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Czechoslovak Mathematical Journal, 48 (123) (1998), 243–252

THE A r-FREE PRODUCTS OF ARCHIMEDEAN l-GROUPS

Dao-Rong Ton, Nanjing

(Received July 10, 1995)

Abstract. The objective of this paper is to give two descriptions of the A r-free prod-
ucts of archimedean �-groups and to establish some properties for the A r-free products.
Specifically, it is proved that A r-free products satisfy the weak subalgebra property.

1. Introduction

We use the standard terminology and notation of [1, 3, 4]. All groups in this paper
are abelian. The group operation of an l-group is written by additive notation. We

use � and � for the natural numbers and the integers, respectively. The symbol ⊕
refers to the group theoretic direct sum while � denotes the cardinal sum of l-groups.
A po-group is a partially ordered group [G, P ] where P = {x ∈ G | x � 0} is the

positive semigroup of G. A totally ordered group is called an 0-group. Let G and

H be two po-groups. A map ϕ from G into H is called a po-group homomorphism,
if ϕ is a group homomorphism and x � y implies ϕ(x) � ϕ(y) for any x, y ∈ G.

A po-group homomorphism ϕ is called a po-group isomorphism if ϕ is an injection
and ϕ−1 is also a po-group homomorphism from ϕ(G) to G.

Let U be a class of l-groups and {Gλ | λ ∈ Λ} ⊆ U . The U -free product of
Gλ is an l-group G ∈ U , denoted by U

⊔
λ∈Λ

Gλ, together with a family of injective

l-homomorphisms αλ : Gλ → G (call coprojections) such that

1.
⋃

λ∈Λ
αλ(Gλ) generates G as an l-group;

2. if H ∈ U and {βλ : Gλ → H | λ ∈ Λ} is a family of l-homomorphisms, then

there exists a (necessarily) unique l-homomorphism γ : G → H satisfying βλ = γαλ

for all λ ∈ λ.

We often identify each free factor Gλ with its image αλ(Gλ) in U
⊔

λ∈Λ
Gλ and thus

view each Gλ as an l-subgroup of U
⊔

λ∈ΛGλ. By the Sikorski existence theorem [6],
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U -free products always exist if U is a class of l-groups closed under l-subgroups

and direct products. Consequently, if U is a variety of l-groups, U -free products
always exist. Let L , R and A be the varieties of all l-groups, representable l-groups
and abelian l-groups, respectively. In [10–13] Powell and Tsinakis have given several

descriptions and some properties for free products in the varieties L , R and A .

Let A r be the class of all archimedean l-groups. Clearly, A r is closed under taking

l-subgroups and direct products. Hence A r-free products always exist. In this paper
we will give two descriptions of the A r-free products of archimedean l-groups and

discuss some of their properties.

2. Descriptions for A r-free products

First of all we consider A r-free products of archimedean 0-groups (which, by
Hölder’s Theorem, are subgroups of the additive reals).

We recall some definitions. Let U be a class of l-groups and [G, P ] a po-group.
The U -free extension of G is an l-group FU (G) ∈ U for which there exists an

injective po-group homomorphism α : G → FU (G) such that
1. α(G) generates FU (G) as an l-group;

2. if H ∈ U and β : G → H is a po-group homomorphism, then there exists an
l-homomorphism γ : FU (G)→ H satisfying γα = β.

The U -free extension FU (G) of a po-group [G, P ] is called the U -free l-group
generated by [G, P ], denoted byFU

(
[G, P ]

)
, if the mapping α in the above definition

is a po-group isomorphism between G and α(G). By Grätzer existence theorem on
a free algebra generated by a partial algebra (Theorem 28.2 of [5]) we have.

Lemma 2.1. There exists an A r-free l-group FA r

(
[G, P ]

)
generated by a po-

group [G, P ] if and only if [G, P ] is a po-group isomorphic to a po-subgroup of an

archimedean l-group.

