Czechoslovak Mathematical Journal

Bo Lan Diu
k-common consequents in Boolean matrices

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 3, 523-536

Persistent URL:
http://dml.cz/dmlcz/127313

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

k-COMMON CONSEQUENTS IN BOOLEAN MATRICES ${ }^{1}$

Bolian Liu, Guangzhou

(Received October 31, 1994)

1. Introduction

Let M_{n} denote the set of all $n \times n$ matrices over the Boolean algebra $\{0,1\}$, and let $V=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set with $n \geqslant 2$. By a binary relation on V we mean a subset Q of $V \times V$. The set of all binary relations on V (including the empty relation) is denoted by $B_{n}(V)$. The map

$$
Q \rightarrow M(Q)=\left(m_{i j}\right)
$$

where $m_{i j}=1$ if $\left(a_{i}, a_{j}\right) \in Q$ and $m_{i j}=0$ otherwise, is an isomorphism of $B_{n}(V)$ onto M_{n}.

Let $G_{n}(V)$ be the set of all directed graphs with n vertices $\left\{a_{1}, \ldots, a_{n}\right\}$. Then each matrix in M_{n} can be regarded as the adjacency matrix of $G \in G_{n}(V)$.

It is well known that there is a one to one correspondence between $B_{n}(V), M_{n}$ and $G_{n}(V)$:

$$
Q \longleftrightarrow M(Q) \longleftrightarrow G(Q),
$$

where $G(Q)$ is the graph corresponding to the matrix $M(Q)$.
In 1983, S. Schwarz ([1]) introduced a concept of the common consequent as follows.

Definition 1.1. Let $Q \in B_{n}(V)$. We say that a pair of vertices $\left(a_{i}, a_{j}\right), a_{i} \neq a_{j}$, has a common consequent (c.c.) if there is a n integer $l>0$ such that

$$
\begin{equation*}
a_{i} Q^{l} \cap a_{j} Q^{l} \neq \emptyset \tag{1.1}
\end{equation*}
$$

If a_{i}, a_{j} have a c.c. then the least integer $l>0$ for which (1.1) holds is denoted by $L_{Q}\left(a_{i}, a_{j}\right)$.

[^0]In 1990, we ([2]) introduced a concept of the generalized vertex exponent (G.V.E.) for $M(Q)$.

Definition 1.2. Let $Q \in B_{n}(V)$. The generalized vertex exponent of Q, denoted by $\exp _{Q}(1)$, is the least integer $l>0$ such that

$$
\begin{equation*}
\bigcap_{i=1}^{n} a_{i} Q^{l} \neq \emptyset . \tag{1.2}
\end{equation*}
$$

In terms of Boolean matrices, the common consequent in [1] means that the rows corresponding to a_{i} and a_{j} in $M\left(Q^{l}\right)$ have a 1 in the same column, while G.V.E. in [2] means that there is a column of all 1 's in $M\left(Q^{l}\right)$.

Naturally we can extend the common consequent to the k common consequent (k-c.c.) as follows.

Definition 1.3. Let $Q \in B_{n}(V)$. We say that a group of vertices $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subset$ $V=\left\{a_{1}, \ldots, a_{n}\right\}, 2 \leqslant k \leqslant n, a_{i_{t}} \neq a_{i_{n}}, t \neq u$, has a k-common consequent (k-c.c.) if there is an integer $l>0$ such that

$$
\begin{equation*}
\bigcap_{j=1}^{k} a_{i_{j}} Q^{l} \neq \emptyset . \tag{1.3}
\end{equation*}
$$

If $a_{i_{1}}, \ldots, a_{i_{k}}$ have a k-c.c. then the least integer $l>0$ for which (1.3) holds is denoted by $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$.

If there is at least one group $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ for which $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists, we define $L_{Q}(k)=\max L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$, where $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ runs through all groups with k elements for which $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists. If $M=M(Q)$, then we write $L_{Q}(k)=L_{M}(k)$. If there is no group $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ for which $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists. we define $L_{Q}(k)=L_{M}(k)=0$.

In terms of Boolean matrices, k-c.c. means that the rows corresponding to $a_{i_{1}}, \ldots$. $a_{i_{k}}$ in $M\left(Q^{l}\right)$ have a 1 in the same column.

Clearly, 2-c.c. is the common consequent in [1] while $n-$-c.c. is the generalized vertex exponent in [2], which was obtained by Schwarz ([3]).

