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Czechoslovak Mathematical Journal, 48 (123) (1998), 207–227

DOUBLE CONVERGENCE AND PRODUCTS OF FRÉCHET SPACES

Josef Novák, Praha

(Received April 4, 1995)

Abstract. The paper is devoted to convergence of double sequences and its application
to products. In a convergence space we recognize three types of double convergences and
points, respectively. We give examples and describe their structure and properties. We
investigate the relationship between the topological and convergence closure product of two
Fréchet spaces. In particular, we give a necessary and sufficient condition for the topological
product of two compact Hausdorff Fréchet spaces to be a Fréchet space.

I

In this section we recall definitions and some properties of convergence closure
spaces. Let X be a set of points. Let L be a collection of pairs (〈xn〉, x), 〈xn〉 ∈ X�,

x ∈ X , such that the Fréchet axioms of convergence are satisfied. Then L is called
a convergence for X . Instead of (〈xn〉, x) ∈ L we write L-limxn = x, or simply,

limxn = x. We say that the sequence 〈xn〉 converges or, more precisely, L-converges
to x.

1. For each A ⊂ X define its closure λA: x ∈ λA if there is a sequence of points
of A converging to x.

2. λ{x} = {x} for each x ∈ X and A ⊂ λA, λ(A ∪ B) = λA ∪ λB for each
A,B ⊂ X .

3. A set X carrying a convergence L and the corresponding closure λ is called a
convergence closure (topological, if λ is a topology) space or a convergence space. It

is denoted (X,L, λ) or (X,λ).
4. A set L(x) ⊂ X is said to be a closure neighbourhood of x ∈ X if there is

no sequence of points of X \ L(x) converging to x. Then x ∈ λA iff each closure
neighbourhood L(x) contains points of A.

5. The maximal convergence L∗ for (X,L, λ) is defined by means of the closure or
of closure neighbourhoods. Put (〈xn〉, x) ∈ L∗ whenever x ∈ λ{xni ; i ∈ �} for each
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subsequence 〈xni〉 of 〈xn〉. Equivalently: (〈xn〉, x) ∈ L∗ if each convergence closure
niehgbourhood L(x) of x contains all points xn except for a finite number of indexes
n ∈ �.
6. If L = L∗ and a sequence 〈xn〉 does not L-converge to a point x ∈ X then there

is a subsequence 〈xni〉 no subsequence of which L-converges to x.
7. λ is a topology for X provided λA = λ(λA) for each A ⊂ X , i.e. λ = λ2.

Further, (X,L, λ) is not a topological space iff there are points x, xm, xmn of X such
that limxm = x, limxmn = xm,m ∈ �, and there is no sequence in {xmn ; m,n ∈ �}
converging to x.
8. A convergence topological space (X,L, λ) is called a Fréchet space if L = L∗.
9. A convergence closure space (X,L, λ) is called anH space if for each two distinct

points x1 and x2 ofX there are their respective disjoint closure neighbourhoods L(x1)

and L(x2) .

II

In some papers on sequential convergence ([KR77], [NO77], [AR79], [FV85],
[KO85], [NO85]) generalizations of simple sequences to multiple sequences are used

to tackle various problems. In this section we investigate properties of double
sequences which we apply later to products of Fréchet spaces. We start with a

generalization which we hope to be both interesting and useful.
Let ω denote the first infinite ordinal number. For each ordinal number α > 0, let

Ωα denote the set of its predecessors.

Definition 1. Let α > 0 be an ordinal number and let X be a non-void set.
Let ϕ be a map of Ωα into X considered as a subset of Ωα × X . Then the set ϕ,
ordered by (ξ, ϕ(ξ)) < (η, ϕ(η)) iff ξ < η < α, is called a sequence of type α (or

simply a sequence). Denote ϕ(ξ) = xξ, ξ ∈ Ωα, and ϕ = 〈xξ〉.
Let 0 < β � α, let A be a subset of Ωα such that Ωβ and A are isotonic and let

h : Ωβ → A be an isotonic map. Define ψ : Ωβ → X by ψ(η) = ϕ(h(η)), η ∈ Ωβ .
Denote h(η) = ξη, η ∈ Ωβ . Then ψ = 〈xξη 〉 is said to be a subsequence of the
sequence 〈xξ〉.
We say that ϕ = 〈xξ〉 is finite, simple, or transfinite if α < ω, α = ω, or α > ω,

respectively.
Let S denote the set of all subsequences ψ of ϕ such that β = α and let Sϕ be a

subset of S. We say that Sϕ is a complete system of subsequences of ϕ provided for
each ψ ∈ S there exists a subsequence χ of ψ such that χ ∈ Sϕ.

Proposition 1. Let ϕ be a sequence of points of X . Let ψ be a subsequence of
ϕ and let χ be a subsequence of ψ. Then χ is a subsequence of ϕ.
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�����. Trivial.

According to Definition 1, a sequence 〈xξ〉 of type ω is a linearly ordered set of
pairs (0, x0) < (1, x1) < . . .. Usually a sequence 〈xn〉 is indexed by the set of natural
numbers �. With the obvious abuse of formalism, 〈xn〉 can be identified with the
set of ordered pairs (1, x1) < (2, x2) < . . . and its subsequence 〈xni 〉 with the set of
ordered pairs (1, xn1) < (2, xn2) < . . .. Hence usual sequences and their subsequences

can be considered as simple sequences and their subsequences from Definition 1.
Analogously (since ω2 is isotonic to the set �×� carrying the lexicographic order:

(m,n) < (r, s) iff either m < r or m = r and n < s), a transfinite sequence 〈xξ〉 of
type ω2 can be identified with a double sequence defined as follows.

Definition 2. Let X be a non-void set. Let ϕ be a map of the lexicographically
ordered set � × � into X , considered as a subset of � × � × X . Then the set ϕ,
ordered by ((m,n), ϕ((m,n))) < ((r, s), ϕ((r, s))) iff (m,n) < (r, s), is called a double

sequence. Denote ϕ((m,n)) = xmn and ϕ = 〈xmn〉.
For a fixed m ∈ �, the simple sequence 〈xmn〉∞n=1 is called the m-th straight-

sequence and its subsequences are called straight-subsequences in ϕ = 〈xmn〉; we
condense 〈xmn〉∞n=1 to 〈xmn〉n.
For a map g : � → �, the simple sequence 〈xmg(m)〉m is called a cross-sequence

and its subsequences are called cross-subsequences in ϕ = 〈xmn〉.
Let A be a subset of �×� isotonic to �×� and let h : �×� → A be an isotonic

map. Define ψ : � × � → X by ψ((i, j)) = ϕ(h((i, j))), (i, j) ∈ � × �. Denote

ψ((i, j)) = yij and ψ = 〈yij〉. Then the double sequence ψ = 〈yij〉 is called a double
subsequence of ϕ = 〈xmn〉.
Note. The double subsequence 〈yij〉 is the ordered set of pairs ((1, 1), xh((1,1))) <

((1, 2), xh((1,2))) < . . . < ((i, j), xh((i,j))) < . . .. If we write h(p, q) or h(r, s) or h(m,n)
instead of h(i, j), then we have a subsequence 〈ypq〉, 〈yrs〉, 〈ymn〉, respectively. We
mostly use the notation h(i, j) and 〈yij〉.
A general map H : � ×� → � ×� can be denoted h((i, j)) = (f i(j), gi(j)) where

f i, gi are functions on � into �.