Let {Rλ | λ ∈ Λ} be a family of archimedean 0-groups. H = ⊕λ∈ΛRλ is the abelian

group free product of this family. Let H+ be the set of all sums of conjugates in H

of
⋃

λ∈Λ
R+λ . Then [H, H+] = �

λ∈Λ
Rλ and �

λ∈Λ
Rλ ∈ A r. By Theorem 11.2.4 of [5] and

the above Lemma 2.1 we see that

(1) A r
⊔

λ∈Λ
Rλ

∼= FA r

(
�

λ∈Λ
Rλ

)
.

We now consider the description for A r-free products of arbitrary archimedean
l-groups. Let {Gλ | λ ∈ Λ} be a family of archimedean l-groups. Then the A -

free product G =A
⊔

λ∈Λ
Gλ exists with the coprojections αλ, and we have several
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descriptions for G. Let H = ⊕λ∈ΛGλ be the abelian group free product of Gλ. By

the proof of Theorem 2.4 of [11] there exists a group isomorphism α : H → α(H) ⊆
A

⊔
λ∈Λ

Gλ such that the restriction of α onto each individual Gλ is αλ. Gλ(λ ∈ Λ) can
be naturally embedded into the cardinal sum �

λ∈Λ
Gλ as l-groups with the embedding

δλ : Gλ → �
λ∈Λ

Gλ. Hence there exists a group homomorphism δ : H → �
λ∈Λ

Gλ which

extends δλ(λ ∈ Λ), and there exists an l-homomorphism γ : G → �
λ∈Λ

Gλ such that

γαλ = δλ(λ ∈ Λ). We declare two A r-surjections βi : G → Fi(i = 1, 2) to be

equivalent if there exists an l-isomorphism γ : F1 → F2 such that γβ1 = β2. Let

D = {γi : G → Fi | i ∈ I}

be the set of representatives of equivalence classes of Ar-surjections out of G. Thus,
γ ∈ D andD is not empty. For each λ ∈ Λ and each i ∈ I, γiαλ is an l-homomorphism

of Gλ into Fi. The direct product
∏
i∈I

Fi is an archimedean l-group. For each λ ∈ Λ,
let πλ be the natural l-homomorphism ofGλ onto the l-subgroupG′

λ of
∏
i∈I

Fi. That is,

πλ(gλ) =
(
. . . , γiαλ(gλ), . . .

)

for gλ ∈ Gλ. Let H be the subgroup of
∏
i∈I

Fi generated by
⋃

λ∈Λ
G′

λ. Let π be the

group homomorphism of H onto H ′ which extends each πλ (λ ∈ Λ).

�
λ∈Λ

Gλ
A

⊔
λ∈Λ

Gλ

f

����
��

��
��

��
��

��

γ��

Gλ

δλ

����������������

αλ

��������������������������

� �

����
��

��
��

�
L

H

δ

��

π ��

α

����������������������������������������

β

		��������������������������

��

H ′ ⊆

β′


���������
F

β∗

��

� � ��
∏

λ∈I

Fi

γi

That is,

π(h) =
(
. . . , γiα(h), . . .

)

for h ∈ H. Because γ ∈ D and each δλ(λ ∈ Λ) is an l-isomorphism, π is a group
isomorphism of H onto H ′ and πλ is an l-isomorphism for λ ∈ Λ. Let F be the
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sublattice of
∏
i∈I

Fi generated by H ′. For each h ∈ H , let h′ = π(h). Since
∏
i∈I

Fi is

a distributive lattice,

F

{ ∨

j∈J

∧

k∈K

h′jk | hjk ∈ H, J and K finite

}
.

Thus we have the following result.

Proposition 2.2. Suppose that {Gλ | λ ∈ Λ} is a family of archimedean l-groups.

Then the A r-free product A r
⊔

λ∈Λ
Gλ is the sublattice F of the direct product

∏
i∈I

Fi

generated by the group isomorphic image H ′ of the abelian group free product H of

Gλ, where D =
{
γi : G → Fi | i ∈ I

}
is the set of representatives of the equivalence

classes of all A r-surjections out of A
⊔

λ∈Λ
Gλ.

