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1. INTRODUCTION

Let Dy, be an infinite series with partial sums s,,, and let 4 = (a,,) be a lower
semi-matrix with nonzero diagonal entries. By (7)) we denote the A-transform of
the sequence s = (s,), i.c..

(h T, :Z”“"S" (n=0.1.2....).
=0
The series Y v, is said to sunuable [Al (k> 1), if
(2) Z uk_llT” ~T, " <x
n=1

(sce e.g. [4]).

In the special case of A = (a,,,) being a Riesz matrix. i.e., weighted mean matrix.
we shall write |R, p, |y for summability |A|x. The case in which & = 1 reduces to
the usual absolute weighted mean summability |2, P,]. Recall that a werslied mean
matrix is defined by

Ay =po/Py for 0 <o <n
and

(ne =0 for o >n

where (p,,) is a sequence of positive real numbers and

Pr»:[’()+[’[+-- + P P_.]:().
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Throughout the paper, we suppose that 17, — o as 11 — ~c.
In this paper, using functional analytic techniques. we give necessary and sufficient
conditions for the series > r,, to be summable [A]; (& > 1). whenever it is summable

|R, pnl, from which we deduce some knonw results.

2. THE MAIN RESUII

Given a lower semi-matrix 4 = (a,,), we introduce two lower semi-matrices A

(any) and A= (any) as follows:

n
App = E Ani; N0 =0,1.2.....

i=v

(ny = Apy = An-1,0; N =1,2.. ..
QApo = (oo = Qoo,

a‘nn = dpy = 0ifv 2 n.

Since A is a lower semi-matrix. so is A.
We also note that

n n o n n
Tn = (AS)" = E AnypSy = § E = Uy, = E Anyly
v=0 v=0 i=v v=0

and

(3) Tn - Tn—l = i:(anv - dn—l,v)-Tv = i Adnuwv

v=0 v=0

where s, =29+ 1+ ... + 2, and @Gp—1,n = 0.
Using this notation, we have

Theorem. |R,p,| summability implies |A|x(k > 1) summability if and only if

(1) |a,,1,|£_“ = O(U%—l),

oo 1/k
. k=11 A~ |k _ Pu
(ii) ( 3 0 A ) _()(Pv),
n=v+1
(o) 1/k
(iii) ( Z n’“-llan,m[k) =0(1)
n=uv+1

where Alny, = Gny — Qnut1-
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Proof. Necessity. Let t, be the Riesz means of ) x,, i.c.

1 1 «—
tn = P: vasl, = E ZO(PH — Pl._l)ﬂ?l,.

v=0 v=
Now we have

n

])”.
(4) Ch =ty =ty = 5B > Puitu, n 21
PnPn—l —
v={
Co ‘= To
and
n
(5) Cn = Tn Tn—l = E &’TIU/l‘U n =1,
=0
Co =2

We are given that |R,p,| = |A|x, k > 1. Hence

(6) an“llCnl"' < 00

n—1

whenever

(7) > lewl < o

The spaces of sequences (z,) satisfying (6) and (7) are BI-spaces (i.e., Banach
spaces with continuous coordinates) if normed by

['e) 1/k (e <]
(s) ic| = (:co|k+2nk-‘lcn:k) and el = 3 leal,

n=1 n=1
respectively.
Observe that (5) transforms the space of sequences satisfying (7) into the space

of sequences satisfying (6). Applying the Banach-Steinhaus theorem, we find that
there is a constant M > 0 such that

(9) ICl < Milell

for all sequences satisfying (7). Applying (4) and (5) to the sequence T = e, — €,4,,
where e, is the v*" coordinate vector, we see that

0; n<uv 0; n<v
Cn = %"; n=v and C, =< Gyv; n=v
F—’%; n>uv Any — AQnv+1, N > .
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By (8), it follows that

2”1.' . . s . . L/k
llel} = Il’) and ||C|| = <v"’1|&m,|k + Z I:"'IIA&,WV‘)
v n=r+1l
By (9), we have
vk—llalvvlk + Z nk—llA&111'|k < (-)-‘[)A (&')k
n=v+1 Pu

Since this holds for any v > 1, we get the necessity of (i) and (ii). To prove the
necessity of (iii), we again apply (4) and (5) to the sequence » = ey 1. Hence we got
that

=0 if n<v+1

and
c, = Fg{i—l if n>e+1,
and also
C,=0 if n<o+1
and

Cp=anop1 if n2e+1.