Lemma 1. Let h be a map of � × � into � × �, h((i, j)) = (f i(j), gi(j)). Then

h is isotonic iff the following condition is satisfied:

(1) 〈f i(j), gi(j)〉j is a simple sequence increasing in the lexicographically or-
dered set � × � and, further, there is a function e : � → � such that

f i(j) = f i(e(i)) for all j � e(i) and finally f i(1) < f i+1(1) for all i ∈ �.

�����. Necessity. Let h be an isotonic map. Let i ∈ � be fixed. Then
〈h((i, j))〉j is a simple sequence increasing in the lexicographically ordered set �×� .
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Therefore there are maps f i, gi of � into � such that h((i, j)) = (f i(j), gi(j)) for all

j ∈ � and 〈(f i(j), gi(j))〉i is a simple sequence increasing in the lexicographically
ordered set � × �. Suppose that, on the contrary, there is a subsequence 〈jr〉 of
〈j〉 such that f i(j1) < f i(j2) < . . .. Then the set of pairs (f i(jr), gi(jr)), r ∈ �, is

cofinal in � × �. Thus the set of pairs (i, jr), r ∈ �, is cofinal in � × �, because
h is isotonic. This is a contradiction. Therefore there is a number e(i) ∈ � such

that f i(j) = f(e(i)) for all j � e(i). Because (i, e(i)) < (i + 1, 1), it follows that
f i(e(i)) < f i+1(1) and also f i(1) < f i+1(1).

Sufficiency. Suppose that condition (1) holds. Let A denote the set of all pairs
(f i(j), gi(j)), (i, j) ∈ � × �. It is a subset of the lexicographically ordered � × �.

Put h(f i(j), gi(j)) = (i, j) and prove that h : A → � × � is an isotonic map. Let
(f i(j), gi(j)) < (f r(s), gr(s)). Two cases are possible. Either f i(f) < f r(s) or

f i(j) = f r(s) and gi(j) < gr(s). In the first case, it follows from (1) that f i(j) �
f i(e(i)) < f i+1(1) � f r(1) � f r(s). Consequently, i < r and so (i, j) < (r, s).

In the second case we deduce from (1) that i = r. Hence gi(j) < gi(s). Since
〈(f i(n), gi(n))〉i is an increasing sequence of pairs of �×� , we have gi(j) < gi(j+1) <

. . . < gi(s) and f i(j) = f i(j+1) = . . . = f i(s). Therefore j < s. Hence (i, j) < (r, s).
Thus the inverse map h

−1
= (f i(j), gi(j)) = h(i, j) is isotonic. This completes the

proof because the map h
−1
= h, by (1). �

From Lemma 1 it follows: 〈yij〉 is a subsequence of 〈xmn〉 iff (1) holds.
Definition 3. Let 〈xmn〉 be a double sequence of points of a set X . Let 〈yij〉

be a double subsequence of 〈xmn〉. We say that 〈yij〉 is a two-fold subsequence of
〈xmn〉 if each straight-sequence in 〈yij〉 is a straight-subsequence in 〈xmn〉.
Example 1. Let X = R. Denote xmn = m + n(n + 1)−1. Then 〈xmn〉 is a

double sequence of real numbers. Let e(i) = i, and f i(j) = 2i+ 1, j � i, f i(j) = 2i,

j < i, and gi(j) = 2j, j � i, gi(j) = 3j, j < i. Denote yij = xfi(j)gi(j). It follows
from Lemma 1 and Definition 2 that 〈yij〉 is a double subsequence of 〈xmn〉. It is
not a two-fold subsequence of 〈xmn〉 because no straight-sequence 〈yij〉j , i � 2, is a
straight-subsequence in 〈xmn〉.
Definition 4. Let 〈xmn〉 be a double sequence of points of a set X . Let k ∈ �,

let f : � → � be a map and let h : � × � → � × � an isotonic map such that

h(i, j) = (k − 1 + i, f(i)− 1 + j) for all (i, j) ∈ � × �. Put yij = xh(i,j). Then 〈yij〉
is a double subsequence of 〈xmn〉. It is called the (k, f)-subsequence of the sequence
〈xmn〉.

Corollary 1. Let 〈xmn〉 be a double sequence of points of a set X . The system
of all two-fold subsequences of the sequence 〈xmn〉 is a complete system of double
subsequences of 〈xmn〉.
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�����. Let 〈yij〉 be a double subsequence of 〈xmn〉. Let e : � → � be a map

with property (1) in Lemma 1. Then the (1, e)-subsequence of 〈yij〉 is a two-fold
subsequence of 〈xmn〉. �
Remark. A suitable notation for two-fold subsequences of a double sequence

follows directly from Definition 3. Let 〈zij〉 be a two-fold subsequence of a sequence
〈xmn〉. There is a subsequence 〈mi〉 and subsequences 〈ni

j〉j , i ∈ �, of 〈n〉 such that
zij = xmini

j
. Hence 〈zij〉 = 〈xmini

j
〉. This notation has been used in [NO77] and

[NO85].

Lemma 2. Let 〈xmn〉 be a double sequence of points of a set X . Then there
exists a one-to-one double subsequence of 〈xmn〉 iff there is a double subsequence
〈yij〉 such that {yij ; j ∈ �} are infinite sets for all i ∈ �.

�����. The necessity is trivial.

Sufficiency. Now let 〈yij〉 be a double subsequence of 〈xmn〉 with infinite {yij ; j ∈
�} for all i ∈ �. With respect to Lemma 2, we can suppose that 〈yij〉 is a two-
fold subsequence of 〈xmn〉. Denote n11 = 1 and put z11 = y1n11 . Let p > 1 be an
integer number. Suppose that we have chosen distinct points zij = yinj

j
, j � p, i � p,

ni
1 < ni

2 < . . . < ni
p, i � p. Since {yij ; j ∈ �} for all i ∈ � are infinite sets, we deduce

that there are numbers ni
p+1 > ni

p, i � p, and numbers np+1
1 < np+1

2 < . . . < np+1
p+1

such that the points yini
j
, i � p+ 1, j � p+ 1, are distinct. Put zij = yini

j
, i � p+ 1,

j � p + 1. In such a way, by mathematical induction, we have constructed a one-
to-one two-fold subsequence 〈zij〉 of 〈yij〉. It is also a two-fold subsequence of 〈xmn〉
because 〈yij〉 is a two-fold subsequence of 〈xmn〉. �

III

In this section we define the notion of a double convergence in a convergence closure
space (X,L, λ) with the maximal convergence L = L∗. The definition of limxmn = x

is analogous to the definition of maximal convergence of simple sequences, see 5. in
Section I.

Definition 5. Let (X,L, λ) be a convergence closure space. Let D denote the
collection of all pairs (〈xmn〉, x), xmn ∈ X , x ∈ X , such that the following property
is satisfied:

(2) If 〈yij〉 is a double subsequence of 〈xmn〉 then x ∈ λ{yij ; i, j ∈ �}.

Call D the double convergence for the space (X,L, λ). Instead of (〈mn〉, x) ∈ D we
write D-lim xmn = x or, simply, limxmn = x, and say that the double sequence
〈xmn〉 converges to the point x or, that x is a limit of the double sequence 〈xmn〉.
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Lemma 3. limxmn = x iff the following property is satisfied:

(3) If 〈yij〉 is a two-fold subsequence of 〈xmn〉 then x ∈ λ{yij ; i, j ∈ �}.