�����. Suppose that L ∈ A r and that {βλ : Gλ → L | λ ∈ Λ} is a family
of l-homomorphisms. We shall show that there exists a unique l-homomorphism

β∗ : F → L such that β∗πλ = βλ for each λ ∈ Λ. By the universal property of the
group free product, there exists a group homomorphism β : H → L which extends

each βλ(λ ∈ Λ). For any h′ = π(h) ∈ H ′, put

β′(h′) = β(h).

Then β′ is a group homomorphism of H into L. By the universal property of the A -
free product, there exists a unique l-homomorphism f : G → L such that βλ = fαλ

for each λ ∈ Λ. Then fα = β′π = β. By Lemma 11.3.1 of [4] we need only to show
that for each finite subset {hjk | j ∈ J, k ∈ K} ⊆ H ,

∨
j∈J

∧
k∈K

β′π(hjk) �= 0 implies
∨

j∈J

∧
k∈K

π(hjk) �= 0. In fact,
∨

j∈J

∧
k∈K

fα(hjk) �= 0. Because f ∈ D,
∨

j∈J

∧
k∈K

γiα(hjk) �=
0 for some i ∈ I. So

∨

j∈J

∧

k∈K

π(hjk) =
∨

j∈J

∧

k∈K

(
. . . , γiα(hjk), . . .

)
=

(
. . . ,

∨

j∈J

∧

k∈K

γiα(Hjk), . . .
)
�= 0.

Therefore β′ can be uniquely extended to an l-homomorphism β∗ : F → L. �

Below we will give another description for A r-free products. Given G ∈ A r, an

l-ideal K of G will be called an archimedean kernel if G/K ∈ A r. Let AK(G) be the
set of all archimedean kernels of G. For any 0 �= g ∈ G, there exists an archimedean

kernel Kg of G such that g∈Kg. Kg is called an AK excluding g. For example, 0 is
always an AK excluding g �= 0, because G ∈ A r.

246



Let {Gλ | λ ∈ Λ} be family of l-groups in A r. Let

Γ =
⋃

λ∈Λ
AK(Gλ)

and consider the set ∆ of all choice functions δ : Λ → Γ. For each δ ∈ ∆ and each
λ ∈ L , let Kδ(λ) ∈ AK(Gλ). Then �

λ∈Λ

(
Gλ/Kδ(λ)

)
∈ A r. �

λ∈Λ

(
Gλ/Kδ(λ)

)
can be

also naturally viewed as a po-group. By Lemma 2.1 there exists an A r-free l-group

Fδ = FA r

(
�

λ∈Λ
(Gλ/Kδ(λ))

)
generated by the po-group �

λ∈Λ

(
Gλ/Kδ(λ)

)
for each

δ ∈ ∆. Then
∏
i∈I

Fδ is an archimedean l-group. We denote by �δ the projection of
∏
i∈I

Fδ onto Fδ for each δ ∈ ∆. For each λ ∈ Λ, let πλ be the l-homomorphism of

Gλ onto the l-subgroup G′
λ of

∏
i∈I

Fδ satisfying �δπλ(gλ) = gλ +Kδ(λ) for gλ ∈ Gλ.

πλ is an l-isomorphism for each λ ∈ Λ. In fact, for 0 �= gλ we take Kδ(λ) = Kgλ
,

an AK excluding gλ. Then gλ + Kgλ
�= Kgλ

, and so �δπλ(gλ) �= 0. Let H ′ be the
subgroup of

∏
i∈I

Fδ generated by
⋃

λ∈Λ
Gλ and let π be the group homomorphism of

H = ⊕λ∈ΛGλ onto H ′ which extends each πλ(λ ∈ Λ). It is easy to see that π is
a group isomorphism. Then we have the following description of A r-free products.

Theorem 2.3. Suppose that {Gλ | λ ∈ Λ} is a family of archimedean l-groups.

Then the A r-free product A r
⊔

λ∈Λ
Gλ is the sublattice F of the direct product

∏
δ∈∆

Fδ

generated by the group isomorphic image H ′ of the group free product H of Gλ.

