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Mat. čas. 24, 1974, N o 1, 59—68 

ON A PAIR OF CONNECTIONS ON A PRINCIPAL FIBRE 
BUNDLE 

A N T O N D E K R É T 

K o l a f [3] introduced the difference tensor A(X) of an arbitrary semi-holo-
nomic jet X. In this paper it is first shown that the mapping X-> A(X) can 
be extented on some subset of the non-holonomic jets. Futher, some properties 
of a pair of the connections on a principal fibre bundle are found. All our 
considerations are in the category (7°. We use the standart terminology and 
notations of the theory of jets (see [2]) writh the following notational conventions. 
We write fXQ(y) =fx0(

x~>y) f ° r a fixed y and jf, h < r, denotes the natural 
projection of Jr(M, N) into J*(M, N). 

1. Let V, M, N be real manifolds. Let ts or xl or yv be the local coordinates 
on V, or on M, or on N determined by local charts r, or £, or £, respectively. De
note by (t\ 4 0 , x\i0, x[S2, x\iS2) or (x\ yv

0, yf0, yv

h, yfih), where s, sx, sz = 
1, . . . , dim V — v; i, i±, i% = 1, . . . , dim M = m; p = 1, . . ., dim N = n, 

the natural coordinates on J2(V, M), or J2(M, N), respectively (see [5]). 
-xt i r = ( « j , 4 4 4 4 ) ^ 2 ( F , M), Y=(x\ yv

0, yf0, y
v
h, y*J e 

eJ'lx(M, N). Then the composition Z = YXeJ2(V, N) has the coordinates 
Vs> zlo>zU>zos2izVsiS2)> w h e r e 

C\\ ?? — ift rJ<i „P „,P ~i* 
\ L ) ^siO yiiO^siOi Z0S2 — y0i2X0s2> 

ZP = 1IV. Tix Ti% 4 - HV T{l 

^sis2 i ^ ^ ^ S i O ^ ' O s a i^ 'JiiO^SiSz' 

Lemma 1. Let X = (x\ yv

0, yf0, yv

h, yfih)eJ2(M, N). Denote by A(X) the 
set of real numbers yfiih] = yfih — yfh. Then A(X) is an element ofTpX(N) ® 
x A2 T*X(M) if and only if 

1 ' ynoyoi2 — yoiJJizo-

Proof . Let aeHlx(M), b e H^X(N) be the holonomic 2-frames determined 
by local charts f, or £ respectively. Then the jet b^Xa has the coordinates 
(yf(), , < , , ylh). Let A = (a\l9 a f j e J f t , B = (bv

pi = 6 | i 0 = 6 ^ , &* „ ) e 
eL~, pi,pz = 1, . . ., n. Let Bb^XaA have the coordinates (cfi0, c%h, efx;2). 



I t is necessary to show that 

(3) KM = « f e ] « ) o (2)-

Using (1), we obtain 

C[hW\ = ^pip2ahah(ykloyok2 ~ Vokyk2o) + \3J[icikdailaili 

where Jc, Jc±, k2 = 1, . . •, m. That is why (3) is correct for any AeL2
m, B eL\ 

if and only if the jet X has the property (2). 

Definition 1. The non-holonomic. jets having the property (2) will be said to 
be quasi-semi-holonomic. The tensor A(Y) determined by the quasi-semi-holonomic 
jet Y will be called the difference tensor of Y. If A (y) = 0, we shall say that Y 
is quasi-holonomic. 

R e m a r k . Let YeJ2(M,N), Y=jl{Yf. Then the jets j\Y and l\(Y) = 
~j\{Y)(fiG) determine the homomorfisms 

L(j\Y), L(l\(Y)) e Horn (Ta{Y)(M), Tp{Y)(N)). 

I t is easy to see that Y has the property (2) if and only if L(j\Y)[T^(M)] = 0 
or if there is such a real number X tha t 

L(l\(Y)) = XL(j\Y). 