�����. If limxmn = x then (3) holds because each two-fold subsequence is a

double subsequence. Suppose that (3) is true. Let 〈yij〉 be a double subsequence
of 〈xmn〉. According to Corollary 1 there is a two-fold subsequence 〈zrs〉 of 〈xmn〉
which is a double subsequence of 〈yij〉. Hence x ∈ λ{zrs ; r, s ∈ �} and also x ∈
λ{yij ; i, j ∈ �}. Therefore limxmn = x. �

Lemma 4. limxmn = x iff the following implication is true:

(4) If L(x) is a closure neighbourhood of the point x, then there are a number

k ∈ � and a function g : � → � such that xmn ∈ L(x) whenever m � k,

n � g(m).

�����. Suppose that limxmn = x and (4) does not hold. There is m1 ∈ �

and a straight-subsequence 〈xm1m
1
j〉 no point of which belongs to L(x). Inductively,

let p ∈ �. Suppose that we have chosen numbers m1 < m2 < . . . < mp−1 and

straight-subsequences 〈xmini
j
〉, i < p, such that no point xmini

j
belongs to L(x).

Since (4) is not true, there are mp > mp−1 and a row subsequence 〈xmpnp
j
〉 no

point of which belongs to L(x). This way we can construct a double subsequence
〈xmini

j
〉 of 〈xmn〉 no point of which belongs to the neighbourhood L(x). Therefore

x /∈ λ{xmini
j
; i, j ∈ �}. This is a contradiction with Definition 5.

Now, suppose that (4) holds. Let 〈yij〉 be a double subsequence of 〈xmn〉 and
let L(x) be a neighbourgood of x. Clearly ∅ �= L(x) ∩ {yij ; i, j ∈ �} and x ∈
λ{yij ; i, j ∈ �}. Hence limxmn = x, by Definition 5. �

Notice that the implication (4) can be reformulated as follows: if L(x) is closure
neighbourhood of x, then there is a (k, g)-subsequence 〈zrs〉 of 〈xmn〉 such that
{zrs ; r, s ∈ �} ⊂ L(x).
From Definition 5 and in view of 4. in I, it follows that: (i) if xmn = x for all

m,n ∈ �, then limxmn = x, (ii) if limxmn = x and 〈yij〉 is a double subsequence
of 〈xmn〉 then lim yij = x. A double convergence need not be single-valued. This is

shown by a well-known example of a compact Fréchet space which is not Hausdorff.
Let X be a set of points x, y, xmn, m, n ∈ �. Let L be a convergence for X such
that each straight-sequence in 〈xmn〉 L-converges to x and each cross-sequence in
〈xmn〉 L-converges to y. According to Definition 5, limxmn = x and lim xmn = y,

as well. Notice that if (X,L, λ) is a convergence closure H-space, then (by Lemma
4) the double convergence for X is single-valued.
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Lemma 5. Let D be the double convergence for a convergence closure space
(X,L, λ). Then D satisfies the following maximality condition:
(∗) Let 〈xmn〉 be a double sequence of points and x a point of X . If each double
subsequence 〈yij〉 of 〈xmn〉 has a double subsequence 〈zrs〉 of 〈yij〉 converging
to x, then limxmn = x.

�����. Trivial. �

Lemma 6. Let 〈zmn〉 be a double sequence of points of a convergence closure
space (X,L, λ). Let lim zmn = x. Then there is a straight-subsequence or a cross-

subsequence in 〈zmn〉 which L-converges to the point x.
�����. It follows from Definition 5 that x ∈ λ{zmn ; m,n ∈ �}. If zmn = x for

infinitely many indexes, then the assertion is trivial. In the opposite case, there is a

double subsequence of points tpq �= x and so, because x ∈ λ{tpq ; p, q ∈ �}, there is a
one-to-one simple sequence of points of the set {zmn ; m,n ∈ �} L-converging to the
point x. From this we deduce that there are functions f, g : � → � and distinct pairs
(f(i), g(i)) such that 〈zf(i)g(i)〉 is a constant or a one-to-one sequence L-converging
to x. Denote zf(r)g(r) = tr. Then L-lim tr = x. Two cases are possible:
1. There is a subsequence 〈ri〉 of 〈r〉 such that f(r1) < f(r2) < . . .. Consequently

〈zf(ri)g(ri)〉 is a cross-subsequence in 〈zmn〉 and a subsequence of 〈tr〉. Hence
L-lim zf(ri)g(ri) = x.

2. There are positive integers p, r0 such that f(r) = p, r > r0. Because the

pairs (f(r), g(r)) are distinct there is a subsequence 〈si〉 of 〈r〉 such that
g(s1) < g(s2) < . . .. Hence we have a sequence 〈zpg(si)〉 = 〈tsi〉. It is a
straight-subsequence in 〈zmn〉 and a subsequence of 〈tr〉 as well. Therefore
L-lim zpg(si) = x.

�

Theorem 1. Let (X,L, λ) be a convergence closure space. Then limxmn = x

iff in each double subsequence of 〈xmn〉 there is a straight-subsequence or a cross-
subsequence in 〈xmn〉 L-converging to the point x.
�����. Necessity. Let 〈yij〉 be a double subsequence of 〈xmn〉. According to

Corollary 1, there is a two-fold subsequence 〈zrs〉 of both sequences 〈yij〉 and 〈xmn〉.
From Lemma 6 it follows that there is a straight-subsequence or a cross-subsequence

in 〈zrs〉, hence also in 〈xmn〉, which L-converges to x.
Sufficiency. Follows directly from Definition 5. �

Corollary 2. limxmn = x iff in each two-fold subsequence of 〈xmn〉 there is a
straight-subsequence or a cross-subsequence in 〈xmn〉 L-converging to the point x.
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Proof follows instantly from Theorem 1 and Corollary 1.

������. In [NO77] and [NO85] I have defined the double convergence by

means of double subsequences 〈xmini
j
〉 of a double sequence 〈xmn〉 in the same man-

ner as in Corollary 2. These subsequences are now called two-fold subsequences.

Theorem 1 and Corollary 2 show that both definitions of double convergence, namely
Definition 5 and that one in [NO85], are equivalent. �

Definition 6. Let (X,L, λ) be a convergence closure space and D the double
convergence for X . Let D-limxmn = x.

If each cross-sequence in 〈xmn〉 L-converges to x, then we say that (〈xmn〉, x) is a
π-element of D, 〈xmn〉 is a π-sequence and x is a π-point.
If no cross-subsequence in 〈xmn〉 L-converges to x, then we say that (〈xmn〉, x) is

a �-element of D, 〈xmn〉 is a �-sequence and x is a �-point.
If in each double subsequence of 〈xmn〉 there is a cross-subsequence which L-

converges to x and a cross-subsequence no subsequence of which L-converges to x,
then we say that (〈xmn〉, x) is a σ-element of D, 〈xmn〉 is a σ-sequence and x is a
σ-point.

Let Dπ, D� and Dσ denote the set of all π-elements, �-elements and σ-elements,
respectively. We write π-lim xmn = x, �-limxmn = x and σ-limxmn = x instead of

(〈xmn〉, x) ∈ Dπ, (〈xmn〉, x) ∈ D� and (〈xmn〉, x) ∈ Dσ, respectively.

Definition 7. Let (X,L, λ) be a convergence space. Let limxmn = x. We say
that 〈xmn〉 is a sequence of the first (second) kind if there is a one-to-one (constant)
simple sequence 〈xm〉 of points of X such that L-limxm = x and L-limxmn = xm

for all m ∈ �. We say that 〈xmn〉 is of the third kind if no double subsequence of
〈xmn〉 is either of the first or of the second kind.

Next we present examples of Fréchet spaces with π-, �- and σ-points, respectively.

