

We have to construct minimal bases B(n, 3, 1) in the remaining cases, i. e. 
for n = I2t + i, i = 0, 1, . . ., 11, i 7-= 2, 6. I n our considerations we shall use 
some theorems on Eulerian graphs without triangles. 

1. Graphs assigned to B(n, 3, 1) 

There exist Eulerian graphs of the order n without triangles. We shall 
denote them 03- TJ(n, p), where p denotes the number of edges. If p is maximal 
at the given n, we put p = m(n). 

Theorem 6. If n ^ 4, then 

(
n2\4: for n = 0 (mod 4), 

(n — l)2/4 + 1 forn = 1 (mod 4), 
n2\4: — 1 for n = 2 (mod 4), 

(n— l)2/4 forn = 3 (mod 4). 44 



The proof is in [3]. This pa] er contains also a construction of extremal 
graphs U(n, m(n)). 

A complete bipartite graph in which there are n\ vertices of one colour in 
a set Oi and n2 vertices of the other colour in a set <72 will be denoted by S(n±, n2). 
Further let us denote by Sij(rii, n2) the graph with n\ -\- n2 -f- 1 vertices 
obtained from the graph S(n±, n2) in the following way: 1) we add a further 
vertex z to S(ni, n2), which will be joined with i vertices u±, u2, . . ., m of the 
set Oi and wi th j vertices v\, v2. . . ., vj of the set C2. 2) from the graph S(n±, n2) 
we delete the edges joining a vertex ujc with a vertex vg for 1c = 1, 2, . .., i; 

The extremal graphs U(n, m(n)), important for us, have the following 
structure: 

If n = 1 (mod 4), then U(n,m(n)) = Slf((n — l)/2, (n — l)/2),f= 1, 3, 5, .. . , 
(n - 3)/2. 

If n = 3 (mod 4), then U(n, m,(n)) is either the graph S±f((n -f- l)/2, (n — 3)/2), 
/ — 1, 3, 5, . . . , (n — 5)/2, oi the graph Sei((n + l)/2, (n - 3)/2), e = 

I, 3, 5, ...,(n- l)/2. 
The graphs, all vertices of which have odd degrees, will be called anti-Eule-

rian. If an anti-Eulerian graph without triangles has n vertices and p edges, 
we denote it by A(n, p). The symbol m(n) denotes the maximal possible number 
of edges of an A(n, p). 

The following theorem holds for anti-Eulerian graphs A(n, m(n)): 

Theorem 7. 1) m(n) = n2j4, — 1 for n = 0 (mod 4). The graph A(n, m(n)) 
is the complete bipartite graph S(nj2 -f- 1, nj2 — 1). 2) m(n) = n2\4 for n =2 
(mod 4). The graph A(n, m(n)) is the complete bipartite graph S(n/2, n/2). 

Now let us consider the graph G(n, 3, 1) which will be assigned to a basis 
B(n, 3, 1). Let v% vj vk be an arbitrary edge of B(n, 3, 1). Then the assigned 
graph G(n, 3, 1) must contain the vertices Vt, Vj, vjc and the edges ViOj, ViVjc, 
VjVi. Therefore the graph G(n, 3, 1) will be formed by triangles which are 
edge disjoint. Necessarily such a graph has all vertices of even degrees, there
fore it is Eulerian. Further it h i s the property that for an arbitrary triple of 
its vertices there must exist at least one edge joining two of these vertices. 
Otherwise we could add such a ti iple of vertices as an edge to the basis B(n, 3, 1) 
which is not possible. 

Let us denote by G(n, 3, 1) th » complementary graph to the graph G(n, 3, 1). 
The graph G(n, 3, 1) does not contain triangles and it is either Eulerian if n is 
odd, or anti-Eulerian if n is even. The graph G(n, 3, 1) can have at most m(n) 
edges where m(n) has the values from Theorems 6 and 7. This implies that the 

graph G(n, 3, 1) has at least j I — m(n) edges. Byg let us denote the number 
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of edges of the basis B(n, 3, 1). Thus for q the inequality 

U) ~m(n) 
(M = di(n), 

must hold. Thus for each n we determine the least integer d(n) for which 
d(n) ^ di(n) holds. If we find a basis B(n, 3, 1) which has d(n) edges, then this 
basis is minimal. We shall not study the problem of the number of non-iso-
morphic minimal bases. 

