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SOME INCLUSION THEOREMS FOR ABSOLUTE SUMMABILITY 

C. OR I IAN and O. (JAKAR, Ankara1 

(Received March 1-1. 1994) 

1. I N T R O D U C T I O N 

Let X_]-r» 1)0 a n infinite series with partial sums <>„, and let A = (anv) be a lower 

senii-niatrix with nonzero diagonal entries. By (Tn) we denote the A-transforni of 

the sequence s = (.s;l), i.e., 

,, 

(1) Tn = Y,OnVsv (u = 0 , 1 , 2 , . . . ) . 
r = 0 

Tlu1 series J2-r>> is s a -d t ° summable |_4|A-(A; ^ 1), if 

OO 

(-) J2"k~l\T"~T"-^' <oc 

n=\ 

(SCOO.R. [4]). 

Iii the special case of A = (anv) being a Riesz ma trix, i.e., weighted mean ma trix, 

we shall write \R,pn\k for sunimability \A\k. The case in which k = 1 reduces to 

the usual absolute weighted moan sunimability |H, Pn\. Recall that a weighted mean 

ma trix is defined by 
a,,r = Pv/Pn for 0 ^ V ^ // 

and 

anv = 0 for c > n 

WIKTO (/;,,) is a sequence of positive real ILUIIIIHTS and 

P„ =Pn+ Pi + •• + P „ , P - i = 0 . 

This paper was supported by the Scientific and Technical Research Council of Turkey 
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Throughout the paper, we suppose that Pn —> oo as // -4 oc. 

In this paper, using functional analytic techniques, we give necessary and sufficient 

conditions for the series ]T xn to be summable |A|/, (k > 1). whenever it is sumiiiaole 

|F, p n | , from which we deduce some knonw results. 

2. T H E MAIN RESUI/I 

Given a lower semi-matrix A = (anv), we introduce1 two lower semi-matrices A = 

(anv) and A = (anv) as follows: 

aПv = Ş ^ t f - n г ; n,v = 0 , 1 . 2 

^?iг> — a n v an— l.гм '^ V _, 

O00 = ^00 — ö'00, 

Om- = ( íщ. = 0 Іf D ^ ïl. 

Since A is a lower semi-matrix, so is A. 

We also note tha t 

In — V^I^'JTI — / anvsv — y y — an\.\ v — y anvxv 

c=() v=0 i=v v=0 

and 

n n 

(3) Fn - Fn-1 = ^ f c - fln-l.^v = /2 ^™Xv 
v=0 v=0 

where sv = XQ + X\ -f . . . + a*v and a n _ i , n = 0. 

Using this notation, we have 

T h e o r e m . | I t , p n | summability implies \A\k(k ^ 1) summability if and only if 

(i) \avv\^ = 0(vl-1), 

Pv ^ ' 
/ 00 \ 1 / fc 

(ii) ( £ n^lAcUM = 0 ( | ) , 
^ n=i ; - f l 

( 00 \ 1/fc 

£ n ' - 'K^iN =o(l) 
n=v+l ' 

where Adnv = &nv — Gn.v+i-
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P r o o f . Necessity. Let tn he the Riesz means of Yl xv, i.e. 

1 " 1 n 

Pn 

cn •= tn - t„-l = -p-£— ^ p „ - i : r „ , n ž 1, 
P n P » - l 

Oo : = XQ 

Now we have 

(4) 

and 
n 

(5) C7l := Tn - Tn-i = ^ P anu.rv, 7i ^ 1, 
v=0 

Co :— -^0-

We are given that | i t ,pn | = > MU, k ^ V Hence 
oo 

(6) ^ n ^ C l ^ o o 
ř l — 1 

whenever 

(7) £KI < OC. 

The spaces of sequences (xv) satisfying (6) and (7) are HA^-spaces (i.e., Banach 

spaces with continuous coordinates) if normed by 

(8) 

• oo v l/k oo 

HC| |=( |Co |* + E n f c _ 1 | C n l * ) and ||c|| = £ | c n | , 
^ 7 1 = 1 ' 7 1 = 1 

respectively. 

Observe that (5) transforms the space of sequences satisfying (7) into the space 

of sequences satisfying (6). Applying the Banach-Steinhaus theorem, we find that 

there is a constant M > 0 such that 

(9) lloll < M\\c\\ 

for all sequences satisfying (7). Applying (4) and (5) to the sequence x = ev — e,,+i, 
where ev is the vth coordinate vector, we see that 

cn = < 

0; 

Ľ2L-
Pv ' 

П < V 

n = v and Cn = < 

я/Дf^; n > v 

( 0; n < v 

avv\ n = v 

{ ánv - Q>n,v+1\ n > V. 
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By (8), it follows that 

||c|| = ^ a i K l | | C | | = ( V
f c - 1 | a m , | f c + f , / - 1 |Aa m , | f c ) . 

V ^ / i r r r+1 ' 

By (9), we have 

oo ^ 

wfc_l|a....|fc+ £ nfc-1|Aa„,.|fc<(2.U)fc(^) . 
n = v+l l' 

Since this holds for any v ^ 1, we get the necessity of (i) and (ii). To prove the 
necessity of (iii), we again apply (4) and (5) to the sequence x = ev+i . Hence we get 
that 

cn = 0 if n < v 4 1 

and 

and also 

and 

r " = ~p~Ъ— l f n ^ г + l ' 
1П--П--T 

Cn = 0 if n < v 4 1 

Cn =â Л f V +i if n ^ i- + 1. 