Clearly, to construct a maximal convergence on a set X we can proceed as follows:

(i) we start with a family Lg of so-called convergence generating elements

(〈xn〉, x), where each 〈xn〉 is a one-to-one simple sequence in X and x ∈ X ;
(ii) enlarge Lg to L by adding all elements of the form (〈x〉, x), x ∈ X , and
(〈xni〉, x), where 〈xni〉 is a subsequence of 〈xn〉;

(iii) if {{xn ; n ∈ �}; (〈xn〉, x) ∈ Lg} is an almost disjoint family of subsets of X
(each two sets have a finite intersection; abbr. a. d.), then L is a convergence
and L∗ is a maximal convergence on X .

Example 2. Let (Q,L, λ) be the usual convergence closure space of rational
numbers.

a) Put xmn = 2−m(1 + 2−n), m,n ∈ �. Then limxmn = 0 and 〈xmn〉 is a
one-to-one π-sequence of the first kind. Notice that 〈2−1 + 2−(n+1)〉∞n=1 is the first
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straight-sequence in 〈xmn〉 and the sequence 〈xmn〉 is a set of pairs ((1, 1), 0.75) <
((1, 2), 0.3625) < . . . increasing in (� × �) × �.
b) Put xmn = 21−m(2n − 1)−1, m,n ∈ �. Then limxmn = 0 and 〈xmn〉 is a

one-to-one π-sequence of the second kind.

c) Let 〈xmn〉 be a one-to-one double sequence of rational numbers such that
lim

n→∞
xmn = m−1√2, m ∈ �. Then 〈xmn〉 is a one-to-one π-sequence of the third

kind.
d) Put xmn = m−1, m,n ∈ �. Then lim xmn = 0 and 〈xmn〉 is a π-sequence of

the first kind. There is no one-to-one double subsequence of 〈xmn〉.

Example 3. Put X = {p} ∪ � × �. Define a convergence L∗ by means of
convergence generating elements Lg as follows:
Lg consists of all elements (〈(m,n)〉, p), m ∈ �. Then (X,L∗, λ) is a Fréchet space

and 〈(m,n)〉 is a one-to-one �-sequence of the second kind.

Following W. Sierpiński, define an order on the set �� of all functions of � into
� as follows: f ≺ g iff f(n) < g(n) for all but finitely many n ∈ �. It is known

that if {f ξ ; ξ < α < ω1} is a subset of �� , then there exists fα ∈ �� such that
f ξ ≺ fα for all ξ < α; further, under the continuum hypothesis there is a well-ordered

cofinal subset of �� (of the cardinality of continuum). Using this fact, we construct
a Fréchet space with a σ-point.

Let 〈xmn〉 be a one-to-one double sequence; define an order on the set of all its
cross-sequences: for f, g ∈ �� put 〈xmf(m)〉 ≺ 〈xmg(m)〉 iff f ≺ g (note: {xmf(m) ;

m ∈ �} and {xmg(m) ; m ∈ �} are almost disjoint sets).

Proposition 2. Under the continuum hypothesis there is a well-ordered family
F of cross-sequences in 〈xmn〉 such that if 〈xmini

j
〉 is a two-fold subsequence of 〈xmn〉,

then there are two different cross-sequences in F and their subsequences such that

each subsequence is a cross-sequence in 〈xmini
j
〉.

�����. Observe that the cardinality of the set of all infinite subsequences

of the sequence 〈x1n〉 is ℵ1. Let T denote the set of all two-fold subsequences of
〈xmn〉. Then |T | = ℵ1. Let Tξ, ξ < ω1, be the elements of T . We say that a cross-

sequence 〈xmf(m)〉 has the property p(Tξ) if there is a subsequence of it which is
also a cross-subsequence in the two-fold sequence Tξ. Suppose that we have already

chosen cross-sequences having the property p(Tξ) such that

(5) 〈xmg0(m)〉 ≺ 〈xmh0(m)〉 ≺ 〈xmg1(m)〉 ≺ . . . ≺ 〈xmgξ(m)〉 ≺ 〈xmhξ(m)〉,

ξ < α < ω1. We have to prove that there are functions gα and hα such that
〈xmhξ(m)〉 ≺ 〈xmgα(m)〉 ≺ 〈xmhα(m)〉, where both cross-subsequences 〈xmgα(m)〉 and
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〈xmhα(m)〉 have the property p(Tα). It is known (see above) that there are functions

g, h such that 〈xmhξ(m)〉 ≺ 〈xmg(m)〉 ≺ 〈xmh(m)〉, ξ < α. Let Tα = 〈xmini
j
〉 and

define functions gα, hα as follows. If m �= mi put gα(m) = g(m) and hα(m) = h(m).
Let m = mi. Notice that 〈ni

j〉 is an increasing sequence of positive integers. Choose
p < q among them such that h(mi) < p. Then put gα(mi) = p and hα(mi) = q.
Hence we have functions gα, hα and cross-sequences 〈xmgα(m)〉, 〈xmhα(m)〉 having
the property p(Tα) and such that (5) holds for each ξ � α.
We have just constructed, by transfinite induction, an almost disjoint family of

cross-sequences in 〈xmn〉 with properties p(Tξ), ξ < ω1. Denote F1 (F2) the family
of all cross-sequences 〈xmgξ(m)〉 (〈xmhξ(m)〉), ξ < ω1. Both families are a. d. and

F = F1 ∪ F2 is an a. d. family, too. �

Example 4. a) Let X be a set of points x = (1, 1) and xmn = (m(m +
1)−1, n(n + 1)−1), m,n ∈ �. Let L∗ be the convergence for X defined by the
following generating convergence elements: (〈xmgξ(m)〉, x), ξ < ω1. We get a Fréchet
space (X,L∗, λ). Then limxmn = x, by Definition 5. Let 〈xmhξ(m)〉 be a cross-
sequence of the system F2. No subsequence of it L-converges to x because F1 and
F2 are disjoint systems. Consequently, 〈xmn〉 is a one-to-one σ-sequence of the third
kind.
b) Let X be a set of points x = (1, 1), xmn = (m(m + 1)−1, n(n + 1)−1), m,n ∈

�. Let (〈xmhξ(m)〉, x), ξ < ω1 and (〈xmn〉n, x) m ∈ �, be generating convergence
elements. Then we get a Fréchet space (X,L∗, λ) and a σ-sequence 〈xmn〉 of the
second kind.
c) Let X be a set of points x = (1, 1), xm = (m(m + 1)−1, 1), xmn = (m(m +

1)−1, n(n+1)−1), m,n ∈ �. Consider the following generating convergence elements
(〈xm〉, x), (〈xmn〉n, xm), m ∈ �, and (〈xmgξ(m)〉, x), ξ < ω1. We get a Fréchet space
(X,L∗, λ). The point x = lim xmn is a σ-point and 〈xmn〉 a one-to-one σ-sequence
of the first kind.

Example 5. LetX consist of points x = (1, 1), xmn = (m(m+1)−1, n(n+1)−1),
m,n ∈ �. Denote y = (2−1, 2−1). Let 〈xmgξ(m)〉, x) and (〈xmhξ(m)〉, y) be generating
convergence elements. Let (X,L∗, λ) denote the resulting Fréchet space. Then,
according to Definition 5, D-limxmn = x and D-lim ymn = y. Hence, by Definition

6, both points x and y are σ-points. Let L(x) and L(y) be neighbourgoods of x and
y. Hence L(x)∩L(y) �= ∅, by Lemma 4. Therefore (X,L∗, λ) is not Hausdorff. Notice
that the double convergence D for X is multivalued even though L is single-valued.