2. Lemmas 

Lemma 1. Let n = 3 (mod 4). Then the Eulerian graph U(n, m(n)) cannot 
be complementary to G(n, 3, 1). 

Proof . As we can read in [3], the Eulerian graph U(n, m(n)) has the structure 
illustrated in Fig. 1 (where v = 11). The vertex set is decomposed into a vertex 
z and two classes d, C2. We have | d | = (n + l)/2, \C2\ = (n - 3) 2. The 
vertex z is joined with one vertex u of the set G\ and with vertices V\,v2, ...,vf 

of the set C 2 , where / is an odd number, or with a ve* tex c of the set O2 and with 

vertices u\, u2, u( 
of the set C\, where g is an odd number. I n Pig. 1 a case 

is illustrated with the edges zu and zvt, i =- I, 2, 3. In the following it suffices 

to consider only this case because for the other case with the edges zv, zuiy 

the consideration is the same. 

C, 

Fiд. 1 
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Let us denote by U(n) the complementary" graph to the graph U(n, m(n)). 

The graph U(n) has J J — m(n) edges and it is formed by the complete graphs 

<|Ci|>, <|C2|>> further by an odd number of edges which join the vertex u 
with vertices of the set O2 and finally by the edges which join the vertex 
z with vertices of the sets C±, C2. Note that in the graph U(n) the vertex z is 
not joined with the vertex ueCv. 

We ask whether the graph U(n) can be the graph of some basis B(n, 3, 1), 
i. e. the graph G(n, 3, 1). Let us suppose that it is so. Then the graph U(n) has 
to be composed from edge-disjoint triangles. Each triangle incident with the 
vertex u must have both further vertices either in the set Ci, or in the set C2. If 
one vertex lay in C± and another in G2, then in the graph U(n) there would 
exist an edge joining these vertices and different from the edges incident with 
the vertex u. But this is not possible. This implies further that the number 
of edges joining the vertex u with the vertices of the set C2 must be even. We 
obtain a contradiction because this number of edges is odd. The graph U(n) 
cannot be the graph G(n, 3, 1) and the graph U(n, m(n)) cannot be the graph 
G(n,Z,\). 

Lemma 2. Let n = I2t + 9, let px = 36l2 + 48£ + 15. Then the graph 
U(n, pi) does not exist. 

Proof . Suppose that the graph U(n, p{) exists. We denote by D the sum of 
degrees of all its vertices. In the graph U(n, p±) there must exist a vertex 
of the degree at least 6£ + 4. Otherwise there would be 

D ^ (\2t + 9) . (6l + 2) = 12t2 + 78l + 18 < 72l2 + 96l + 30 = D. 

The existence of a vertex of a certain degree will be a frequent consideration 
in the following. We shall refer to it as to Consideration 1. 

Let x be a vertex of the maximal degree in the graph U(n, pi). I ts degree is 
equal to & + 4 + c, where c > 0 is an even number. Among the vertices which 
are joined with x there must exist at least one vertex y whose degree is exactly 
6i + 4 — c. I t is easy to see that he degree of the vertex y cannot be higher. 
If it were so, we should have the number of vertices higher than 12l + 9 
because the degree is an even number. 

Tf all vertices adjacent to x had degrees less than 6t + 4 — c, i. e. at most 
6f 2 — c, then the following relation would hold: 

D ^ & + 4 + c + (6i + 4 + c) (& f 2 — c) + (& + 4 — c) . (6f + 4 + 

+ c) = 72/2 + 90l + 28 — 2c2 — c < 12t* + 96l + 3 0 -- D. 