It is well known that a relation Q is called primitive if there is an integer $t>0$ such that $Q^{t}=V \times V$. Let $P_{n}(V)$ be the set of all primitive relations in $B_{n}(V)$. Then it is easy to see that if $Q \in P_{n}(V)$, then $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists for any group $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right), 2 \leqslant k \leqslant n$. We define

$$
L(k)=\max \left\{L_{Q}(k) \mid Q \in P_{n}(\Gamma)\right\} .
$$

As we know, a Boolean square matrix A is called reducible if there is a permutation matrix P such that $P A P^{-1}$ is of the form

$$
\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

where B, D are square matrices. Otherwise it is called irreducible. Let $I R_{n}(V)$ be the set of all irreducible relations in $B_{n}(V)$. For $Q \in B_{n}(V)$, we define

$$
\tilde{L}(k)=\max \left\{L_{Q}(k) \mid Q \in I R_{n}(V)\right\}
$$

Up to now, we have known the following results:

$$
\begin{gather*}
L(2)= \begin{cases}\frac{1}{2} n^{2}-n+1 & \text { if } n \text { is even, } \\
\frac{1}{2} n^{2}-n+\frac{3}{2} & \text { if } n \text { is odd, }\end{cases} \tag{1}\\
\left(\text { or } L(2)=\frac{1}{2} n^{2}-\frac{1}{2} n+1-\left[\frac{n}{2}\right]\right) \\
L(n)=n^{2}-3 n+3
\end{gather*}
$$

In this paper we investigate $L(k)$ and $\tilde{L}(k), 2 \leqslant k \leqslant n-1$, and obtain some special bounds for $L(K)$ and $\tilde{L}(k)$. Generally, we have

$$
L(k) \leqslant \tilde{L}(k) \leqslant\left[\frac{k-1}{k} n\right](n-1)+1, \quad 2 \leqslant k \leqslant n-1 .
$$

In many cases this result is the best possible.

2. Preliminaries

By the first projection $\Pi(Q)$ of Q we mean the subset of V consisting of all $a_{i} \in V$ for which $a_{i} Q \neq \emptyset$.

The following lemmas are obvious.
Lemma 2.1. If $\Pi(Q)=V$, then $\bigcap_{j=1}^{k} a_{i_{j}} Q^{l} \neq \emptyset,\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq V$, implies $\bigcap_{j=1}^{k} a_{i j} Q^{l+t} \neq \emptyset$ for any integer $t>0$.

Lemma 2.2. If $2 \leqslant k_{1} \leqslant k_{2} \leqslant n$, then

$$
L_{Q}\left(k_{1}\right) \leqslant L_{Q}\left(k_{2}\right), \quad Q \in B_{n}(V)
$$

$Q \in B_{n}(V)$ is irreducible if and only if $G(Q)$ is strongly comnected. (See, e.g.. [1].) If Q is irreducible, then for any $a_{i} \in V$ there is a least integer $h_{i}=h\left(a_{i}\right), 1 \leqslant h_{i} \leqslant$ n, such that $a_{i} \in a_{i} Q^{h_{i}}$. Moreover, $M(Q)$ is permutation cogredient to a matrix of the form

$$
\left(\begin{array}{ccccc}
0 & A_{1} & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
& & \ldots & & \\
0 & 0 & \ldots & 0 & A_{d-1} \\
A_{d} & 0 & \ldots & 0 & 0
\end{array}\right)
$$

where A_{1} is a $v_{i} \times v_{i+1}$ submatrix, $d=\left(h_{1}, \ldots, h_{n}\right)$. It is equivalent to the assertion that the set $V=\Pi(Q)$ admits a decomposition into d disjoint nonempty subset.s. $V=V_{1} \cup \ldots \cup V_{d}$ such that

$$
Q \subset\left(V_{1} \times V_{2}\right) \cup\left(V_{2} \times V_{3}\right) \cup \ldots \cup\left(I_{d} \times V_{1}\right),
$$

where $\left|V_{i}\right|=v_{i}$ and $v_{d+1}=c_{1}$. The number $d(1 \leqslant d \leqslant n)$ is called the index of imprimitivity of Q. The sets $\Gamma_{i}, \ldots, V_{d}$ are called the sets of imprimitivity of $(Q . Q$ is primitive iff it is irreducible and $d(Q)=1$ (see, e.g., [1]).

The following lemma is known.

Lemma 2.3 ([1]). Let Q be irreducible, $d \geqslant 1$ and let $V^{\prime \prime}$ be one of the sets of imprimitivity of Q. If $a_{i} \in V^{\prime \prime}$, then there is an integer $k_{0} \geqslant 0$ such that for any $k \geqslant k_{0}$ we have $a_{i} Q^{k d}=V^{\prime}$.

For k-c.c. we have

Theorem 2.4. Let $Q \in B_{n}(V)$. Suppose that () is irreducible and $d(Q)>1$. Then $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{h}}\right)$ exists iff $a_{i_{1}}, \ldots, a_{i_{k}}$ are contaned in the same set of imprimitivity of Q.