�����. We show the universal property. Suppose that L ∈ A r and that
{βλ : Gλ → L | λ ∈ Λ} is a family of l-homomorphisms. We shall show that there

exists a unique l-homomorphism β∗ : F → L such that β∗πλ = βλ. Clearly, there
exists a group homomorphism β : H → L which extends each

Fδ0

f �� L

Gλ

αλ

����������

��															

��















H

α

��

β

����������������������������� π �� H ′ ⊆

β′

������������������
F

β∗

��

� � ��
∏

δ∈∆
Fδ

βλ(λ ⊂ Λ). For any h′ = π(h) ∈ H ′(h ∈ H), put

β′(h′) = β(h).
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By Lemma 11.3.1 of [4] we need only to show that for each finite subset {hjk | j ∈
J, k ∈ K} ⊆ H ,

∨
j∈J

∧
k∈K

β′π(hjk) �= 0 implies
∨

j∈J

∧
k∈K

π(hjk) �= 0. For each λ ∈ Λ,

put Kδ0(λ) = β−1λ (0) and Fδ0 = FA r

(
�

λ∈Λ
(Gλ/Kδ0(λ))

)
. Let ϕλ be the natural l-

homomorphism of Gλ onto Gλ/Kδ0(λ), let ηλ be the l-isomorphism of Gλ/Kδ0(λ) into

L such that ηλϕλ = βλ, let Ψλ be the embedding of Gλ/Kδ0(λ) into �
λ∈Λ
(Gλ/Kδ0(λ)),

let γ be the group homomorphism of �
λ∈Λ
(Gλ/Kδ0(λ)) into L such that γΨλ = ηλ

(γ is also a po-group homomorphism), and let ξλ be the po-group isomorphism of
�

λ∈Λ
(Gλ/Kδ0(λ)) into Fδ0 . Then there exists an l-homomorphism f of Fδ0 into L such

that fξλ = γ. Let αλ = ξλΨλϕλ. Then

βλ = ηλϕλ = γΨλϕλ = fξλΨλϕλ = fαλ

and �δ0πλ = αλ for each λ ∈ Λ. Let α be the unique group homomorphism

H
β �� L

Gλ

��

��

βλ

		�������������������������������������������� ϕλ���� ��αλ

��
Gλ/Kδ0(λ)

ηλ

��
Ψλ� � �� �

λ∈Λ

(
Gλ/Kδ0(λ)

)

δ

��
















ξλ� � �� Fδ0

f

��

of H into Fδ0 which extends each αλ(λ ∈ Λ). It follows that

β′π = β = fα and �δ0π = α.

Thus,
∨

j∈J

∧
k∈K

fα(hjk) �= 0. That is, f
( ∨

j∈J

∧
k∈K

α(hjk)
)
�= 0. Hence ∨

j∈J

∧
k∈K

α(hjk) �=
0. So

∨

j∈J

∧

k∈K

π(hjk) =
∨

j∈J

∧

k∈K

(
. . . , �δ0π(hjk), . . .

)
=

(
. . . ,

∨

j∈J

∧

k∈K

�δ0π(hjk), . . .

)

=

(
. . . ,

∨

j∈J

∧

k∈K

α(hjk), . . .

)
�= 0.

Therefore β′ can be uniquely extended to an l-homomorphism β∗ : F → L. �
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3. The relation between A -free products and A r-free products

Let {Gλ | λ ∈ Λ} be a family of archimedean l-groups. By universal proper-

ties there exists an l-homomorphism ϕ of A
⊔

λ∈Λ
Gλ onto A r

⊔
λ∈Λ

Gλ. If A
⊔

λ∈Λ
Gλ is

archimedean, then A
⊔

λ∈Λ
Gλ

∼= A r
⊔

λ∈Λ
Gλ. Now we consider the A r-free product of

two archimedean 0-groups R1 and R2. By Corollary 1.9.1 [7] and the above formula
(1) we have

R1
A �R2 ∼= FA (R1 � R2),

R1
A r �R2 ∼= FA r(R1 � R2),

where FA (R1�R2) and FA r(R1�R2) are respectively the A -free l-group and the
A r-free l-group generated by R1 � R2. So the problem is reduced to the following

under what condition the A -free l-groupFA

(
[G, P ]

)
generated by a po-group [G, P ]

is archimedean. In [2] S.J. Bernau established a necessary and sufficient condition

under which the A -free l-group generated by a po-group is archimedean. However,
his proof contains an error. Namely, [G, P ] is a po-group and need not be a partially

ordered vector space (see [14] for derails). The correct result is given in the following
theorem. First we introduce some concepts.

