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1 . INTRODUCTION 

Let Vo be a <S-ring of subsets of a nonempty set ft. Let X and Y be Banach spaces 

and L(X, Y) the Banach space of all bounded linear operators from X to Y. 

A set function m: Vo —> L(X,Y) is called an operator valued measure countably 

additive in the strong operator topology if for every x E X the set function E —> 

m(E)x is a countably additive vector measure. 

From now on, m will denote an operator valued measure countably additive in the 

strong operator topology. 

We denote by G(Vo) the smallest cr-ring containing Vo- By a Vo-simple function 

on ft with values in X we mean a function of the form 

r 

/ = ^2 XiXE> 

where x{ E X, Ei E Vo and E{ n Ej = 0 for i ^ j , i,j = 1,2,... ,r. Its integral is 

defined in the standard way. 

For a function / : fl —> X and a set A C ft, put 

H/IU = sup|/(«)|, 
xEA 

where \f(t)\ denotes the norm of f(t). By ©(fl, X) we mean the Banach space of all 

bounded functions f: ft -± X with the supremum norm. 

For each E E &(VQ), the semivariation m(E) of the measure m is defined by 

m(E) = sup У^m(Ei)xj 
i=l 

425 



where the supremum is taken over all finite and measurable partitions of E G &(Vo) 

and all finite families {rri}n
=1 C X with ||.zt-|| ^ 1 for i = 1,2,... , n . From the 

definition, we note that m is monotone and countably subadditive. 

For a J-ring Vo, V\ will denote the class of those sets from &(Vo) which have finite 

semi variation. Put V = Vo n V\. 

Elements of V will be called integrable sets. A /^-simple integrable function on ft 

with values in X will be called a simple integrable function. The set of all simple 

integrable functions will be denoted by Ts. 

A function / : ft -» X is called measurable if there is a sequence of simple integrable 

functions (/n) such that lim fn(t) = f(t) for each t G ft. A measurable function / : 
n—¥oo 

ft -» X is called integrable if there exists a sequence of simple integrable functions 

(/n) converging m-almost everywhere to / for which the integrals / fn dm, n = 

1,2,... are uniformly countably additive on &(V). In that case, the integral of the 

function / on the set A G &(V) is defined by 

/ / dm = lim / fn ám. 
JA П-*°°JA 

It was shown in [2, Theorem 16] that if there exists a sequence of integrable func

tions (/n) which converges m-almost everywhere to / and the limit lim JA fn dm G 

Y exists for each A G &(V), then / is integrable and 

/ / d m = lim / fndm. 
JA n^°°JA 

This integral, called the Dobrakov integral, was introduced by I. Dobrakov in [2]. 

For a measurable function g and E G &(V), the Li-norm m(g, E) of g on E is a 

nonnegative not necessarily finite number defined by 

m(g,E) = sup j \f f dm : / G Ts,\f(t)\ <: \g(t)\ for each t G E\. 

The Li-norm of the function g is defined by 

m(flf,f2) = sup m(g,E). 
Eee(V) 

All terms not defined in this paper can be found in [2], [3] and [4]. 

In this paper, we prove the bounded convergence theorem for the Dobrakov in

tegral, and we study the operator on <B(!Q) represented by the Dobrakov integral, 

where 03(12) is the space of all bounded measurable scalar valued functions with the 

usual supremum norm on ft. 
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2. THE BOUNDED CONVERGENCE THEOREM 

We start with an analogue of Bartle's Bounded Convergence Theorem [1, Theorem 
11.4.1]. 

Theorem 2.1. Let (fn) be a bounded sequence of integrable functions in 

93(fi,X) which converges m- almost everywhere to a measurable function f. Let 
oo 

F = \J {t G CI: \fn(t)\ > 0}, where /o = / . Suppose that for each e > 0 there exists 
n=0 

a set E G V with m(F — E) < e such that (fn) converges uniformly to f on E. Then 

f is integrable and fAf dm = lim fA fn dm for each A G &(V). 
A n—)-oo A 

P r o o f . Suppose | | /n | |n ^ K for all n. Let e > 0 be given. Then there exists a 

set E G V with m(F — E) < e such that (fn) converges uniformly to / on E. 

For each .4 E 6 ( P ) , we have 

lim / fndm- / fpdm = lim / (fn~fP)di 
71>V\JA J A n*\JAr\F 

^ lim" j / (fn - fp) dm\ + \ f (fn - f) dm 
n ' p U JAn(F-E) I I JAC\FC\E 

At (f-fP)dm\ 
I JAnFr\E ) 

^ 2Km(A n (F - E)) + B S | | / n - f\\Em{E) + IEI | | / - fp\\Em(E) 
n P 

^ 2Km(F - E) 

<2Ke. 

Thus the limit lim fA fndm G Y exists. By [2, Theorem 6], / is integrable and 
n—>-oo UA 

f f dm = lim fA fn dm for each A G &(P). • 
n n—>oo ^ 

Corollary 2.2. Let (fn) be a bounded sequence of integrable functions in 
Q3(f2,X) which converges m-almost everywhere to a measurable function f. Let 

oo 

F = [j {t G CI: \fn(t)\ > 0}. where f0 = / . Suppose that for each e > 0 there 
n=0 

exists a set E G 6(V) with m(F — E) < e such that (fn) is a Cauchy sequence 
in the L\-norm on E. Then f is integrable and fAf dm = lim fA fn dm for each 
A G e(v). 