Proof. a) Suppose that $a_{i}, \in V^{\prime}, j=1, \ldots, k$. Then (hy Lemma 2.3) there is an integer k_{0} such that for any $k \geqslant k_{0}$ we have $a_{i}, Q^{d k}=V^{\prime}, j=1, \ldots, k$. Hence $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists.
b) Let $a_{i_{1}} \in V^{\prime}, a_{i_{j}} \notin V^{\prime} . j=2, \ldots, k$, say $a_{i_{2}} \in I^{\prime \prime} . V^{\prime \prime} \neq V^{\prime \prime}$. By Lemma 1.1 [1] $L_{Q}\left(a_{i_{1}}, a_{i_{2}}\right)$ does not exist. Hence $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{1}}\right)$ does not exist, either.

According to Lemma 2.2 and the results of [1] and [3], we have

$$
L(2) \leqslant L(k) \leqslant L(\prime \prime) .
$$

namely $\frac{1}{2} n^{2}-\frac{n}{2}+1-\left[\frac{n}{2}\right] \leqslant L(k) \leqslant n^{2}-3 n+3,2 \leqslant k \leqslant n$.

3. Estimations of $L(k)$ for a primitive relation

We need the following lemma in [1] to derive a better estimate of $L(k)$.
Lemma 3.1 ([1]). Let Q be irreducible, $Q \in B_{n}(V), n \geqslant 2$ and let V_{1} be a nonempty proper subset of V. Then $V_{1} Q$ contains at least one element of V which is not contained in V_{1}.

Corollary 3.2. Let Q be primitive, $Q \in B_{n}(V), n \geqslant 2$ and $a_{i} \in V$. If $a_{i} Q^{s}=a_{i} Q^{t}$ for some $1 \leqslant s<t$, then $a_{i} Q^{s}=V$.

Lemma 3.3. Let $V=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $V_{1}, \ldots, V_{k}(2 \leqslant k \leqslant n)$ be the sul)sets of V with $\left|V_{i}\right| \geqslant r>0, i=1, \ldots, k$. If $r \geqslant\left[\frac{k-1}{k} n\right]+1$, then $\bigcap_{i=1}^{k} V_{i} \neq \emptyset$.

Proof. First of all, we prove that

$$
\begin{equation*}
\left|\bigcup_{i=1}^{k} V_{i}\right| \geqslant k r-(k-1) n, \quad 2 \leqslant k<n \tag{3.1}
\end{equation*}
$$

If $k=2,\left|\bigcap_{i=1}^{2} V_{i}\right| \geqslant\left|V_{1}\right|+\left|V_{2}\right|-|V| \geqslant 2 r-3 n$.
If $k=3,\left|\bigcap_{i=1}^{3} V_{i}\right| \geqslant\left|V_{3}\right|-\left(|V|-\left|\bigcap_{i=1}^{2} V_{i}\right|\right) \geqslant r-n+(2 r-n)=3 r-2 n$.
Suppose that $\left|\bigcap_{i=1}^{k-1} V_{i}\right| \geqslant(k-1) r-(k-2) n, 2 \leqslant k \leqslant n-1$. Then

$$
\begin{aligned}
\left|\bigcap_{i=1}^{k} V_{i}\right| & \geqslant\left|V_{k}\right|-\left(|V|-\left|\bigcap_{i=1}^{k} V_{i}\right|\right) \geqslant r-n+[(k-1) r-(k-2) n] \\
& =k r-(k-1) n, \quad 2 \leqslant k \leqslant n
\end{aligned}
$$

If $r \geqslant\left[\frac{k-1}{k} n\right]+1$, by (3.1)

$$
\begin{equation*}
\left|\bigcap_{i=1}^{k} V_{i}\right| \geqslant k\left(\left[\frac{k-1}{k} n\right]+1\right)-(k-1) n \tag{3.2}
\end{equation*}
$$

Case 1. $k \mid n$.
According to (3.1)

$$
\left|\bigcap_{i=1}^{k} V_{i}\right| \geqslant(k-1) n+k-(k-1) n=k>0
$$

Case 2. $k \nmid n$.