Lemma 7. Let 〈yij〉 be a double subsequence of a π-sequence (�-sequence, σ-
sequence) of 〈xmn〉. Then 〈yij〉 is a π-sequence (�-sequence, σ-sequence).

�����. Follows directly from Definition 6. �
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Lemma 8. Let �-limxmn = x. Then there are k ∈ � and straight-subsequences

〈xini
j
〉i in 〈xmn〉 with L-limxini

j
= x for each i � k.

�����. Otherwise there would be a double subsequence 〈trs〉 of 〈xmn〉 such
that x /∈ λ{trs ; r, s ∈ �}. This is not possible because limxmn = x. �

Lemma 9. Let �-limxmn = x (σ-lim xmn = x). There is a one-to-one double

subsequence 〈zrs〉 of 〈xmn〉 such that �-lim zrs = x (σ-lim zrs = x).

�����. Suppose that there is no one-to-one double subsequence of 〈xmn〉. It
follows from Lemma 3 that there is a double subsequence 〈trs〉 of 〈xmn〉 with constant
straight-sequences 〈trs〉s = 〈tr1〉. Since lim trs = x it follows that there is a cross-
subsequence in 〈trs〉 L-converging to x. This is a contradiction in view of Lemma
7. Consequently, there is a one-to-one double subsequence 〈zrs〉 of 〈xmn〉. It is a
�-sequence (σ-sequence), by Lemma 7. �

The following Corollary can be easily proved by Lemmas 8 and 9.

Corollary 3. Let �-limxmn = x. There is a one-to-one double subsequence 〈yij〉
of 〈xmn〉 such that �-lim yij = x and L-lim yij = x, i ∈ �.

Theorem 2. Let (X,L, λ) be a convergence closure space. Let limxmn = x.

Then there is a π-subsequence or a �-subsequence or a σ-subsequence of the sequence

〈xmn〉.

�����. If there is a π-subsequence, the proof is finished. Let there be no

π-subsequence of 〈xmn〉. Then there is in each subsequence of 〈xmn〉 at least one
cross-subsequence which does not L-converge to the point x. With respect to 6. in
Section I we can suppose that no subsequence of it L-converges to x. Let 〈yij〉 be
any of these subsequences. If there is a �-subsequence of 〈yij〉 we have nothing to
prove. Hence suppose that there is no �-subsequence of 〈yij〉. It follows that there is
at least one cross-subsequence in each double subsequence of 〈yij〉 which L-converges
to the point x. Therefore 〈yij〉 is a σ-subsequence of 〈xmn〉, by Definition 6. �

Now, we use Theorem 2 to introduce a classification of points of convergence
closure spaces.

Definition 8. Let (X,L, λ) be a convergence closure space. Let X� denote

the set of all �-points of the space X and let X�′ = X − X�. Points of X�′ are
called non-�-points (or �′-points). Let Xσ denote the set of all σ-points of X and let

Xσ′ = X −Xσ. Points of the set Xσ′ are called non-σ-points (or σ′-points). Denote
X�σ = X� ∩Xσ, X�′σ = X�′ ∩Xσ, X�σ′ = X� ∩Xσ′ , X�′σ′ = X�′ ∩Xσ′ .
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Lemma 10. Let (X,L, λ) be a convergence closure space. Then X = X�σ ∪
X�′σ ∪X�σ′ ∪X�′σ′ , where the four components are mutually disjoint.

�����. Follows instantly from Definition 8. �

Now, we are going to give some Fréchet spaces to prove that �σ-, �′σ-, �σ′-,
�′σ′-points do exist.

Example 6. Let (X,L, λ) be a discrete Fréchet space. It is clear that X =
X�′σ′ .

Example 7. Let X be a set of points x, xmn, ymn, m,n ∈ �. Let (〈xmhξ(m)〉, x),
ξ < ω1, and (〈ymn〉n, x), m ∈ �, be generating convergence elements. Then we have

a Fréchet space (X,L∗, λ), a σ-sequence 〈xmn〉 and a �-sequence 〈ymn〉. Hence x is
a �σ-point.

Example 8. Let X consist of points x, xmn, m,n ∈ �. Let (〈xmn〉n, x), m ∈ �,

be the generating convergence elements. Then (X,L∗, λ) is a Fréchet space no point
of which is a σ-point.

Clearly, 〈xmn〉 is a one-to-one �-sequence, x a �-point and each xmn is an isolated

point. Contrariwise, suppose that x is a σ-point. There is a one-to-one σ-sequence
〈amn〉, x �= amn, with lim amn = x. Denote Ai = {ain ; n ∈ �}, Xi = {xin ; n ∈
�}, i ∈ �. Notice that x ∈ λAm iff there is p ∈ � such that Am ∩Xp is an infinite
set. Three cases are possible.

1. There is p ∈ � and a subsequence 〈mi〉 of 〈m〉 such that Ami ∩ Xp, i ∈ �,
are infinite sets. There are subsequences 〈ni

j〉j of 〈n〉 such that amini
j
∈ Xp. Since

�-limxpn = x, we have a subsequence 〈amini
j
〉 of 〈amn〉 which is a π-sequence. In

view of Lemma 7 we have a contradiction.

2. There is a subsequence 〈pi〉 and a subsequence 〈mi〉 of 〈m〉 such that Ami∩Xpi ,

i ∈ �, are infinite sets. Analogously as above, we deduce that there are subsequences
〈ni

j〉j , i ∈ �, of 〈n〉 such that amini
j
∈ Ami ∩Xpi . Since Xpi are disjoint sets it follows

that 〈amini
j
〉 is a �-subsequence of the σ-sequence 〈amn〉. This is a contradiction with

Lemma 7.

3. Am ∩Xn, m,n ∈ �, are finite sets. Then x /∈ λAm, m ∈ �. Since lim amn = x,
there is a one-to-one sequence of points ar ∈ {amn ; m,n ∈ �} which L-converges
to x. It follows that there are increasing sequences 〈ri〉, 〈ni〉 such that ari ∈ Xni . It
means that 〈ani〉 is a cross-subsequence in 〈xmn〉 and so it does not L-converge to
x. This is a contradiction, because L-lim ar = x.

A proof of the existence of �′σ-points is given in Section IV.

Now we are interested in a question what the weights at π-, �-, and σ-points in
convergence closure spaces are.
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Lemma 11. Let (X,L, λ) be a convergence closure space. Let x be a point,
w(x) = ℵ0 the weight at x and 〈xmn〉 a double sequence of points converging to x.
Then there is a (1, f)-subsequence of 〈xmn〉 which is a π-sequence.

�����. Denote L1(x) ⊂ L2(x) ⊂ . . . ⊂ Li(x) ⊂ . . . a complete system of
neighbourhoods of the point x. It follows from Lemma 4 that there is an increasing

sequence 〈ki〉 and functions f i : � → � such that xmn ∈ Li(x), m � ki, n � f i(m).
Put f(m) =

∑∑
f j(i), j � i, i � m. Then 〈xmf(m)+n〉 is the (1, f)-subsequence

of〈xmn〉. Suppose that there is a cross-subsequence in it no subsequence of which
L-converges to x. Denote it 〈xmig(mi)〉 and suppose x /∈ λ{xmig(mi) ; i ∈ �}. Then
L(x) = X−{xmig(mi) ; i ∈ �} is a neighbourgood of x. Notice that f(mi) < g(mi),,
i ∈ �. It follows that no Li(x) is a subset of L(x). This is a contradiction. Hence

〈xmf(m)+n〉 is a π-sequence. �

Lemma 12. Let (X,L, λ) be a convergence closure space. Let 〈xmn〉 be a �- or
σ-sequence D-converging to a point x. Then the weight w(x) � ℵ1.