This consideration A\ ill be referre I to several times as Consideration 2. 
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Therefore we have in the graph U(n, p±) a vertex x of the degree 61 + 4 + c 
and a vertex y of the degree 61 + 4 — c joined by an edge. The vertices adja
cent to x form a set C\, into which we shall not include the vertex y; the 
vertices adjacent to y form a set O2, into which we do not include the vertex x. 
We have \Ci\ = & + 3 + c, |O2 | = 61 + 3 — O. These sets of vertices are 
disjoint. The remaining vertex will be denoted by z. (Fig. 2.) 

As the graph U(n, pi) does not conatin triangles, its edges are 
a,) the edges incident with x and y whose number is 

c, 

|C,|-Єt+3-c 

C, 

\C,\'6t+3 + c 

Fig. 2 

1 + 61 + 3 + c + 6t + 3 — c = 121 + 7, 

b) a certain subset of the edge set of the complete bipartite graph S( C\ , |C 2 ) 

whose cardinalhVy is at most 

(6t + 3 + c) . (Gt + 3 - c) = 3612 + 361 + 9 — c2, 

c) the edges incident with the vertex z. Let the vertex z be joined withe vertices 
of the set C\ and / vertices of the set <72. 

Therefore the foliowino; holds: 

(2) px 36/2 -J- 48/ + 15 — Ш + 7 - 36f2 + 36/ — 9 

e.f. 

9 — 

If namely c 4= 0, / 4= 0, then from the complete bipartite graph S( C± , Co ) 
we must omit c ./edges in order that no triangles with the vertex z and further 
two vertices in the sets d, C2 might be obtained. Therefore the number of 
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edges which join vertices of the set Ci with vertices of the set C2 is equal to 
36£2 -f- 36£ -f- 9 —• c2 — e . / — g, where g is a non-negative integer. 

Now let us consider a case when the equality in the relation (2) occurs. The 
expression e + / — e . / is 
a) equal to one if at least one of the numbers e, f is equal to one; 
b) equal to zero for e = / = 2 or e = / = 0; 
c) negative for an}' other choice of the numbers e, f. 

We shall study these possibilities. 
a,) In this case there must be G = 0. g = 2 in order that the equality (2) may 
hold. Therefore the graph U(n, p{) will be obtained so that from the graph 
U(n, m(n)) we omit two edges. This follows immediately from the comparison 
of the structure of the graph U(n, p\) with the structure of the graph U(n, m(n)). 
But if we omit two edges from a Eulerian graph, we cannot obtain a Eulerian 
graph. Therefore this case is not possible. 
b) In this case there must be c == 0, g = 1 in order that the relation (2) may 
be satisfied. 
• Let e = / = 2 and let the vertex z be joined with vertices u\, u2 of the set 

C\ and with vertices V\, v2 of th^ set C2. From the complete bipartite graph 
S(C\, C2) we must delete 4 edges utVj, i, j = 1, 2. By this the degrees of all 
the vertices remain even. But we must delete one more edge according to 
g = 1. By this further deleting we change the degrees of two vertices into odd 
ones, which is not possible. 

If e = / = 0, then by deleting one edge the degrees of two vertices in the 
graph U(n, p\) are changed into odd ones. This again is not possible. 
c ) I f e - f - / — e . / = — 1, th.3n e = 2, / = 3 or inversely. This implies tha t 
the vertex z is of an odd degree, which is not possible. 

I f e - f / — e . / < — 1, then the relation (2) cannot be satisfied. 
Therefore we see that the graph U(n, pi) does not exist. 

Lemma 3. The graph A(12, 33) does not exist. The graph A(12, 30) cannot 
serve as complementary to G(12, 3, 1). 