Let $n=a k+t, t=1, \ldots, k-1, a$ is an integer, $a>1$. According to (3.1) we have

$$
\begin{aligned}
\left|\bigcap_{i=1}^{k} V_{i}\right| & \geqslant k\left(\left[(k-1) a+t-\frac{t}{k}\right]+1\right)-(k-1)(a k+t) \\
& =k[(k-1) a+t-1+1]-(k-1)(a k+t)=t>0
\end{aligned}
$$

Hence $\bigcap_{i=1}^{k} V_{i} \neq \emptyset$.
Note that if Q is primitive, Q^{t} is primitive for any $t>1$. We have
Lemma 3.4. Suppose that Q is primitive, $Q \in B_{n}(V), n \geqslant 2$. Recall that h_{i} is the least integer for which $a_{i} \in a_{i} Q^{h_{i}}$. Then

$$
L_{Q}\left(a_{i_{1}}, \ldots,\left(u_{i_{k}}\right) \leqslant\left[\frac{k-1}{k} n\right] \max \left(h_{i_{1}}, \ldots, h_{i_{k}}\right) .\right.
$$

Proof. Consider the chain

$$
\begin{equation*}
a_{i_{j}} \in a_{i_{j}} Q^{h_{i_{j}}} \subset a_{i_{j}} Q^{2 h_{i_{j}}} \subset \cdots \subset a_{i_{j}} Q^{\left[\frac{h-1}{h} n\right] h_{;} ;} \quad(j=1, \ldots, k) \tag{3.3}
\end{equation*}
$$

By Lemma 3.1 and Corollary 3.2 we have

$$
\left\lvert\, a_{i}\left(\left.Q^{\left[\frac{k-1}{k} n\right] h_{i_{j}}} \right\rvert\, \geqslant\left[\frac{k-1}{k} n\right]+1 .\right.\right.
$$

Let $h=\max \left(h_{i_{1}}, \ldots, h_{i_{k}}\right)$. Multiplying each term in (3.3) by $Q^{\left[\frac{k-1}{k} n\right]\left(h-h_{i_{j}}\right)}$ (define $Q^{0}=I$), we obtain

$$
a_{i_{j}} Q^{\left[\frac{k-1}{k} n\right]\left(h-h_{i_{j}}\right)} \subset a_{i_{j}} Q^{h_{i_{j}}+\left[\frac{k-1}{k} n\right]\left(h-h_{i_{j}}\right)} \subset \cdots \subset a_{i_{i}} Q^{\left[\frac{k-1}{k} n\right] h}
$$

whence $\left|a_{i_{j}} Q^{\left[\frac{k-1}{k} n\right] h}\right| \geqslant\left[\frac{k-1}{k} n\right]+1, j=1, \ldots, k$. Therefore by Lemma 3.3

$$
\bigcap_{j=1}^{k} a_{i_{j}} Q^{\left[\frac{k-1}{k} n\right] h} \neq \emptyset
$$

Hence $L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \leqslant\left[\frac{k-1}{k} n\right] \max \left(h_{i_{1}}, \ldots, h_{i_{k}}\right)$.
Let the lengths of the largest circuit and the least circuit in $G(Q)$ be \bar{h} and h_{0}, respectively. We have

Corollary 3.5. Let Q be primitive, $Q \in B_{n}(V)$. If $\bar{h} \leqslant n-1$, then

$$
\begin{equation*}
L_{Q^{2}}(k) \leqslant\left[\frac{k-1}{k} n\right](n-1) \tag{3.4}
\end{equation*}
$$

In order to obtain better estimates of $L(k)$ using h_{0}, we establish the following lemma.

Lemma 3.6. Let Q be primitive, $Q \in B_{n}(V)$ and $n \geqslant 4$. Denote $L_{1}=\left(\left[\frac{k-1}{k} n\right]-\right.$ 1) $h_{0}+n$. Then for any $a_{i} \in V$ we have

$$
\left|a_{i} Q^{L_{1}}\right| \geqslant\left[\frac{k-1}{k} n\right]+1 .
$$

Proof. Let C be a circuit of length h_{0}. Denote by $V(C)$ the set of vertices of C. For $\forall u \in V(C)$ we have $u \in u Q^{h_{0}}$.

For any $a_{i} \in V-V(C)$, there is a path of length $k_{i}, 1 \leqslant k_{i} \leqslant n-h_{0}$, joining a_{i} with some $u_{j} \in V(C)$. This means: there is $u_{j} \in V(C)$ such that $u_{j} \in a_{i} Q^{k_{i}}$, where $k_{i} \leqslant n-h_{0}$. Consider the chain

$$
u_{j} \in u_{j} Q^{h_{0}} \subset u_{j} Q^{2 h_{0}} \subset \cdots \subset u_{j} Q^{\left[\frac{k-1}{k} n\right] h_{1}}
$$

and for any integer $t \geqslant 1$, then chain

$$
u_{j} Q^{t} \subset u_{j} Q^{h_{0}+t} \subset \cdots \subset u_{j} Q^{\left[\frac{h-1}{k} n\right] h_{0}+t}
$$