If Ij(j\Y)[TaY(M)] 4= 0 and L(l\(Y)) = XL(j\Y), the jet 7 will be said to be 
quasi-semi-holonomic with the coefficient X. In the case of L(j\Y)[TaY(M)] = 0, 
Y will be called quasi-semi-holonomic without a coefficient. We introduce two 
examples. Let XeJ\M,N), X=j\xa, then X& = jlx(u-+jl[o(u)]) is 
quasi-semi-holonomic without a coefficient. Further, denote by JX(M, N)y 

the set of 1-jets of M into N with the target y e N. Then Y = j\Yo, where a 
is a local cross-section of the fibre manifold (Jl(M, N)y, oc, M), is quasi-semi-
-holonomic with the coefficient 0. 

Some properties of the difference tensor A(Y), formulated in [4] for the 
semi-holonomic case, can be easy generalized for the quasi-semi-holonomic 
case. 

Lemma 2. Let X e J2(V, M), YeJ2
x(M,N) be quasi-semi-holonomic with 

the coefficients X\, Xz (one of them is without a coefficient). Then YX is quasi-
semi-holonomic with the coefficient Ai . A2 (is without coefficient) and 

(4) A(YX) = hA(Y)L(j\X) + L(j\Y)A(X). 

Using (1), the proof is clear. 
Now, let XeJ2

x(M, TV), Y eJ2
x(M,N), (X, Y)eJ2

x(M, W x N). if N, Y 
are quasi-semi-holonomic, (X, Y) need not be quasi-semi-holonomic. But it 
X, Y are quasi-semi-holonomic with the same coefficient A (X, Y are withouf 
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a coefficient), then (X, Y) is quasi-semi-holonomic with the coefficient X 
(without a coefficient). 

Lemma 3. If X eJ*(M, IV), Y e JZ
X(M, N) are quasi-semi-holonomic with 

the same coefficient or witho^lt a coefficient then 

(5) A(X, Y) = h*A(X) + i2*A(Y), 

where h : IV -> IV X N, i^c) = (w, /37), 
i2 : N -> IV X N, i2(y) - (pX, ^J). 

The proof is obvious. 

Lemma 4. Let G be a Lie group. Let X, Y eJ'2x(M, G), pX = flY = e, be 
q^lasi-semi-holonomic ^vith the same coefficient or witho^lt a coefficient. Then 

A(X. Y) = A(X) + A(Y), 

where X . Y denotes the extension of the group operation on G. 
Proof . L e t / : G X G -> G be the group operation on G. Using (4) and (5), 

we get 

A(X . Y) =f,A(X,Y) =f*(iHA(X) + i2*A(Y)) = A(X) 4- J ( F ) . 

because fiX = J3Y = e is the unit of G and thus/(n(g)) = f(g, e) = g,f(i2(g)) -= 

f(c> 9) = 9> 
2. Let N be a parallelizable manifold and let 

COQ, oc, p, y, d. . . . = 1, . . ., r = dim N 

be a basis of T*(N). Consider the trivial fibre manifold E = Rm X N with the 
base Rm; the elements of Rm will be denoted by (x1, .. ., xm). Then o* = pr*col, 
dtl pr\dxl is a basis of T*(E). Let X be quasi-semi-holonomic. We will need 
the coordinates of A(X) at the basis dxl and the basis dual to co°-. dt*. Everj r 

element Y eJ^E, fi Y = z, can be identified with the subspace Im L(Y) c: 
c: TZ(E) determined by 

(6) (co*)z = A*(dt%, see [3]. 

We get some real functions A] on JlE. Every Y e J^E is uniquely determined 
by the point fiY = zeE and by the real numbers A"(Y). Let X e J'QE. X = 

jla, fiX = z. I t is obvious that X is uniquely determined by the jets l\(X) = 
= jl(fia), jl(X) = a(o) and by the real numbers A~ determined by 

dA*(a)o = Al(dxi)o. 

Denoting A^(a(o)) by A%. 

(1) (o*)z = A«0(dt% or 
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{co«)z = A"ai{
cUi)z-

are the equations of the subspace Im L(jl%), or Im L(l\(X)), respectively. Let 
(x\ z*) be a local chart on E. Then the natural coordinates of X are (z«, ax

0, a
x
oi, 

axj) and thus 

(8) (dz«)z = a%(dt% or 

{dz«)z = a0\(dP)o, 

determine Im L(j\X), or Im L(l\(X)), respectively. The numbers a?, are given by 

dax(c)0 = al(dx%, 

where ax are the coordinate functions of the chart (xl, za, ax) on JlE. Let 
<o« = B« dzP, dBx = B*y dzy and let 5? By = dy- Using (6)> (7)> (8)> ^ e c a n 

compute 

at, = - £?J4 BlUKA^ + B^j. 