Proof . Suppose that there exists ^4(12), 33). Therefore D = 66. In the graph 
a, vertex of the degree at least 7 must exist according to Consideration 1. We 
denote by x the vertex of the maximal degree. I ts degree is equal to 7-f-c, 
where c ^ 0 is an even number. Among the vertices which are adjacent to x 
there must be at least one vertex y of the degree 5 — c, as it follows from Consi
deration 2. The vertices adjacent to x form a set C\ into which we do not 
include y; the vertices adjacent to y form a set C2 into which we do not include 
x. These sets must be disjoint in order that in the graph no triangle may be 
formed. (Fig. 3.) We have |Oi| = 6 -f- c, \C2\ = 4 — c. The remaining edges 
form a subset of the edge set of the complete bipartite graph S(\C\\, \C2\). 
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cz c, 
Vig. 3 

Totally we can have at most l - j - 6 - | - c + 4 — c + (6 + c ) . (4*— c)* 
= 35 — 2c — c2 edges. In order that the number of edges may be equal "to 
33, necessarily c = 0. We must omit two edges from the complete bipartite 
graph $(]CV, ICy)- But by omitting any two edges we cannot obtain an anti-
-Eulerian graph from the anti-Eulerian graph A(12, 35) because some vertices 
will necessarily have even degrees. Therefore the graph -4(12, 33) does not 
exist. 

This consideration on the non-existence of an anti-Eulerian graph will also 
be repeated in the following. (Consideration 3.) 

Now let us suppose that there exists the graph ^4(12, 30). In the graph there 
must exist a vertex x whose degree is at least 5. Therefore we can take into 
account the degrees 5, 7, 9. 

If the highest degree of a vertex in the graph is 7, then the graph must 
have a structure as in Fig. 3, i. e. the vertex of the degree 7 is joined with 
a vertex of the degree 5 and further edges join vertices of the set C± with 
vertices of the set C2. According to Consideration 3 a graph ^4(12, 30) with the 
maximal degree 7 cannot exist. 

If the highest degree is equal to, 9, the obtained graph can have at most 27 
edges. (Fig. 4.) 

Suppose that the highest degree is equal to 5. Then all vertices must have 
the same degree 5 in order that the sum of all degrees may be 60. Let us denote 
two adjacent vertices of the degree 5 by x and y, the sets of adjacent vertices 
corresponding to them by d, C2, where | d | = \C2\ = 4, Oi n C2 = 0. The 
remaining two vertices in the graph will be denoted by z, t. 

Let us suppose that they are not joined by an edge. Then the vertex z must 
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c. c. 
Fig. 4 

be joined only with vertices of bo h sets C±, Co, because its degree is 5. There 
are two possibilities: 
a) The vertex z is joined with one vertex u of the get d and with four vertices 
of the set Cj, i #= j . 
b) The vertex z is joined with two vertices u, v of the set Ct and with three 
vertices of the set Cj, i =j= j . (Fig. 5.) 

r ^ 

Fig. 5 
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In the case of a) we can join the vertex u only with the vertex t, therefore 
its degree is at most 3. not 5. 

I n the case of b) we can join the vertex u with the vertex t and with a vertex 
of Ci, therefore its degree is at most 4, not 5. 

The assumption that the vertices z, t are not joined by an edoe is nost correct. 
Thus let the vertices z, t be joined by the edge z t. I t is easy to see that in this 

case the vertex z must be joined with all vertices of the set C-t, the vertex t 
with all vertices of the set C$, i 7-= j . In the graph we have 18 edges now which 
are incident with the vertices x, y, z, t. We need 12 more edges which can join 
only vertices of the set C± with vertices of the set Co. From the complete 
bipartite graph S(\C±], IC2I) it is necessary to omit four edges so that each 
vertex may have the degree 3. This can be done so that any two omitted edges 
are vertex disjoint. Thus we have found an anti-Eulerian graph without triangles 
with 30 edges, i. e. ,4(12, 30). 

We ask whether the graph A complementary to it with 36 ed^es can be the 
graph 6r(12, 3, 1) composed of triangles, i. e. whether a decomposition of the 
graph A into edge-disjoint triangles is possible. The graph A is shown in Fig. 6. 