For any $t \geqslant 0$ we have

$$
\left|u_{j} Q^{\left[\frac{l-1}{k} n\right] h_{0}+t}\right| \geqslant\left[\frac{k-1}{k} n\right]+1 .
$$

Now, since $u_{j} \in a_{i} Q^{k_{i}}$, we have

$$
\left[\frac{k-1}{k} n\right]+1 \leqslant\left|u_{j} Q^{\left[\frac{k-1}{k} n\right] h_{0}+t}\right| \leqslant\left|a_{i} Q^{\left[\frac{h-1}{k} n\right] h_{1}+t+k_{i}}\right| .
$$

Putting $t=n-h_{0}-k_{i} \geqslant 0$, we have

$$
\left|a_{i} Q^{L_{1}}\right| \geqslant\left[\frac{k-1}{k} n\right]+1
$$

If u belong to C, the chains

$$
\begin{gathered}
u \in u Q^{h_{1}} \subset u Q^{2 h_{10}} \subset \cdots \subset u Q^{\left[\frac{k-1}{k} n\right] h_{10}}, \\
u Q^{t} \subset u Q^{h_{0}+t} \subset u Q^{2 h_{0}+t} \subset \cdots \subset u Q^{\left[\frac{k-1}{k} n\right] h_{0}+t}
\end{gathered}
$$

show that for any $t \geqslant 0$

$$
\left|u Q^{\left[\frac{k-1}{k} n\right] h_{0}+t}\right| \geqslant\left[\frac{k-1}{k} n\right]+1 .
$$

Putting $t=n-h_{0}$ we obtain $\left|u Q^{L_{1}}\right| \geqslant\left[\frac{k-1}{k} n\right]+1$.

Lemma 3.7. Let Q be primitive, $Q \in B_{n}(V), n \geqslant 2$. Suppose that $h_{0} \leqslant n-3$. Then

$$
L_{Q}(k) \leqslant\left(\left[\frac{k-1}{k} n\right]-1\right)(n-3)+n .
$$

Proof. Denote $L_{1}=\left[\frac{k-1}{k} n\right] h_{0}+n-h_{0}$. Since $\left|a_{i} Q^{L_{1}}\right| \geqslant\left[\frac{k-1}{k} n\right]+1$, we have

$$
\bigcap_{i=1}^{k} a_{i_{j}} Q^{L_{1}} \neq \emptyset \quad \text { and } \quad L_{Q}(k) \leqslant L_{1} \leqslant\left[\frac{k_{i}-1}{k_{i}} n\right](n-3)+n .
$$

Remark. If $n \geqslant 2$, then $\left[\frac{k-1}{k} n\right](n-3)+n \leqslant\left[\frac{k-1}{k} n\right](n-1)+1$. By Lemma 3.7 and by (3.4) we need to consider only $h_{0} \geqslant n-2, h=n$.

Applying an argument analogous to [1] we treat only two cases as follows.
Case 1. The relation Q given by the graph in Figure 1: $h_{0}=n-2, \bar{h}=n$ ($n \geqslant 5, n$ is odd).

Fig. 1

We shall prove that

$$
\begin{equation*}
L_{Q}(k) \leqslant\left[\frac{k-1}{k} n\right](n-2)+2 \tag{3.5}
\end{equation*}
$$

Consider the chains

$$
a_{3} \in a_{3} Q^{n-2} \subset a_{3} Q^{2(n-2)} \subset \cdots \subset a_{3} Q^{\left[\frac{1-1}{h} n\right](n-2)}
$$

and

$$
\begin{equation*}
a_{3} Q^{t} \subset a_{3} Q^{n-2+t} \subset a_{3} Q^{2(n-2)+t} \subset \cdots \subset a_{3} Q^{\left[\frac{n-1}{h} n\right](n-2)+t} \tag{3.6}
\end{equation*}
$$

and denote $L_{2}=\left[\frac{k-1}{k} n\right](n-2)$. For any integer $t \geqslant 0$. (3.6) implies $\left|a_{3} Q^{L_{2}+t}\right| \geqslant$ $\left[\frac{k-1}{k} n\right]+1$.