If X is quasi-semi-holonomic, A\0 = 0 or Ax
k = /. . Ax

ko. Therefore, if X is 
quasi-semi-holonomic, 

am = - ~BW[M~BTBK^ T BlAm-
Let Ami = X*.©" A G>», K% = - K%. Then for 7 < C, 

-Sf^tfev A dtf = 2KlB';Bldzy ,\ efc>. 

We have EfM = 2K\JBf^B[. Now, 

afo = 2 £ | A V f o 4 o ^ + B2-4f«]-
Denote by Ea,Et the basis oiT{E) dual to ft>a, * ' . Then 

(9) A{X) = ( 2 Z ^ ^ J o A + Ay dzi ^ <fo> 0 £ „ * < j . 

3. Let ffbea Lie group and let © be its Lie-algebra. Let e^ (a, /?, 7, . . . = 
= 1, . . . r = (fo'm 6?) be a basis of © and let [ea, e ]̂ = — cy

x6ey. Let (r*) be 
a local chart on M defined on some neighbourhood of xo G M. Let Y G J*O (J / , C7), 
Y — jloo(x). Y can be identified with L(Y). Let i ( Y ) be given by the tensor 
Aj(dx3)Xo ® (ecdgixo)- Let F/ denote the subspace of © determined by Im L(Y), 
i. e. generated by the vectorsEj = AJex. The mapping J : G -> C7?(r), # R ^ r f ^ - 1 ) 
js a representation of G. Let X L , X2 G ©. Then 

(10) [J#(Xi)](Z2) = - [ X 1 ? X2] , see [1], p. 56. 

Let (gxp) be the matrix of the linear mapping Ad(g~~l) = f%, /(w) = g~rug, at 
the basis ea : g% are some real functions on G. Now using (10), we compute 
dgx(o)Xo. Let Xx = Afixf{v)ca, oeTXo(M), v = f0y(t). Consequently Xx = 
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— iofe_1(^o) • Q(y(t))]> where o_1(^o) • Q(}'(t)) denotes the product of o~~i(#o), 
g(y(t)) on G. Hence the linear mapping J^(Xi) is given by the matrix 

Jrg^Q-1MQ(y(t))lt-o = — EtfteMO))].^^*-*)). 
dt dt 

as Ad(ab)-1 = Ad(b~1)Ad(a~1). Let X2 = eg. Then (10) yields 

— [t7?(t?(y(0))]«-o ^(r1(^o))ea = -[^"<JV(t>K, c6\ 
dt 

d 
This implies — [^(o(r(/)))],-o ^ ( i T 1 ^ ) ) = c ^ W ( » ) , i. e. 

^ I^(e(y(«)))]«-o = c * 4 ( ^ o ) K W ( e , ) , i. e. 

(11) dg;(o(x)U = 6.^(e(ar0))-4J(day).r. • 

Let P(JF, 6r, TT) be a principal fibre bundle. Let Pp be a distribution on P 
determining a connection P on P . Then TP(P) = TP(PX) ® Pp for any p e P, 
np = x. Denote by II the natural projection TP(P) -> P^. Let 9? be the funda
mental ©-valued form of the connection P and let 0 be the curvature form of 
P, i. e. 0 = P9? = <̂ 9?IZ. Let LIS recall the relations 

(12) d<p = -l/2[cp,cp]+&, 

(13) Z><2> = 0 a n d 

(14) clco = —[<p, co] + Deo, 

where co is a ©-valued equivariant horizontal ^-form on P . Let P i , P2 be two 
different connections on P . Let epi, cp2 or 0i,02, or Hi, Ho, be the fundamental 
forms or the curvature forms, or the natural projedctions of P i , P 2 , respectively. 
I t is obvious that 

(15) H1H2 = Hi, H2H1 = Hi. 

Denote by cpii = <pi — <P2, <p2/i = <P2 — <pi> <pi/2 and 921 are equivariant 
©-valued horizontal forms on P (see [1]). The form 9:1 2 will be called the 
fundamental difference form of the pair P i , P 2 . I t is easy to see 

(16) <pi!2 = <piH2, <p2/i = <p2Hi. 