But four edges joining vertices of the set C± with vertices of the set Co 
cannot be put into any triangle. I t is so because between the sets of vertices 
Ci, Co there are only these four vertex-disjoint joining edges and the vertices 
x, y, z, t have the property that none of them is joined with vertices of both sets 

Ғig. 0 
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Oi, O2. Therefore the graph ^4(12, 20) cannot be used for the construction of 
the graph G(\2, 3, 1). 

Lemma 4. The graphs A(\2t, 3bl2 — 3) and A(\2t, 36l2 — 6) do not exist, if 
t>\. 

Proof . Let us suppose tha t there exist anti-Eulerian graphs which have 
36l2 — 3, or 36l2 — 6 edges. For them D = 72£2 — 6, or D = 72l2 — 12, 
respectively. 

The highest degree of a vertex in the graph must be at least 6t + 1, which 
we obtain from Consideration 1 with the assumtion t > 1. 

Let the highest degree of a vertex in the graph be 6t + c, c odd, 1 ^ c ^ 6t — 
— 1. The vertex of this degree will be denoted by x. Then, according to Consi
deration 2, with the assumption t > 1 among the vertices adjacent to x there 
must exist at least one vertex y of the degree 6t — c exactly. Therefore the 
graph has the structure as in Fig. 3 to which it is necessary to add |O2| = 
= 6l — c — 1, I Oi| = 6t + G — 1. No other vertices will be in the graph. For 
the number p of edges we have 

p <- 1 _]_ I2l — 2 + (& - c — 1) . (6l + c — 1) = 36l2 — c2. 

For our considerations only the value c = 1 has a meaning, other odd values 
of c lead to a smaller number of edges than that which we inverstigate. Ac
cording to Consideration 3 it is easy to show that the graphs A(\2t, 36£2 — 3) 
and ,4(12l, 36l2 — 6) do not exist. 

Lemma 5. The graphs A(\2t + S, 36l2 + 48* + 13) and A(\2t + 8, 36t2 + 
+ 48l + 10) do not exist. 

Proof . Let n = 12l + 8, Pl = 36£2 + 48l + 13, p2 = 36l2 + 48l + 10. Let 
us suppose that A(n, pi), or A(n, p2) exists. Then in such a graph according to 
Consideration 1 there must exist at least one vertex of the degree at least 
6l + 5. By x we denote the vertex of the highest degree 6£ + 5 + c, c ^ 0 , 
c even. According to Condiseration 2 there must exist a vertex y of the degree 
6l + 3 — c among the vertices adjacent to x. 

The structure of the graph is therefore the same as in Fig. 3. Evidently 
\Ci\ = & + 4 + c, |O2| = 6t + 2 — c. For the number pt of edges, i = 1, 2, 
we have: 

pt ^ 1 + 6i + 2 — c + 6l + 4 + c + (6t + 2 — c) . (6t + 4 + c) = 

- , 36l2 _j_ 48^ _._ 15 — 2c — c2. 

It is easy to see that c — 0. We have obtained the graph A(n, m(n)) from which 
by omitting two or five edges we should obtain A(n, p\), or A(n, p2). But this 
is not possible. This implies that the graphs A(n, p\) and A(n, P2) do not exist. 
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Lemma 6. The graph A(\2t + 10, 36l2 + 60l + 24) does not exist. 
The p r o o f of this lemma is the same as the proof of Lemma 5. 

3. The construction of minimal bases B(n, 3, 1) 

Let V be a vertex set, | V\ = n ^ 3. We obtain a minimal basis Bm[n (n, 3,1) 
by the following. 

Construction 1. 1) We decompose the set V into two disjoint classes V\, V2. 
Let | Vi | = n± be the nearest integer to n/2 for which the Steiner triple system 
exists. Let |V2| = n2 = n — m. 

2) We construct a maximal basis Bm3LX (n\, 3, 1) from the elements of the set 
Vi. I t is a Steiner triple system. 

Further we construct a maximal basis Bmix (n2, 3, 1) from the elements of 
the set V2 according to Theorem 4. 