Since $a_{3}=a_{1} Q^{2}, a_{3}=a_{2} Q$, we have

$$
\left|a_{1} Q^{L_{2}+2}\right| \geqslant\left[\frac{k-1}{k} n\right]+1, \quad\left|a_{2} Q^{L_{2}+2}\right| \geqslant\left[\frac{k-1}{k} n\right]+1 .
$$

Further, for $3<i \leqslant n$ we have $a_{i}=a_{3} Q^{i-3}$, whence

$$
\left|a_{3} Q^{L_{2}+t}\right|=\left|a_{3} Q^{i-3} Q^{L_{2}-(i-3)+t}\right|=\left|a_{i} Q^{L_{2}-(i-3)+t}\right| \geqslant\left[\frac{k-1}{k} n\right]+1 .
$$

Putting $t=i-1(n \geqslant 5)$, we have

$$
\left|a_{i} Q^{L_{2}+2}\right| \geqslant\left[\frac{k-1}{k} n\right]+1, \quad 3<i \leqslant n .
$$

Hence by Lemma 3.3

$$
L_{Q}(k) \leqslant L_{2}+2=\left[\frac{k-1}{k} n\right](n-2)+2
$$

Case 2. The relation Q given by the graph in Figure 2.

Fig. 2
Using an argument similar to that in the proof of Lemma 2.9 in [1], we can obtain the following conclusion.

If M_{0} is the least integer $m>0$ such that $a_{2} Q^{m} \cap a_{2} Q^{m+s_{1}} \cap \ldots \cap a_{2} Q^{m+s_{k-1}} \neq \emptyset$ for $\left\{s_{1}, \ldots, s_{k-1}\right\} \subset\{1, \ldots, n\}, s_{i} \neq s_{j}$ if $i \neq j$, then

$$
\begin{equation*}
L_{Q}(k)=M_{0}+1 \tag{3.7}
\end{equation*}
$$

In [1], it was proved that

$$
\begin{align*}
a_{2} Q^{n-1} & =\left\{a_{2}, a_{1}\right\} \tag{3.8}\\
a_{2} Q^{k(n-1)} & =\left\{a_{2}, a_{1}, a_{n}, a_{n-1}, \ldots, a_{n-(k-2)}\right\}, \quad 2 \leqslant k \leqslant n-1 .
\end{align*}
$$

Let now $L_{0}=\left[\frac{k-1}{k} n\right](n-1)$. Since

$$
a_{2} \subset a_{2} Q^{n-1} \subset \cdots \subset a_{2} Q^{\left[\frac{1-1}{1} n\right](n-1)}
$$

we conclude that $\left|a_{2} Q^{L_{0}}\right| \geqslant\left[\frac{k-1}{k} n\right]+1$ and also $\left|a_{2} Q^{L_{0}+s}\right| \geqslant\left[\frac{k-1}{k} n\right]+1$ for any $s>0$. Hence for any $\left\{s_{1}, \ldots, s_{k-1}\right\} \subset\{1, \ldots, n-2\}, \bigcap_{i=0}^{k-1} a_{2} Q^{L_{0}+s_{i}} \neq \emptyset$, where $s_{0}=0$. This implies $M_{0} \leqslant L_{0}$.

According to (3.7)

$$
\begin{equation*}
L_{Q}(k) \leqslant L_{0}+1=\left[\frac{k-1}{k} n\right](n-1)+1 . \tag{3.9}
\end{equation*}
$$

Hence we obtain the main result from the above conclusions.
Theorem 3.8. If Q is a primitive relation, $Q \in B_{n}(V), n \geqslant 2$, then

$$
\begin{equation*}
L_{Q}(k) \leqslant L_{0}+1=\left[\frac{k-1}{k} n\right](n-1)+1, \quad 2 \leqslant k \leqslant n-1 . \tag{3.10}
\end{equation*}
$$

The following example shows that sometimes the bound is sharp for primitive relations given in Figure 2.

Example. Let Q be the relation defined by the graph in Figure 2, $Q \in B_{n}(V)$. $M=M(Q)$.

If $n=7, k=3$, then

$$
M_{7}^{24}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right), \quad M_{7}^{25}=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

For M_{7}^{24} we have $a_{1} Q^{24} \cap a_{3}\left(Q^{24} \cap a_{5} Q^{24}=\emptyset\right.$ while for any a_{i}, a_{j}, a_{r} we have $a_{i} Q^{25} \cap a_{j} Q^{25} \cap a_{r} Q^{25} \neq \emptyset$. Thus $L_{Q}(3)=25$.

The bound (3.9) gives $\left[\frac{2}{3} \times 7\right](7-1)+1=25$.
If $n=6, k=3$, then the bomnd (3.9) yields

$$
\left[\frac{2}{3} \times 6\right](6-1)+1=21
$$

However,

$$
M_{6}^{16}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1
\end{array}\right), \quad M_{6}^{16}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1
\end{array}\right) .
$$

It is easy to see that $a_{1} Q^{16} \cap a_{3} Q^{16} \cap a_{5} Q^{16}=\emptyset$ while for any a_{i}, a_{j}, a_{r}, we have $a_{i} Q^{17} \cap a_{j} Q^{17} \cap a_{r} Q^{17} \neq \emptyset$. Thus $L_{Q}(k)=17<21$.