By (8) we have

o L/k
el =t and [0 = (35 o anenlt) "

n=v+1
It follows from (9) that

.

(=

Lk
nk—lldn.,n+l|k> = ()(1).
n=uv+1

which implies the necessity of (iii).
Sufficiency. By (4). we have
P, v Pv—-2

10 Xy = —0Cp —
( ) Do Puv—-1

Co—1; P-1=p1=0.
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[nserting (10) in to (5), we may write

n n
, ) ) (P, P,
C,l = E Apypd'y = AppCo + E App | —Cp — Cy—1
v=0

— Pv Puv—1
v=1
1—1
[)n ¢ N N Cyp
= (p0Co + Upp—Cn + E (anupu - (I'n.u+lp:'—l),—
Pn — Po
=
n—1
A A (.l’ A~ PH,
= (anvpv - ("11,1v+1PL'—1)_ + Ay —Cp.
VZU_O Do Pn

Since

(A"nvl)v - (’n.x'-}—lpl'-l = PUA(”III' + 1-)U(Ln,u+l,

we have

n—1
P, R . P,
Cn = E (_Aanu + Ay ot )Cu + app—0y.
=0 Do pn

; 1
Now set H, :=n'"%C,, n > 1. Then we get

n

Hn = § UypoCy

v=1
where P
_1 v\ a .
nit=x). (—Aa,w + u,,,,,,_,.l); 1<ov<n—-1,
Pu
Uny =9 o1y Do
n Bl —Qnn; v=n,
1)”,
0; V>N,

Hence, Y, is summable |Al,. k& > 1, whenever Y w, is summable |R, p,| if and
only if

Z |H,|F < 0o whenever Z len] <
or cquivalently, if and only if the matrix U = (u,,) maps {; into l;, K > 1, where
Iy = {l’ = (a,): Z lu )N < oo}
-
Nomnetheless. it is well-known that the matrix U maps [; into I, & > 1, if and only if

o0

sup Z lu.m,lk < 00

v
n=1

(sce e.g. [3], Theorem 5, p. 167). O
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By the definition of U = (u,.), we have

oo . ) _
k_ k-1 Pus k k\IIPf',» . k
lunul =0 '1)—|annl + n l"‘-Aam- + An n+1
n

n=uv n=v+1 pe

oo
Hence the conditions (i)-(iii) imply that Y |un.|* = O(1) as v —= oo, whence the

result.

Taking the matrix A = (a,.) to be the weighted mean matrix (R, ¢,) where ¢, > 0
for each v and Q,, = ¢ +¢q; + ...+ ¢, = 00 as n — >, we deduce some know
results and list them below:

Corollary 1 ([5]). |R,pn| = |R,qnlx, k = 1 if and only if

. > . qn R\ De
(ii) Qo < ”:ZH nkt <_——Q11Qn—l ) ) = O<Fv)’
= - dn )

Proof. Apply Theorem with A = (an.) a weighted mean matrix (R, g,). Ob-
serve that, in this case,

~ q“Qv—l

R “ N —(nqv
Apy = and  AQy, = @no — Q4.0 T

Qn(zn—l (211(2:1—1 ’

Corollary 2 ([2]). |R,pn| = |R,¢x] if and only if

(11) 7Py = O(Qupo).

Proof. Apply Corollary 1 with £ = 1.

Note that Corollary 2 has been obtained also by Sunouchi [6] in the sufficient form.
When reviewing that paper Bosanquet has observed that condition (11) is not only
sufficient but also necessary for |R,p,| = |R, ¢n|.

When p, =1 for all n, the |R, p,| summability is the same as |C, 1| summability.
Hence, using Theorem, one can write the necessary and sufficient conditions for
|C, 1| = |Alk, £ 2 1, immediately. So we omit the details. 0O
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3. CONCLUDING REMARKS
(a) Taking 4 = (any) to be the weighted mean matrix (R, ¢,) and defining
v

pp=a" and ¢q,=(v+1)"

where @ > 1 and a > —1, one can see that

P, a V(G
L~ and Q, ~ —.
Do a — 4

Hence conditions (i)—(iii) of Theorem hold.

(b) If we take that matrix A = (a,,) to be the weighted mean matrix (R, p,),
then by the condition (i) of Theorem, we must have

o't = 0(1),

which is impossible when k& > 1. This means that there is a series > 2, which
is |R,p,| summable but not |R,p,|x, & > 1 summable. Actually, such a series is
constructed in [5].
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