3) We find all pairs of elements of the set V2 which are not contained in the 
triples of the basis jL?raax (n2, 3, 1). To each of these pairs we add one element of 
the set Vi. These added elements of the set V\ must be different. Thus we 
obtain a set T of triples. (It may be empty.) 

4) A minimal basis Bm[a (n, 3,1) is formed by two maximal bases J>mix (n\ ,3,1) 
and J5max (n2, 3, !) and by the set T of triples obtained in 3), 

Now we shall prove our main theorem. 

Theorem 8. Let n ^ 3 be an integer. We obtain a minimal basis Bm-in (n, 3, 1) 
by Construction 1. 

P roo f . 1) Let w = 12l, t > 1. 
Let J>min (12£, 3, 1) be a minimal basis to which the graph Gm[n (\2t, 3, 1) is 

assigned. The graph 6rmin (12l, 3, 1) is Eulerian, the complementary graph G 
is anti-Eulerian without triangles, i. e. G = A(\2t, p). For the number p of 
edges in G the following relation must hold: 

p ^ m(n) = 36l2 — 1. 

(We used Theorem 7.) 

As j " I is divisible by three, the number p must also be divisible by three. 

Therefore the number 36l2 — 1 comes not into account. The further values of 
p are 36l2 — 3 and 3&2 —- 6. According to the Lemmas 3 and 4 the anti-Eule
rian graphs A(\2t, 36£2 — 3), A(\2t, 36/2 — 6), .4(12, 33) do not exist. The 
unique graph 4(12, 30) cannot serve as complementary^ to C7(12, 3, 1). 

For the construction of the minimal basis Bm\n (12l, 3, 1) it i^ necessary to 
use an A(\2t, 36/2 — 9) as a complementary graph. In this case the graph 
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I con-

G(l2t, 3, 1) has 36*2 — 6* -— 9 edges, therefore the minimal basis has at least 
12*2 — 2* + 3 edges. 

In our case we have | Vi\ = n± = 6* + 1, | V2| = n2 = 6* — 1. Now we apply 
Construction 1. A maximal basis BmSiX (6* + 1, 3, 1), i. e. a Steiner triple system, 

contains [^ + 1/3 = 6*2 + t triples, a maximal basis Bm&x (ot — 1, 3, 1) 

t u n s [(6* — 1 )/3 . [(6* — 2)/2]] — 1 = 6*2 — 3* — 1 triples and 18*2 — 9* — 
— 3 pairs of elements of V2 • There are four pairs of elements of V2 not contained 
in the triples of the basis BmVLX (Gt — 1, 3, 1). 

We acid four distinct elements of V\ to these pairs and we obtain 4 triples 
which form the set T. 

Now we form the set 

-Bmax(6* + 1, 3 1) U £max(6* - 1, 3, 1) U T. 

This is evidently a basis B(IU, 3, 1) which contains 12*2 — 2* + 3 edges, 
therefore it is minimal. 

2) Let n = 12* + 1. 
Let I?min (12* + 1,3,1) be a minimal basis to which the graph 6rmin (12* + 1, 3, 1) 
is assigned. This graph is Eulerian, the complementary graph G to it is Eulerian 
without triangles, i. e. G = U(l2t + 1, p). For the number p of edges in G 
the following relation must hold according to Theorem 6: 

p < m(n) = 36*2 + 1. 

For the number q of edges in B(l 21 + 1, 3, 1) the following relations must hold 
according to (1): 

q > ( ( 1 2 ^ 2 + l) " (36*2 + 1 } ) / 3 5 q * Ut2 + 2L 

Now we apply Construction 1. We have |V i | = n± = 6* + 1, |V2| = n2 — 
6*. A Bmax (6* + 1, 3, 1) contains 6*2 + t triples, a Bmax (6*2, 3, 1) contains 

6*2 — 21 triples. There are 3* p; irs of elements from the set V2 which are not 
contained in the triples of the maximal basis -Bmax (6*, 3, 1). Thus we have 
\T\ 3t. We form the set 

Hmax (6* + 1, 3, 1) u Hm,x (&, 3, 1) U 2\ 

It is evidently a basis H(12* -| 1, 3, 1) with 12*2 + 2t edges. Therefore it is 
minimal. 