Sometimes the bound in Theorem 3.8 is the best possible. For example when $k=2$ and n is odd Schwarz had shown that the bound (3.10) is the best possible.

4. Estimations of $\tilde{L}(k)$ For irreducible relation

Since we know the bound of $L(k)$ for a primitive relation, we shall consider only imprimitive relations. Noticing that $\tilde{L}(k)$ does not exist for $n=2$, we may suppose $n \geqslant 3$.

Theorem 4.1. Suppose that $Q \in B_{n}(V), n \geqslant 3, Q$ is irreducible and $d(Q)>1$. Denote $\min _{t}\left|V_{t}\right|=\beta$.
a) If $\beta<k$ and $L_{Q}(k)$ exists, then $L_{Q}(k) \leqslant d-1$.
b) If $\beta \geqslant k$ and $L_{Q}(k)$ exists, then

$$
L_{Q}(k) \leqslant d-1+d\left(\left[\frac{k-1}{k} \beta\right](\beta-1)+1\right) .
$$

Proof. Without loss of generality we may suppose that the matrix representation of Q is of the form

$$
\left(\begin{array}{ccccc}
0 & B_{1} & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
& & \ldots & & \\
0 & 0 & \ldots & 0 & B_{d-1} \\
B_{d} & 0 & \ldots & 0 & 0
\end{array}\right)
$$

In this case we have

$$
M\left(Q^{d}\right)=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{d}
\end{array}\right)
$$

where A_{k} are primitive $v_{k} \times v_{k}$. Boolean matrices, $\Pi\left(A_{k}\right)=V_{k}$ are the sets of imprimitivity of Q, and $\bigcup_{t=1}^{d} V_{t}=V, \sum_{i=1}^{d} v_{i}=n$. By Theorem $2.4, L_{Q}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)$ exists iff $a_{i_{1}}, \ldots, a_{i_{k}}$ are contained in the same set of imprimitivity of Q, say V_{t}. Suppose that this is the case and $v_{t} \geqslant 2$. Applying Theorem 3.8 we have

$$
L_{Q}(k) \leqslant d\left(\left[\frac{k-1}{k} v_{t}\right]\left(v_{t}-1\right)+1\right) .
$$

Let $\left|V_{0}\right|=\beta$. Consider the following two cases.
a) $\left|V_{0}\right|=\beta<k$.

If $\left|V_{t}\right|<k, t=1, \ldots, d$, then no k elements of V have a c.c. In any V_{t} with $\left|V_{t}\right| \geqslant k$ choose k vertices $a_{i_{1}}, \ldots, a_{i_{k}}$. Since $V_{0}=V_{t}\left(Q^{\prime \prime}\right.$ for some $u, 1 \leqslant u \leqslant d-1$. we have $a_{1} Q^{u}=\ldots=a_{k} Q^{u}$, i.e. $L_{Q}(k)$ exists and $L_{Q}(k) \leqslant d-1$.
b) $\left|V_{0}\right|=\beta \geqslant k$.

For any $a_{1}, \ldots, a_{k} \in V_{0}$ we have

$$
L_{Q}(k) \leqslant d\left(\left[\frac{k-1}{k} \beta\right](\beta-1)+1\right)=L_{3}
$$

i.e.

$$
\bigcap_{i=1}^{k} a_{i} Q^{L_{3}} \neq \emptyset
$$

Let $V_{t} \neq V_{0}$ be any set of imprimitivity, $a_{1}, \ldots a_{k} \in V_{t}$. Since $V_{0}=V_{t} Q^{u}$ for some $u, 1 \leqslant u \leqslant d-1$. Then $a_{i} Q^{u} \subset V_{0}, i=1, \ldots, k$. Therefore $\bigcap_{i=1}^{k} a_{i} Q^{u} Q^{L_{3}} \neq \emptyset$.

$$
L_{Q}(k) \leqslant u+L_{3} \leqslant d-1+d\left(\left[\frac{k-1}{k} \beta\right](\beta-1)+1\right) .
$$

Write $n=\alpha d+\alpha_{1}$, where $a \geqslant 1$ is an integer and $0 \leqslant \alpha_{1} \leqslant d-1$. Then the least of the number $\left|V_{1}\right|, \ldots,\left|V_{t}\right|$ is $\leqslant \alpha$.