P r o o f . Let e > 0 be given. Then there exists a set E G &(P) with m(F-E) < e 

such that (/n) is a Cauchy sequence in the Li-norm on E. Suppose | | / | |n ^ K for 
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all n. Then the desired result follows immediately from the next relation: 

lim / / ndra— / fpdm 
n'P I J A J A 

< lim / (fn - fp) dra + lim / (fn - fP) dm 
n>P|JAn(F-E) I n 'P |JAnFnE 

^ 2Km(A D(F- E)) + ilmra(/n - fp,AnFDE) 
n,p 

< 2Km(F -E) + Iimm(/n - fp, E) 
n,p 

<2Ke 

for each Aee(V). D 

Corollary 2.3. Let (fn) be a bounded sequence of integrable functions in 

*B(Sl,X) which converges m-almost everywhere to a measurable function f. If m is 

continuous on e(V) (i.e., if En G e(V), En \ 0, n = 1,2,..., then lim m(En) = 0), 
n—>oo 

then f is integrable and fA f dm = lim fA fn dra for each A G e(V). 

n—>-oo 

oo 

P r o o f . Let F = (j {t e fl: \fn(t)\ > 0}, where / 0 = / . Then F € 6 ( P ) . Let 
n=0 

ra be continuous o n 6 ( P ) . Then the measure ra is countably additive in the uniform 
operator topology on e(V) [3, Proof of Lemma 2]. By Egoroff-Lusin's Theorem [2], 
there is a set N G e(V) and a nondecreasing sequence of sets Fk £ V, fc = 1,2,..., 

oo 

with l j Fk = F - N such that N is a ra-zero set and on each Fk the sequence 
n=0 

(fn) converges uniformly to the function / . Since ra is continuous on e(V), for each 
e > 0 we can select Fk such that m(F — Fk) < e. The desired result now follows 
immediately from Theorem 2.1. D 

3. OPERATOR ON 03(0) 

By £i9Jl(ra) or.£iT(ra) we denote the set of all measurable or integrable functions 
g, respectively, with m(g,tt) < oo. By £iT s(ra) we denote the closure in the Li-
norm of the set of all simple integrable functions T s in £i9Jt(m). By £i(ra) we 
denote the set of all functions g G £i9Jt(ra) whose Li-norms m(g, •) are continuous 
on e(V). It is well-known [3, Theorem 4] that 

£i(ra) C £iT s(ra) C £iT(ra) C £iЯЛ(m). 
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If / G 05(12) and g G £xT(m), then fg is integrable [2, Theorem 4]. For g G £iT(m) 
we consider the operator T: Q5(STi) -» Y defined by Tf = J fgdm. It is easy to show 
that the operator T is bounded and ||T|| ^ m{g,ft). 

Theorem 3.1 . Let g G £xT(m) and F = {t G Ct: \g{t)\ > 0}. Define T: 
05{ft) -> y by Tf = J fgdm. Then T is compact if and only if for each £ > 0 
there exists E£ G 6 ( P ) with m{g,F — E£) < e such that the operator Te defined by 
T£f = JE fgdm is compact. 

P r o o f . Suppose that T is compact. Since g is measurable, F G &{V). By 
taking E£ = F for each e > 0 it follows that T£ = T and T£ is compact. 

To prove the converse, let e > 0. Then there exists E£ G &{V) with m(g, F—E£) < 

e such that T£ is compact. 

Let U be the unit ball of Q5(ffc). Then {JE fgdm: / G U} is relatively compact. 
For / G U we have 

/ fgdml = / fgdm 
I Jn-E£ I I JF-Ee 

^ m{fg, F-E£)^ m{g, F - E£) < e. 

It follows easily that 

{Tf:feU} = { f fgdm+ [ fgdm: f GUI 
I JE£ Jn-Ee J 

is totally bounded by 2e-balls. Hence T is compact. D 

In paticular, if g G £iT s (m), then we can prove that the operator T in Theorem 
3.1 is compact. 

Theo rem 3.2. Let g G £iT s(m) and let T: 05(17) -> Y be the linear operator 

defined byTf = J fgdm. Then T is compact. 

P r o o f . Since g G £iT s (m), there exists a sequence {gn) of simple integrable 
functions such that {gn) converges to g in the Li-norm in £i9Jl(m). Define the 
operator Tn: 05(.Q) -> Y by Tnf = J fgn dm. Since each gn has a finite range, Tn is 
a finite rank continuous linear operator. 

For / G Q5(fi), we have 

| ( T - T n ) / | = | | / ( ^ - ^ n ) d m 

^ Mf(9 ~ gn),«) ^ | | / | |nm(0 - gn,«). 

Hence ||T — Tn | | -̂  m(# — gn, fi,). Since (^n) converges to g in the Li-norm and each 
Tn is compact, T is compact. • 
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Now proceeding like in the proof of Theorem 3.2, we get the following corollary. 

Corollary 3.3. Let g, gn G £iX(ra) (n = 1,2,...). Let T, Tn: 93(12) -> Y be 
operators defined by Tf = f fg dra and Tnf = f fgn dm, respectively. If each Tn is 
compact and gn converges to g in the L\-norm, then T is compact. 
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