3) Let n = 12* + i, i = 2, 3, 4, 5, 6. 
Tf we apply the Construction 1 we obtain minimal bases J5min (12* + i, 3, 1) 
The proof is the same as in 2) 

4) Let n = 12* + 7. 
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The complementary graph to G(n, 3. 1) is Eulerian without triangles. Thus 
G = U (12* + 7, p). For the number p of edges in G the relation 

p < m(n) = 36*2 + 36* + 9, 

must hold. According to Lemma 1 the graph U(12* + 7, 36t2 + 36* + 9 ) 
cannot be complementary to G(\2t + 7, 3, 1). Therefore we must use a U(\2t + 
+ 7, 36*2 + 36* + 6). For the number q of edges in a basis B(\2t + 7, 3, 1) we 
obtain the relation: 

q ^ (\ t ) — 3&2 ~ m — 6 ) / 3 = l2t2 + Ut + 5* 
If we apply Construction 1 for n± = 6t + 3, n^ = 6t + 4, we obtain a basis 

with 12*2 + 14* + 5 edges, i. 6. a minimal basis. We find the numbers of triples 
in the bases Bmixx (6t + 3, 3, 1) and Bmax(6t + 4, 3, 1) and in the set T in the 
same way as in the previous cases. 

5) Let n = \2t + 11. 
According to Lemma 1 the graph U(n, m(n)) cannot be complementary to 
67(12* + 11, 3, 1). The further procedure of the proof in this case is the same 
as in the case 4). 

6) Let n = \2t + 8. 
The graph G(n, 3, 1) is anti-Eulerian without triangles. Thus 

G(n, 3, \) = A(n,p), 

where p ^ m(n) =-= 36t2 + 48* + 15. 

As the difference ( J — p must be divisible by three, the number of edges 

p ^ 36*2 + 48* + 1 3 comes into account. According to Lemma 5 the graphs 
,4(12* + 8, 36*2 + 48* + 13) and .4(12* + 8, 36*2 + 48l + 10) do not exist. 
Therefore p ^ 36>2 + 48* + 7 and q ^ 12*2 + 14* + 7. 

By Construction 1 we obtain a basis B(\2t + 8, 3, 1) with 12*2 + 14* + 7 
edges. Therefore this basis is minimal. 

7) Let n = 12* + 9. The graph G is Eulerian without trangles, thus G = 
= £7(12* + 9, p), where p ^ m(n) = 36*2 + 48* + 17 according to Theorem 6. 

But as the difference J I — m(n) is not divisible by three, we have p < 

^ 36l2 + 48* + 15. 
According to Lemma 2 the graph U(\2t + 9, 36*2 + 48* + 15) does not 

exist. Thus p ^ 36*2 + 48* + 12 and 

q > ((™\ - 30/2 + m ]2\ 3 = 12*2 + 18* + 8. 
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By Construction 1 we obtain a basis B(l2t + 9, 3, 1) with 12t* + 48* + 8 
edges, which is therefore minimal. 

8) Let n = I2t + 10. The graph G is anti-Eulerian without triangles, thus 
G = A(l2t + 10, p), p ^ m(n) = 36l2 + 60t + 25 according to Theorem 7. 

But as the difference C) m(n) is not divisible by three, we have p ^ 

^ 36l2 + 60t + 24. 
According to Lemma 6 the graph A(l2t + 10, 36l2 + 60t + 24) does not 

exist. Thus p ^ 36l2 + 60t + 21, q ^ I2t2 + 18t + 8. By Construction 1 we 
obtain a minimal basis B(n, 3, 1) with 12l2 + I8t + 8 edges, which is therefore 
minimal. 

By this we have exhausted all cases and we have proved the main theorm. 
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