Let Q be a real or vector valued form on P . The form dQ Hs, s = 1, 2, will 
also be denoted by SDQ. Now, using (14), we obtain 

d<pi/2 = ~[<Pl, <Pl/2] + XD<pil2 , 

d<pi/2 = ~[<P2, <pl/2] + 2Dcpi/2. 
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Then 

(17) 1-D^i/2 — 2D(fi 2 = [991/2, (pii2y 

The form tyi 2,^1/2] will be called the 2-difference form of the pair A , F2. 
Using further (15) and (16), (12) implies 

2D(pi = _i/2[^r1/2 , n/2] +0lt 

1D(p2 = —-l/2[gp1/2j 991/2] + ^ 2 -

Then 

(18) 2D(pi — W(p2 =0l—02. 

The form &i — $2 will be said to be the 2-difference curvature form of the 
pair Fi, F2. -Let dim (Fi)p n (F2)p 4= 0 be constant on P . As clfr 1 2 == —1/2 [991 2 , 
9̂ 1 + 992] + <&i — ^ 2 , the distribution determined by 991 2 = ^ i> integrable if 
the 2-difference curvature form of the pair F±, r2 vanishes. 

R e m a r k . Let Q be an equivariant ©-valued form on P. If (Q)v = 0, then 
(Q)ug = 0. Therefore, if (Q)a = 0, we can say that Q vanishes at TTU e 21. 

4. I t is well known that every connection on P can be identified with a global 
C7-invariant cro^s-section F of the fibered manifold (Jl(P), P. /)). satisfying 
r(ug) = r(vi)g for any ue P, g eG. Let Fi' F2 be tw^o different connections on 
P. We can uniquely construct the jet Efa) e J\U(2I, G)e, ^^ e P. as follows. Let 
Fi(u) —j^o'i, F2(u) =j*ua2. Denote by Q(X) a local mapping of 21 into G 
determined by 

a2(x) = Gi(x)o(x). 

We put 

R(n) = Jl«Q(x). 

Evidently, fiE(u) = e e G, e is the unit of G. The independence of E(u) from 
the choice of 01 and 02 is obvious. Now, r2(u) = Jxuadx)Q(x) = Fi(u)R(u), 
where r±fa)E(u) denotes the extension of the action of G on P. In the expres
sions g . E(u), R(ii) . g, rs(u)g, we identify g with j}^u)(g) and the dot denotes 
the composition on G and its extension. 

Lemma 5. Let ^t e P, g e G. Then E(ug) = g'1 . E^i) . g. 
Proof. P,(ug) = r2(u)g = [r^E^g = [{F^ugyj-^E^yj = A(Mflr) (flr 1 • 

. i?(M) . g). Therefore E(ug) = ^r1 . S(u) . g. 
In the case of r ^ dim M, a pair of connections Fi, F2 will be called regular 

or singular, at x e 21 if JB(^), nu = x, is regular, or singular, respectively. I t 
is easy to see that a pair of connections Fi, F2 is singular if and only if 

64 



Im L(r±(u)) n Im L(r2(u)) #= 0. 

Further, let T be a connection on P, r(u) = jlua. Let Q be a ©-valued q-fovm 
on P . Let v eT^l((B), v = jly(t). Denoting hv = j]a(y(t)), we define 

hOu(v±, . . ., vq) = fl(A»i, . . ., Avff), vi, . . ., ^ e Tnu(M). 

Lemma 6. Let u e P. Then 

(19) L(B1(u)) = ^(n/2)u. 

Proof. Let r1(u)=j1
7[Ua1, F2(u)=jlua2, B±(u) = j \ u Q . Let veTnu(M) 

v - JoT(0- Then h2v = w = f0a2(y(t)) = jol>i(r(0)e(y(0)] and thus M?i/2)«(*>) = 
- Vi/2(v>) = <PiM =JloQ(y(t)) = L(B(u))(v).QED. 
Put Bis(u) = jluBi(a8), s = 1,2. Analogously to Lemma 6, we have 

(20) -Rufaflr) = g-i. U ^ ) . g. 