By (8) we have 

i/k 

r i f c - , | « .„, . + l |
f c

i ' 
* 7l = ti + l 

It follows from (9) that 

l/A-

IИI = i aшi iiCii = ( f; •)ì
fc-1K,„.,.+l|

fc) 
> -» .—-.i-L.1 ' 

( f nfc-1|â„,„+1|
fc) ' =o(i) . 

Vl=г+1 ' 

which implies the necessity of (iii). 

Sufficiency. By (4), we have 

(10) xv = ^-r,, - — c t , _ i ; F_! = /;.! = 0. 
Vv Pv-l 

602 



Inserting (10) in to (5), we may write 

Cn = > anvл-v = an0cQ + ) ciПv — c v cv-i 
^ ^ ЧЛ- Pľ-i 
ľ = 0 ľ = l 

LJ 

(InOCo + ánn—Cn + V V á , l t , P ř , - fl^r+l-0,.. 
n.. --—' 

Cг, 

Prг 

= 2j(O7ltrF (- - O71,l- + i P ř ' - l ) + ann—cn. 

Since 

we have 

anvPv — aluvjr\Pv-i — PvAánv + pván^ 

fPv \ Pn 
Cu = ^ ( — A á , u , + an,v+\ )cv + Clnn—Cn. 

~ V Pí. } Pn 

Now set Hn '=nl~~Cn,n^l. Then we get 

Hn = Y^unvcv 

v = ì 

where 

7 Я " Г ) 
Pv 

Afl/U> + Âи,ľ+1 ; 1 ^ V ^ 7i - 1, 

U1Ьv = < 
7^-г) Pn 1 \ J i i /> 

Pn 
V = 77, 

V > //,. 

Hence, £]:r., is summable |A | ^ , k ^ 1, whenever ]V.r{, is summable \R,pn\ if and 

only if 

^2 \Hn\
k < oc whenever ^ |r, t | < oc 

or equivalently, if and only if the matrix U = (unv) maps li into //., k ^ 1, where 

/ t = {.r = (a:„): 2 > „ | * < oo ; 

Nonetheless, it is well-known that the matrix U maps l\ into /A , k ^ 1, if and only if 

CO 

s u p ^ \unv\
k < CO 

(see e.g. [3], Theorem 5, p. 1G7). D 
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By tlie definition of U = (ttnv), we have 

P k F> k-

^2\unv\
k = vk-í( — \ánn\\ + ^2 nk-l\—£ánv+ánitl+i\ . 

o.) * 5;.-'(^) 

1>" ' n^+l ' > ' " 

oo 

Hence the conditions (i)-(iii) imply that ^ \unv\k = (Hi) as u —> oo, whence the 
n=v 

result. 

Taking the matrix A = (anv) to be the weighted mean matrix (R,qn) where qv > 0 

for each v and Qn = q0 4- q{ + . . . + qn -» oo as n -> oo, we deduce some known 

results and list them below: 

Corol lary 1 ([5]). \R,pn\ => |-R,gn|fc, fc ̂  1 if and oniy if 

<•» s S - " < " * • ' ) • 
^ / . \ 1 / A ' 

+1 ,„... ="(£)• 

c.) "'(„|,"",(ft^r)')'"-0("-
P r o o f . Apply Theorem with A = (anv) a weighted mean matrix (R,qn). Ol>-

serve that , in this case, 

qnQv-i i A - ~ - -Qnqv anv = jz—p: and /\anv = anv - a „ , r + i = —— . 
V n V n - l QnQn-l 

D 

Coro l lary 2 ([2]). |L?,pn | => | i? ,gn | if and oniy if 

(11) qvPv=0(Qvpv). 

P r o o f . Apply Corollary 1 with k = 1. 

Note tha t Corollary 2 has been obtained also by Sunouchi [6] in the sufficient form. 

When reviewing tha t paper Bosanquet has observed that condition (11) is not only 

sufficient but also necessary for \R,pn\ => \R,qn\. 

When pn = 1 for all n, the | i ? , p n | summability is the same as \C, 1| summability. 

Hence, using Theorem, one can write the necessary and sufficient conditions for 

\C, 1| =j> \A\k, k ^ 1, immediately. So we omit the details. • 
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3. CONCLUDING REMARKS 

(a) Taking A — (anv) to be the weighted mean matrix (R,qn) and defining 

pv = av and qv — (v + 1)" 

where a > 1 and a > — 1, one can see that 

Pv a vqv — ~ and Qv ~ . 
pv a — 1 cv 

Hence conditions (i)-(iii) of Theorem hold. 

(b) If we take that matrix A — (anv) to be the weighted mean matrix (R,pn), 

then by the condition (i) of Theorem, we must have 

^ - ^ = 0 ( 1 ) , 

which is impossible when k > 1. This means that there is a series ^xn which 
is |1?,I>7i| summable but not |i?,pnU> k > 1 summable. Actually, such a series is 
constructed in [5]. 
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