�����. Otherwise, by Lemma 11, there would be a π-subsequence of 〈xmn〉,
which is imposible in view of Lemma 7. �

IV

In this section we apply the convergence of double sequences to products of Fréchet

spaces.

Let (X,u) be a topological space. Let Lu denote the collection of all pairs (〈xn〉, x)
such that x is a point, 〈xn〉 is a sequence and each neighbourhood of x contains xn

for all but finitely many n ∈ �. If (X,u) is Hausdorff, then Lu is a single-valued
convergence. It is known that Lu can be a single-valued convergence even if (X,u)
fails to be Hausdorff. In the sequel we shall always assume that Lu is single-valued.

Observe that Lu is maximal. The resulting convergence closure space (X,Lu, λu) is
called the adjoining convergence space. If u = λu, then also (X,u) is called a Fréchet

space (cf. 8. in Section 1).

Let (X,L1, λ1) and (Y,L2, λ2) be convergence closure spaces. Let L12 be the
collection of all pairs (〈(xn, yn)〉, (x, y)) such that x = L1-limxn and y = L2-lim yn.

It is known that L12 is a single-valued convergence on X × Y and if L1 and L2
are maximal, then L12 is maximal, too. Instead of (〈(xm, ym)〉, (x, y)) ∈ L12 we
write L12-lim(xm, ym) = (x, y) or, simply, lim(xm, ym) = (x, y). Let λ12 denote the
corresponding closure.
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Definition 9. The space (X × Y,L12, λ12) is called the convergence closure
product of (X,L1, λ1) and (Y,L2, λ2).

Now, let us turn to the relationship between the topological product and the
convergence closure product of two Fréchet spaces. Let (X,L1, λ1) and (Y,L2, λ2) be
Fréchet spaces. Let (X×Y,w) be their topological product and let (X×Y,L12, λ12)
be their convergence closure product.

Proposition 3. Lw = L12 and λw = λ12.

�����. The straightforward proof is omitted. �

Lemma 13. (X × Y,w) is a Fréchet space iff w = λ12.

�����. Obvious. �

Corollary 4. (X × Y,w) is not a Fréchet space iff either λ12 �= λ212 or λ12 =

λ212 �= w.

Definition 10. Let (X,L1, λ1) and (Y,L2, λ2) be Fréchet spaces. Let limxmn =
x in X and lim ymn = y in Y . We say that the points x, y are coupled by sequences

〈xmn〉, 〈ymn〉 if the following two implications are true:
1. If 〈xmif(mi)〉 is a cross-subsequence in 〈xmn〉 L1-converging to the point x,

then the corresponding cross-subsequence 〈ymif(mi)〉 in 〈ymn〉 does not L2-converge
to the point y;

2. If 〈ymig(mi)〉 is a cross-subsequence in 〈ymn〉 L2-converging to the point y, then
the corresponding cross-subsequence 〈xmig(mi)〉 in 〈xmn〉 does not L1-converge to
the point x.
Moreover, if one of the sequences 〈xmn〉, 〈ymn〉 is of the first kind and the other

of the first or second kind, we say that the points x, y are strongly coupled.

Example 9. Let X be the set of points x = (1, 1), xm = (m(m + 1)−1, 1),
xmn = (m(m+ 1)−1, n(n+ 1)−1), m,n ∈ �, and let (〈xm〉, x), (〈xmn〉n, xm), m ∈ �,

(〈xmgξ(m)〉, x), ξ < ω1, be the generating convergence elements (see Example 4). Let
Y be the space constructed in Example 4 c); let y and 〈ymn〉 be the corresponding
σ-point and σ-sequence. Then X and Y are Fréchet spaces, x and y are σ-points
coupled by sequences 〈xmn〉 of the first and 〈ymn〉 of the second kind.

Example 10. Let X be the set consisting of points x, xm, m ∈ �. Let (〈xm〉, x)
be the generating convergence element forX . Put xmn = xm,m,n ∈ �. Let Y be the
set consisting of points y, ymn, m,n ∈ �. Let (〈ymn〉n, y), m ∈ �, be the generating

convergence elements for Y . Then X and Y are Fréchet spaces, x is a π-point and y
is a �-point which are coupled by sequences 〈xmn〉 and 〈ymn〉.
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Lemma 14. Let (X × Y,w) be the topological product of two Fréchet spaces

(X,L1, λ1) and (Y,L2, λ2). Let x ∈ X , y ∈ Y be points coupled by sequences 〈xmn〉,
〈ymn〉. Let there be no �-subsequence either of 〈xmn〉 or of 〈ymn〉. Then 〈xmn〉 and
〈ymn〉 are σ-sequences.

�����. It follows from Definition 10 that there is no π-subsequence either of

〈xmn〉 or of 〈ymn〉. By Theorem 2, 〈xmn〉, 〈ymn〉 are σ-sequences. �

To avoid trivialities, in the sequel we assume that all Fréchet spaces are not dis-
crete.

Theorem 3. Let (X,L1, λ1) and (Y,L2, λ2) be Fréchet spaces. Then their
convergence closure product (X × Y,L12, λ12) is a Fréchet space iff there is no �-
point of X or of Y and there are no strongly coupled points.

�����. Suppose that there is a �-point x = limxmn in X . Since the Fréchet
space (Y,L2, λ2) is not isolated, there are a one-to-one sequence of points ym ∈ Y and
a point y = L2-lim ym. Put A = {(xmn, ym) ; m,n ∈ �}. Then L12-lim(xmn, ym) =
(x, ym) and so (x, y) ∈ λ212A. However, there is no sequence of points of A which

L12-converges to the point (x, y). Therefore λ12 �= λ212. We get the same result if we
suppose that there is a �-point in (Y,L2, λ2).
Let x ∈ X , y ∈ Y be points coupled by σ-sequences 〈xmn〉, 〈ymn〉 of the first

kind. Then there are a one-to-one sequence 〈xm〉 such that L1-limxm = x, L1-
limxnn = xm, m ∈ �, and a one-to-one sequence 〈ym〉 such that L2-lim ym = y

and L2-lim ymn = ym, m ∈ �. It follows that (x, y) ∈ λ212A \ λ12A, where A =
{(xmn, ymn) ; m,n ∈ �}. Hence λ12 �= λ212.
Let x ∈ X , y ∈ Y be points coupled by a σ-sequence 〈xmn〉 of the first kind and a

σ-sequence 〈ymn〉 of the second kind. Then there is a one-to-one sequence 〈xm〉 such
that L1-limxm = x and L1-limxmn = xm, m ∈ �. Since L2-lim ymn = y, m ∈ �,

for A = {(xmn, ymn) ; m,n ∈ �} we have (x, y) ∈ λ212A \ λ12A. Hence λ12 �= λ212.
Now, suppose that λ12 �= λ212. Then there are distinct points (x, y), (xm, ym),

(xmn, ymn), m,n ∈ �, of X × Y such that L12-lim(xm, ym) = (x, y), L12-
lim(xmn, ymn) = (xm, ym), m ∈ �, and such that no cross-subsequence in the

double sequence 〈(xmn, ymn)〉 L12-converges to the point (x, y). Since 〈(xm, ym)〉 is
one-to-one, there is an increasing sequence 〈mi〉 such that either
(a) 〈xmi〉, 〈ymi〉 are one-to-one sequences, or
(b) one of the sequences, say 〈xmi〉, is one-to-one, whereas 〈ymi〉 is constant.
Let (a) hold. For simplicity assume that 〈mi〉 = 〈m〉. If 〈xmini

j
〉 is a subsequence

of 〈xmn〉, then x ∈ λ1{xmi;ni
j
; i, j ∈ �}, because (X,λ1) is a topological space.