Lemma 7. Bls(u) e J\U(M, G)e is quasi-semi-holonomic with the coefficient 
0 and 

{21) Bl2(u) = (I?;»)<2> . i?n(^) . (B±(u))^. 

Proof . The first part is clear. To prove (21), we use the definition of B^s(u) 
and (20). B12(u)=jluB,(a2(x)) = jluRi(a1(x)Q(x)) = jlu[Q^(x) . Rfaix)) . 
. o(x)] = ( i ^ » ) < 2 ) . Bn(u) . (i?i(^))(2). 
Putting further 

rSls2(u) = jlurSl(aS2(x)), Sl9 s2 = 1, 2, 

we get some connections of the order 2 on P. Tn or T22 is the first prolongation 
of r1, or r2, respectively. They are semih-holonomic, whereas Ti2, T2i are 
non-holonomic. I t is easy to see 

(22) r21(u) = rn(u)Rn(u), 

r22(u) = rnWIRnW . (i?iM)<2>], 

r12(u) = rn(^)(i?i(^))(2). 

5. Let us consider a trivial principal fibre bundle Bm X G, where the Lie 
group G acts on Bm X G by the rule (x, q)g = (x, qg). Let ea be a basis of the 
Lie algebra © of the left-invariant fields on G, [e@, ey] = — c^yex. Let o)a be 
the dual basis of ©* to ea. The manifold Bm X G is parallelizable. Put w^ = 

pr*coQ, dt1 = pr*dxl. Denote by Ea, E% the dual basis to coa, dtl . Ea is the 
fundamental vector field on Bm X G, corresponding to ea. Let H denote the 
distribution on Bm x G determined by 

va<* = Affi, 
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where A* are some real functions on Bm X G. Let us consider a ©-valued form 
cp = (coa — A\dtl) (x) ea. Denoting Q = co* (x) ea and A = A*dtl Q ea, we have 
cp = Q — A. Obviously, <p(Ea) = ea. cp is the fundamental form of a connection 
r on B X G if and only if it is equivariant, i. e. if 

(23) cpBg* = Ad(g-^)cp. 

Let u = (xo, q) E Bm X G, let X E 2y.fi™ X O), X = Xi + N2(co«X2 = 0, 
dtHX-i) = 0, oc = 1, . . ., r; i = I, . . ., m). As Q is equivariant, cpBg*(X) — 
= Adtff-i)Q(Xi) - AB,j*(X2). Since Ad(g-±)cp(X) = Ad(g-^)Q(X1) -
— Ad(g~1)A(X2), (23) is correct if and only if 

(24) ABg*(X2) = Ad(g~i)A(X2). 

Put X2 = a^Ei)^,^. Then Bg*(X2) = a^Ei)^^. Let Ad(g^) be expressed 
at the basis ea by the matrix (g%). Then (24) yields 

A*(x0, qg)aiea = g^A\(xo, q)aiea. 

Denoting the restriction of the functions A\ to the section x h> (x, e) by P\(x), 
(23) is equivalent to 

(25) A«(x, g) = grfi[g)I*(x). 

Putting gl(x, g) = g*p(g) and F?(x, g) = F-fx), we have 

^ » = g}(u)r^(u), u = (x, g). 

Now, let Fi, A be two connections on P = Bm X O. Let cps = (coa — 
— g"p sP\dtl) (x) ê  be the fundamental forms of Ps. Then 

(26) cpll2 = g^B\-^)dV®ea. 

Let rs(u) =jlas, nu = 0. Since a^As = cZ[^(o-s)], therefore h'(sDcp1/2)u = 
= h(dcpV2Hs)u = {d(g%(as)]o[2r?(o) - iFf(o)] + ^(u)8^rf - Vf )0}<fa;> A <fe* <g> 

Using (11) we obtain 

(27) 'Dn,z = { 2 c ^ ^ [ - r f - irf] + 

+ 0? W ] ~ durf}))dti A *' ® ea, j < i. 
Theorem 1. Let P(M, G) be a principal fibre bundle. Let Fi, r2 be some con

nections on P. Then 

* m * / 2 k = -A(Bls(u)). 

Proof. Since our problem is local, we may suppose that P is the trivial 
fibre bundle P ~ Bm y G. Relations (19) and (26) imply that the numbers 
A*, determining the jet B^u) at the basis co*, dtl, are 
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(28) A » = S?(«)(*T?(«) - ^(u)). 