We have $k \leqslant \beta \leqslant \frac{n-o_{1}}{d}$.
Let $N(\beta, k)=\left[\frac{k-1}{k} \beta\right](\beta-1)+1$. This is an increasing function of β. If $L_{(\mathcal{Q}}\left(l_{i}\right)$ exists, we have

$$
\begin{aligned}
L_{Q}(k) & \leqslant d-1+d N(\beta, k) \leqslant d-1+d N((\alpha, k) \\
& =d-1+d\left(\left[\frac{k-1}{k} \cdot \frac{n-\alpha_{1}}{d}\right]\left(\frac{\prime-\alpha_{1}}{d}-1\right)+1\right) .
\end{aligned}
$$

Putting here $\alpha_{1}=0$ we have

Corollary 4.2. Let $Q \in B_{n}(V), Q$ is irreducible. $n \geqslant 3 . d(Q)>1$. If $L_{Q}(k)$ exists, then

$$
\begin{aligned}
L_{Q}(k) & \leqslant d-1+d\left(\left[\frac{k-1}{k} \cdot \frac{n}{d}\right]\left(\frac{n}{d}-1\right)+1\right) \\
& =d\left(\left[\frac{k-1}{k_{i}} \cdot \frac{n}{d}\right]\left(\frac{n}{d}-1\right)+2\right)-1=\left[\frac{k-1}{k} \cdot \frac{n}{d}\right](n-d)+2 d-1
\end{aligned}
$$

Denote $\left[\frac{k-1}{k} \cdot \frac{n}{d}\right](n-d)+2 d-1=f(d)$. In order to prove

$$
\begin{equation*}
L_{Q}(k) \leqslant\left[\frac{k-1}{k} n\right](n-1)+1 \tag{4.1}
\end{equation*}
$$

for an irreducible relation, we shall prove

$$
\begin{equation*}
f(d) \leqslant\left[\frac{k-1}{k} n\right](n-1)+1 \tag{4.2}
\end{equation*}
$$

Since for $k=2$ Schwarz ([1]) had shown that (4.1) holds, we consider only $k \geqslant 3$. It is easy to prove that $f(d)$ is a decreasing function if $d \in\left(0, \sqrt{\frac{k-1}{2 k}} n\right]$, while $f(d)$ is an increasing function if $d \in\left(\sqrt{\frac{k-1}{2 k}} n, n\right)(d=n, M(Q)$ is a permutation matrix, $L_{Q}(k)$ does not exist.) Thus

$$
\begin{aligned}
f(d) & \leqslant \max (f(2), f(n-1)) \\
& =\max \left(\frac{k-1}{2 k} n^{2}-\frac{k-1}{k} n+3, \frac{k-1}{k} \cdot \frac{n}{n-1}+2 n-3\right) \\
& \leqslant \begin{cases}6 & n=4, \\
\frac{k-1}{2 k} n^{2}-\frac{k-1}{k} n+3 & n \geqslant 5 .\end{cases}
\end{aligned}
$$

But if $n=4, k=3$, then $\left[\frac{k-1}{k} n\right](n-1)+1=\left[\frac{2}{3} \times 4\right] \times 3+1=7>6$.
If $n \geqslant 5$ then it is not difficult to prove

$$
\frac{k-1}{2 k} n^{2}-\frac{k-1}{k} n+3 \leqslant\left[\frac{k-1}{k} n\right](n-1)+1
$$

Hence (4.2) holds for $n \geqslant 3,2 \leqslant k<n$. We have
Theorem 4.3. Suppose that $Q \in B_{n}(V), n \geqslant 3, Q$ is irreducible. If $L_{Q}(k)$ exists, $2 \leqslant k<n$, we have

$$
\begin{equation*}
L_{Q}(k) \leqslant\left[\frac{k-1}{k} n\right](n-1)+1 . \tag{4.3}
\end{equation*}
$$

Remark. Applying (4.3) for $k=n-1$, we have

$$
\tilde{L}(n-1) \leqslant n^{2}-3 n+3
$$

while by the result of Schwarz ([3])

$$
L(n)=n^{2}-3 n+3 .
$$

ACKNOWLEDGMENT

I would like to thank Professor Š. Schwarz for his valuable suggestions and careful corrections.

References

[1] S.S. Schwarz: Common consequents in directed graphs. ('zechoslovak Math. J. 35 (1985). no. 110, 212-246.
[2] R.A. Brualdi and Bolian Liu: Generalized exponeuts of primitive directed graphs. J. Graph Theory 14 (1990), no. 4, 483-499.
[3] S. Schwarz: A combinatorial problem arising in finite Markov chains. Math. Slovaca 36 (1986), 21-28.

Author's address: Department of Mathematics, South China Normal University, Guangzhou, China.

[^0]: ${ }^{1}$ This research was supported by NNSF of P.R. China.
 This work was done while the author was visiting the Department of Mathematics, The
 Chinese University of Hong Kiong.