Therefore lim xmn = x, by Definition 5. Similarly, lim ymn = y. Hence x and y are
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points coupled by sequences 〈xmn〉 and 〈ymn〉 of the first kind. It is clear that there
is no �-subsequence either of 〈xmn〉 or of 〈ymn〉. Therefore x and y are σ-points.
Let (b) hold. Let 〈xm〉 be a one-to-one sequence and let 〈ym〉 be a constant

sequence. Analogously as in (a) above, limxmn = x and lim ymn = y. Notice that
there is no �-subsequence of 〈xmn〉, because 〈xmn〉 is a double sequence of the first
kind. If there is a �-subsequence of 〈ymn〉, the proof is finished. Let there be no
�-subsequence of 〈ymn〉. Then, in view of Lemma 14, x ∈ X and y ∈ Y are σ-points
which are coupled by the sequence 〈xmn〉 of the first kind and the sequence 〈ymn〉 of
the second kind. �

Proposition 4. Let (X,L1, λ1) be a first countable Fréchet space and let
(Y,L2, λ2) be a Fréchet space. Their convergence closure product (X × Y,L12, λ12)
is a Fréchet space iff there is no �-point in (Y,L2, λ2).

�����. According to Lemma 12, a weight at a �-point and at a σ-point is > ℵ0.
It follows that the space (X,L1, λ1) contains neither a �-point nor a σ-point. Now,
the assertion follows from Theorem 3. �

T. K. Boehme and M. Rosenfeld [BR74] proved (under 2ℵ0 = ℵ1) that a compact
Hausdorff Fréchet space X has the descending property. From this it follows that
X� = ∅. We offer another proof by means of the double convergence.

Proposition (Boehme, Rosenfeld). Let (X,L, λ) be a compact Hausdorff
Fréchet space. There is no �-point in the space X .

�����. Suppose that x = limxmn is a �-point in X . Let L be a compact

neighbourhood of the point x. According to Lemma 4 there is a cross-subsequence
〈tn〉 in 〈xmn〉 of points tn ∈ L such that L-lim tn = a �= x. Hence a ∈ L. From

this it follows that each neighbourhood of the point x contains a limit a �= x of a
cross-subsequence in 〈xmn〉. Since X is a Hausdorff Fréchet space and a �= x there

is a one-to-one sequence of limits 〈ai〉 L-converging to the point x and a one-to-one
double sequence 〈aij〉 whose straight-sequences are cross-subsequences in 〈xmn〉 and
L-lim aij = ai, i ∈ �. Let 〈aij〉j be the i-th straight-sequence in 〈aij〉. There is a
number g(i) ∈ �, such that no point aij , j � g(i) belongs to the set {xmn ; m �
i, n ∈ �}. Otherwise there would be a subsequence of 〈aij〉i converging to the point
x �= ai. We have proved that there is a (1, g) subsequence 〈trs〉 of 〈aij〉 such that each
intersection {trs ; r, s ∈ �} ∩ {xin ; n ∈ �} is a finite set for each i ∈ �. Hence no
cross-subsequence in 〈trs〉 L-converges to x. This is a contradiction because x ∈ λ2
{trs ; r, s ∈ �}, λ2 = λ and so there is a cross-subseequence in 〈trs〉 L-converging to
x. �
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Proposition 5. A convergence closure product (X × Y,L12, λ12) of compact
Hausdorff Fréchet spaces (X,L1, λ1) and (Y,L2, λ2) is a Fréchet space iff there are
no strongly coupled σ-points x ∈ X, y ∈ Y .

�����. The assertion follows instantly from Proposition (Boehme, Rosenfeld)
and Theorem 3. �

Lemma 15. The topological product (X × Y,w) of Fréchet spaces (X,L1, λ1)
and (Y,L2, λ2) is not Fréchet iff there are a set Z0 and a point (a, b) of X × Y such

that (a, b) ∈ wZ0 \ λ12Z0, Z0 ∩X × {b} = ∅ = Z0 ∩ {a} × Y .

�����. If (X × Y,w) is not Fréchet, then there is T ⊂ X × Y and (a, b) such

that (a, b) ∈ wT , (a, b) /∈ λ12T . Hence there is no sequence of points (a, yn) ∈ T or
(xn, b) ∈ T which L12-converges to (a, b). It suffices to put Z0 = T \ (X × b∪a×Y ).

�

Remark. If (a, b) ∈ wZ0 \λ12Z0 and U , resp. V , is a neighbourhood of the point
a, resp. b, then (a, b) ∈ wZ1 \ λ12Z1, where Z1 = Z0 ∩ (U × V ). This is true since

(a, b) ∈ wZ1 and (a, b) /∈ λ12Z1 because Z1 ⊂ Z0.

Definition 11. Let F1 denote the class of all Fréchet spaces (Y,L2, λ2) such that
the following implication holds: if (X,L1, λ1) is a Fréchet space and the convergence
closure product (X × Y,L12, λ12) is a Fréchet space, then the topological product
space (X × Y,w) is a Fréchet space, too.

Notice that if (Y,L2, λ2) ∈ F1 then there is at least one Fréchet space (X,L1, λ1)
such that (X × Y,w) is not Fréchet, viz. a Fréchet space containing a �-point.

Proposition 6. Each compact Hausdorff Fréchet space belongs to the class F1.

�����. Let (Y,L2, λ2) be a compact Hausdorff Fréchet space. Suppose that
there is a Fréchet space (X,L1, λ1) such that (X × Y,w) is not Fréchet. We have
to prove that (X × Y,L12, λ12) is not Fréchet. According to Lemma 15, there are a
subset Z0 and a point (a, b) of X ×Y with (a, b) ∈ wZ0 \λ12Z0, Z0 ∩X ×{b} = ∅ =
Z0 ∩ {a} × Y . Let A0, resp. B0, denote the projection of Z0 into X , resp. Y . Then

a ∈ λ1A0 and b ∈ λ2B0, because (a, b) ∈ wZ0.
Assume that V is a neighbourhood of the point b. Let V1 be a neighbourhood of b

such that λ2V1 ⊂ V . Denote Z1 = Z0 ∩X ×V1. Let A1 (resp. B1) be the projection
of Z1 into X (resp. Y ). Evidently, a ∈ λ1A1 \A1, b ∈ λ2B1 \B1. Let 〈xn〉 be a one-
to-one sequence of points of A1 L1-converging to the point a and 〈yn〉 a sequence of
points of B1 such that (xn, yn) ∈ Z1. Such sequences do exist, because (a, b) ∈ wZ1.
Since (Y,L2, λ2) is a Fréchet space and λ2V1 a compact set, there is a subsequence

223



〈ymi〉 of 〈ym〉 L2-converging to a point t of λ2V1. Consequently, L12-lim(xmi , ymi) =

(a, t). The point t will be called a special point and the sequence 〈(xmi , ymi)〉 a
corresponding special sequence. We have proved that each neighbourhood of the
point b contains a special point t �= b (because (a, b) /∈ λ12Z0). It follows that there is
a one-to-one sequence of special points tm with L2-lim tm = b. Denote 〈(xmn, ymn)〉n
a special sequence corresponding to tm, m ∈ �. If 〈ymini

j
〉 is a subsequence of the

sequence 〈ymn〉 then b ∈ λ2{ymini
j
; i, j ∈ �}, because (Y, λ2) is a Fréchet space.