To determine the numbers Atj(Ris(u), we use (11). Let nu = o. As Ris(u) = 

jjBitff,), J y ( I M * t W = rf[fl?^.)]ofs/t(o) - ^ ( o ) ) + t7?(«^[«it -
_ irfjocto- - c | . ^« )^«)T | (o ) f - r<(o) - irf(o)) + fiiuM'il - irfydx*. 
Therefore A\m = ^(u)g\<uyr){o)[*I*(o) - iTf(o)] + $(11)%^ -

- ^ ) o -
But Ris(u) is quasi-semi-holonomic with the coefficient 0. That is why (9) 
yields 

—J(Ris(u) = —A[w\dxt A dxi (x) ea], i < j . 

Comparing with (27), we complete the proof. 
As Rn(u) and Ri2(u) are elements of the group J^U(M, G)e, Lemmas 2 and 4 

imply 

A(Ri2. Jin1) - A(Ri2) + A(Ril) = A(Ri2) - A(Rn) = A(Ri\ . U12). 

Now, Theorem 1 and relation (17) yield 

Theorem 2. Le£ u e P. Then 

A(Ri2 . i^n1)^ = H^n/zU — H2D<pi/2)u = Hn/2, <Pl/2]u. 

Putting further 2R(u) = Rn(u) . (Ri(u))<2\ we have T22(^) = Pn(u)2n(u). I t is 
easy to see that 2R(u) is semi-holonomic. 

Theorem 3. Let u e P. Then 

(29) A(2R(u)) = h*(02)u - H<J>i)u. 

Proof . (29) can be proved by direct computation. However, Kolar [3] 
showed: A(r22(u)) = u^(02)u, J(F11(^)) == u%hi(@i)u, where u is the mapping 
G -> Pnu, u(g) = ug. Since Fii(w) and r22(u) are semi-holonomic and rn(u)2R(u) 
is the extension of the action P x G-> P, Lemmas 2 and 3 imply directly (29). 

6. Let 0 be a Lie grupoid over M. Let a, b :@ -> N denote the right and left 
unit projections. Let I : M ^0 denote the natural inclusion of the manifold 
of units into the groupoid. A non-holonomic or semi-holonomic or holonomic 
infinitesimal connection of the order r ^ 1 in 0 is a <7°° map r : M -> Jr (M, 0). 
or M -> Jr(M,0), or M -> Jr(M, 0), respectively, satisfying 

fir = J, jrar(x) = j*x[x], fbl\x) = j'x (see [6]), 

for all x e M, where fa is the r-jet of a and j * is the jet of the identity mapping 
on M. For r = 1 this corresponds to the above introduced connection on any 
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of the principal fibre bundles determined by 0. Conversely, the principal fibre 
bundle P(M, G) determines the grupoid 0 = P X P/G and the connection on 
P determines the connection on 0. Denote by G(0) the isotropy group bundle, 
i. e. 

Gx = {&e&:a6 = bG = x}. 

Let Fi, F2 be two connectios in 0. Put 

ru(x) = Jin . (T.(:c))<->. r2s(x) --= fxr2 . (T»)<2) (see [6]), 
where the dot denotes the composition in 0 as well as its extension. rSlSz 

is a 2-connection in 0. Put 

sl8(x) = r£(x). r2s(x), 2B(x) = r^x). r22(-r). 

Bis(x) e D2(G(0)) is quasi-semi-holonomic with the coefficient 0 and 2B(x) 
is semi-holonomic. The pair of the connections Fi, F2 will be said to be quasi-
-holonomic with respect to rs, or quasi-holonomic, or holonomic at x G M if 
Pis(x), or Bl\(x) . B\2.(x), or 2B(x) is quasi-holonomic, or quasi-holonomic, or 
holonomic, respectively. Now, Theorems 1, 2, 3 give. 

Theorem 4. The pair of the connections Fi, F2 is quasi-holonomic with respect 
to rs or quasi-holonomic or holonomic at x e 31 if and only if the form sD(p\ 2 
or the 2-difference form of the pair Fi, F2, or the 2-dijference curvature form of the 
pair Fi, F2, respectively, vanishes at x e M. 
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