Let [G, P ] be a po-group and S a nonempty subset of G. S is said to be posi-
tively independent if for any finite subset {x1, . . . , xk} of S and non-negative integers
{λ1, . . . , λk},

k∑
i=1

λixi ∈ −P only if λi = 0 (i = 1, . . . , k). A po-group [G, P ] is said

to be strongly uniformly archimedean if, given u ∈ G and a positively independent

subset {v1, . . . , vk} of G, there exists n ∈ � such that if λ1, . . . , λk are non-negative

integers and
k∑

i=1
λi � mn with m ∈ �, then

k∑
i=1

λivi �� mu. It is well known that if

a po-group [G, P ] is semi-closed, then the A -free l-group FA

(
[G, P ]

)
generated by

[G, P ] exists (cf. [16]).

Theorem 3.1. The A -free l-group FA

(
[G, P ]

)
generated by a semi-closed po-

group [G, P ] is archimedean if and only if [G, P ] is strongly uniformly archimedean.

The proof of this theorem is similar to that of Theorem 4.3 of [2].
Now let R1 and R2 be two archimedean 0-groups. We call two nonzero elements

(a, b) and (c, d) in R1×R2 separated if (a, b)+ ν(c, d) = 0 for a positive real number
ν. It is clear that R1 � R2 is semi-closed. So Theorem 2.6 of [8] and Theorem 3.1

yield.

Theorem 3.2. The following are equivalent:
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1. R1
A �R2 is archimedean,

2. R1 � R2 is strongly uniformly archimedean,

3. R1 � R2 has no separated, positively independent pairs,

4. R1
A �R2 ∼= R1

A r �R2.

4. The weak subalgebra property

Let U be a class of l-groups closed under l-subgroups and direct products. U -free

products are said to have the subalgebra property if for any family {Gλ | λ ∈ Λ}
in U with l-subgroups Hλ ⊆ Gλ, U

⊔
λ∈Λ

Hλ is simply the l-subgroup of U
⊔

λ∈Λ
Gλ

generated by
⋃

λ∈Λ
Hλ. It is well known that A -free products satisfy the subalgebra

property [11]. U -free products are said to have the weak subalgebra property if,
whenever {Gλ | λ ∈ Λ} is a family of l-groups in U with l-subgroups Hλ ⊆ Gλ and

any family of l-homomorphisms σλ : Hλ → L ∈ U can be extended to a family of
l-homomorphisms σ′λ : Gλ → L′ ∈ U and there exists a U -injection δ : L → L′ such

that σ′λ
∣∣
Hλ
= δσλ, then U

⊔
λ∈Λ

Hλ is the l-subgroup of U
⊔

λ∈Λ
Gλ generated by

⋃
λ∈Λ

Hλ.

Theorem 4.1. A r-free products satisfy the weak subalgebra property.

�����. Suppose that {Gλ | λ ∈ Λ} is a family of l-groups in A r with l-
subgroups Hλ ⊆ Gλ, any family of l-homomorphisms σλ : Hλ → L ∈ A r can be

extended to a family of l-homomorphisms σ′λ : Gλ → L′ ∈ A r and there exists an
A r-injection δ : L → L′ such that σ′λ

∣∣
Hλ
= δσλ. We see that H =A

⊔
λ∈Λ

Hλ is the

l-subgroup of G =A
⊔

λ∈Λ
Gλ generated by

⋃
λ∈Λ

Hλ.