Hence lim ymn = b, by Definition 5. Notice that L1-limxmn = a, m ∈ �, and so

limxmn = a. From this we deduce, becuase (a, b) /∈ λ12Z0, that the points a, b are
coupled by the sequence 〈xmn〉 of the second and the sequence 〈ymn〉 of the first kind.
According to Theorem 2, there is a π- or �- or σ-subsequence of the sequence 〈ymn〉.
In the first case, the corresponding subsequence of 〈xmn〉 is a π-sequence, because
(a, b) are coupled points. Hence a is a �-point. The point b cannot be a �-point
because (Y,L2, λ2) is a compact Hausdorff Fréchet space. If there is a σ-subsequence
〈ymini

j
〉 of 〈ymn〉 then 〈xmini

j
〉 is a σ-sequence and a, b are strongly coupled points.

All this contradicts Theorem 3. Thus (X × Y,L12, λ12) is not Fréchet.

Proposition 7. Each first countable Fréchet space belongs to the class F1.

�����. Let (Y,L2, λ2) be a first countable Fréchet space. It contains a non-
isolated point. Suppose that (X,L1, λ1) is a Fréchet space and (X × Y,w) is not

Fréchet. Then there is a point (a, b) and a set Z0 ⊂ X × Y such that (a, b) ∈
wZ0 \λ12Z0. Let V1 ⊃ V2 ⊃ . . . ⊃ Vm ⊃ . . . be an infinite countable complete system

of neighbourhoods of the point b. Denote Zm = Z0 ∩ (X × Vm) and Am, resp. Bm,
the projection of Zm into X , resp. Y . There is a simple one-to-one sequence of points

xmn ∈ Am with L1-limxmn = a. Let 〈ymn〉n be a sequence of points of Bm such
that (xmn, ymn) ∈ Zm, n ∈ �. Consider the double sequences 〈xmn〉, 〈ymn〉. It is
clear that limxmn = a (because L1-limxmn = a, m ∈ �). Let V be a neighbourhood
of the point b. There is k ∈ � such that Vk ⊂ V . Notice that Vk ⊃ Vk+1 ⊃ . . . and
ymn ∈ Vm, n ∈ �. From this it follows that ymn ∈ Vk ⊂ V , m � k, n � 1. Hence
lim ymn = b, by Lemma 4. It also follows that if 〈ymf(m)〉 is a cross-sequence in
〈ymn〉, then ymf(m) ∈ Vk ⊂ V , m � k. Consequently L2-lim ymf(m) = b. We have

proved that 〈ymn〉 is a π-sequence. The point a is a �-point, because (a, b) /∈ λ12Z1.
This is a contradiction with Definition 11 and Theorem 3. Hence (Y,L2, λ2) ∈ F1.

�

Proposition 8. Let (X,L1, λ1), (Y,L2, λ2) be Fréchet spaces. Let (Y,L2, λ2) ∈
F1. The topological product (X × Y,w) is not a Fréchet space iff there is a �-point
in X or in Y , or there are strongly coupled σ-points x ∈ X , y ∈ Y .
�����. The assertion follows straightforwardly from Theorem 3. �
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The next three propositions below follow instantly from Theorem 3 and Proposi-

tions 6, 7, 8.

Proposition 9. The topological product (X×Y,w) of a Hausdorff Fréchet space
(X,L1, λ1) and a locally compact Hausdorff Fréchet space (Y,L2, λ2) is not Fréchet
iff there is a �-point in X , or there are strongly coupled σ-points x ∈ X , y ∈ Y .

Proposition 10. The topological product of two compact Hausdorff Fréchet

spaces (X,L1, λ1) and (Y,L2, λ2) is not Fréchet iff there are strongly coupled σ-
points x ∈ X and y ∈ Y .

Ch. T. Kendrick ([KC75]) gave a necessary and sufficient condition for the topo-
logical product of a Fréchet space and a first countable Fréchet space not to be

Fréchet. We obtain the same result by means of the double convergence.

Proposition (Kendrick). The topological product (X × Y,w) of a Fréchet

space (X,L1, λ1) and a first countable non-isolated Fréchet space (Y,L2, λ2) is not
Fréchet iff there is a �-point x ∈ X .

E. Michael ([MI72]) posed a question whether the topological productX×Y of two
compact Hausdorff Fréchet spaces X and Y is Fréchet. Under the assumption that
2ℵ0 = ℵ1, T. K. Boehme and M. Rosenfeld answered this question by constructing
two compact Hausdorff Fréchet spaces Xe and Y0 whose topological product is not
Fréchet ([BR74]). According to Proposition 10, there are strongly coupled �′σ-points

x ∈ Xe and y ∈ Y0. P. Simon ([SI80]) improved the result of Boehme and Rosenfeld
and constructed compact Hausdorff Fréchet spaces X and Y such that their topo-

logical product is not Fréchet without any additional set-theoretical axioms. This
proves the following

Proposition 11. There exists a �′σ-point.

Next we show that there are Fréchet spaces whose convergence closure product is

Fréchet, but the topological product is not.

Definition 12. Define the class F2 as follows: A Fréchet space (Y,L2, λ2)
belongs to F2 iff there exists a Fréchet space (X,L1, λ1) such that the convergence
closure product (X × Y,L12, λ12) is a Fréchet space, but the topological product
(X × Y,w) is not Fréchet.

Proposition 12. The class F2 is nonempty.

�����. Let (X,L1, λ1) and (Y,L2, λ2) be compact Hausdorff Fréchet spaces.
According to the proof of Proposition 6, there is a point a = limxmn in X and
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a point b = lim ymn in Y which are coupled by sequences 〈xmn〉, 〈ymn〉. Since X
and Y are compact, neccessarily X� = ∅ = Y�. Consequently, the points a, b are
�′σ-points, 〈xmn〉 is a σ-sequence of the second kind and 〈ymn〉 is a σ-sequence of
the first kind. Let X ′ consist of points a and xmn, m,n ∈ �, and let Y ′ consist

of points b, ymn, m,n ∈ �. Let (X ′,L′1, λ′1) and (Y ′,L′2, λ′2) be the corresponding
subspaces. Then X ′

� = ∅ = Y ′� , by Proposition (Boehme, Rosenfeld). We can

suppose that ymn are isolated points (compact Hausdorff Fréchet spaces with this
property exists, see for example [BR74]). It follows that 〈ymn〉 is a σ-sequence of
the third kind in Y ′. Consequently, in view of Theorem 3, the convergence closure
product (X ′ × Y ′,L′12, λ′12) is a Fréchet space. On the other hand, (a, b) ∈ wD and
(a, b) /∈ λ12D, where D is a set of all points (xmn, ymn), m,n ∈ �. Therefore the
topological product (X ′×Y ′, w′) is not Fréchet. Hence both spaces (X ′,L′1, λ′1) and
(Y ′,L′2, λ′2) belong to the class F2. �

Remark. Let F be a class of nondiscrete Fréchet spaces. Let a space X belong
to F . Then it belongs either to F1 or to F2. Hence F = F1 ∪ F2. Let X and Y
be Fréchet spaces of F . If at least one of them belongs to F1 the question what are

the necessary and sufficient conditions such that their topological product is Fréchet
has been answered in Proposition 8. If both the spaces belong to F2 the question

remains open.
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