(1) First we show that any l-homomorphism γ : H → L ∈ A r can be extended to
an l-homomorphism γ′ : G → L′ ∈ A r and there exists an A r-injection δ : L → L′

such that γ′
∣∣
H
= δγ. In fact, any l-homomorphism σλ : Hλ → L ∈ A r induces

a family of l-homomorphisms σλ : Hλ → L ∈ A r such that γαλ = σλ for each λ ∈ Λ
where αλ is the inclusion map. Then σλ can

Hλ
� � ��

σλ

��
��

��
��

αλ

��

Gλ

α′
λ

��

σ′
λ

��
��

��
��

L

γ
��

��
��

��
� � δ �� L′

γ′ ��
��

��
��

H
� � �� G
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be extended to a family of l-homomorphisms σ′λ : Gλ → L′ ∈ A r and there exists

an A r-injection δ : L → L′ such that σ′λ
∣∣
Hλ
= δσλ. By the universal property there

exists an l-homomorphism γ′ : G → L′ such that γ′α′λ = σ′λ for each λ ∈ Λ where
α′λ is the inclusion map. Hence

δσλ = σ′λ
∣∣
Hλ
= (γ′α′λ)

∣∣
Hλ
= γ′

∣∣
Hλ

for each λ ∈ Λ. By virtue of the uniqueness, γ′
∣∣
Hλ
= δγ.

(2) Now we show that A r
⊔

λ∈Λ
Hλ is the l-subgroup of A r

⊔
λ∈Λ

Gλ generated by
⋃

λ∈Λ
Hλ. Let G0 = ⊕λ∈ΛGλ, H0 = ⊕λ∈ΛHλ. Then G0 and H0 are subgroups of

G and H , respectively, and H0 is a subgroup of G0, H is an l-subgroup

∏
i∈I

Ei � � ��
∏
i∈I

Fi

A r
⊔

λ∈Λ
Hλ

� 	

�������
A r

⊔
λ∈Λ

Gλ

�����

H ′
0

� 	

�������

G′
0


 �

�������

H0

π � �

������
� �

G0
π′

��






H

��

� � �� G

��

of G. Let

D =
{
γ′i : G → Fi | i → I

}

be the set of representatives of equivalence classes of A r-surjections out of G. For

each i ∈ I, γ′i
∣∣
H
is an A r-surjection out of H. Conversely, for an arbitrary A r-

surjection γ : H → E there exists by paragraph (1) an i ∈ I and an A r-injection

δ : E → Fi such that δγ = γ′i
∣∣
H

. Hence the set

C =
{
γ′i

∣∣
H
: H → Ei � Fi | i ∈ I

}

contains at least one element of each equivalence class of A r-surjections out of H.

But many different γ′s may give rise to the same γ. If C contains more than one

representative of some of the classes then the result of the construction is still the
A r-coproduct. So redundancy in C does not harm the result. By Proposition 2.2 we

see that the A r-free product A r
⊔

λ∈Λ
Gλ is the sublattice of the direct product

∏
i∈I

Fi

251



generated by the group isomorphic image G′
0 of G0 with the group isomorphism

π′, and the A r-free product A r
⊔

λ∈Λ
Hλ is the sublattice of the direct product

∏
i∈I

Ei

generated by the group isomorphic image H ′
0 of H0 with the group isomorphism

π. π′
∣∣
Gλ
and π

∣∣
Hλ
are all l-isomorphisms for each λ ∈ Λ. Hence A r

⊔
λ∈Λ

Gλ is the

l-subgroup of
∏
i∈I

Fi generated by
⋃

λ∈Λ
Gλ where G′

λ = π′(Gλ) ∼= Gλ and A r
⊔

λ∈Λ
Hλ

is the l-subgroup of
∏
i∈I

Ei generated by
⋃

λ∈Λ
H ′

λ where H ′
λ = π(Hλ) ∼= Hλ. From

the above we see that
∏
i∈I

Ei is an l-subgroup of
∏
i∈I

Fi and π′
∣∣
H0
= π. Therefore

A r
⊔

λ∈Λ
Hλ is the l-subgroup of

∏
i∈I

Fi generated by
⋃

λ∈Λ
H ′

λ, and so
A r

⊔
λ∈Λ

Hλ is also

the l-subgroup of A r
⊔

λ∈Λ
Gλ generated by

⋃
λ∈Λ

H ′
λ. �
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