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THE &/r-FREE PRODUCTS OF ARCHIMEDEAN [-GROUPS

Dao-RoNG ToN, Nanjing

(Received July 10, 1995)

Abstract. The objective of this paper is to give two descriptions of the «7r-free prod-
ucts of archimedean ¢-groups and to establish some properties for the .o/r-free products.
Specifically, it is proved that o7/r-free products satisfy the weak subalgebra property.

1. INTRODUCTION

We use the standard terminology and notation of [1, 3, 4]. All groups in this paper
are abelian. The group operation of an l-group is written by additive notation. We
use N and 7 for the natural numbers and the integers, respectively. The symbol @
refers to the group theoretic direct sum while B denotes the cardinal sum of /-groups.

A po-group is a partially ordered group [G, P] where P = {x € G | x > 0} is the
positive semigroup of G. A totally ordered group is called an 0-group. Let G and
H be two po-groups. A map ¢ from G into H is called a po-group homomorphism,
if ¢ is a group homomorphism and z > y implies ¢(z) > ¢(y) for any z, y € G.
A po-group homomorphism ¢ is called a po-group isomorphism if ¢ is an injection
and ¢! is also a po-group homomorphism from ¢(G) to G.

Let % be a class of I-groups and {G | A € A} C %. The % -free product of

Gy is an l-group G € %, denoted by # | | Gy, together with a family of injective
A€EA
I-homomorphisms a): Gy — G (call coprojections) such that
1. U ax(G)x) generates G as an I-group;
AEA
2. if H e % and {fx: Gy — H | A € A} is a family of I-homomorphisms, then

there exists a (necessarily) unique I-homomorphism v: G — H satisfying 5y = yay
for all A € \.

We often identify each free factor G with its image ay(Gy) in % | | G and thus
A€A

view each G as an I-subgroup of % | | aea G- By the Sikorski existence theorem [6],
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% -free products always exist if % is a class of [-groups closed under [-subgroups
and direct products. Consequently, if % is a variety of I-groups, % -free products
always exist. Let .2, # and &7 be the varieties of all [-groups, representable [-groups
and abelian [-groups, respectively. In [10-13] Powell and Tsinakis have given several
descriptions and some properties for free products in the varieties %, # and <.
Let @/r be the class of all archimedean [-groups. Clearly, &/ is closed under taking
l-subgroups and direct products. Hence o/ r-free products always exist. In this paper
we will give two descriptions of the o&/r-free products of archimedean [-groups and
discuss some of their properties.

2. DESCRIPTIONS FOR &/ r-FREE PRODUCTS

First of all we consider &/r-free products of archimedean 0-groups (which, by
Holder’s Theorem, are subgroups of the additive reals).

We recall some definitions. Let % be a class of I-groups and [G, P] a po-group.
The % -free extension of G is an [-group Fo (G) € % for which there exists an
injective po-group homomorphism a: G — F4 (G) such that

1. a(G) generates .Fo (G) as an l-group;

2. if H € % and B: G — H is a po-group homomorphism, then there exists an
[-homomorphism v: %4 (G) — H satisfying va = .

The % -free extension F4 (G) of a po-group [G, P] is called the % -free [-group
generated by [G, P], denoted by .Z4 ([G, P]), if the mapping « in the above definition
is a po-group isomorphism between G and a(G). By Griitzer existence theorem on
a free algebra generated by a partial algebra (Theorem 28.2 of [5]) we have.

Lemma 2.1. There exists an @/r-free l-group Fo,([G, P]) generated by a po-
group [G, P] if and only if |G, P] is a po-group isomorphic to a po-subgroup of an
archimedean [-group.

Let {Rx | A € A} be a family of archimedean 0-groups. H = @xca R is the abelian
group free product of this family. Let HT be the set of all sums of conjugates in H

of U RY.Then [H,H']= B R, and B Rj € /r. By Theorem 11.2.4 of [5] and
AEA AEA AEA
the above Lemma 2.1 we see that

1 “r ~ 7 :
( ) I—I R)\ JMT(ABGHAR)\)
AEA
We now consider the description for @7r-free products of arbitrary archimedean
l-groups. Let {Gx | A € A} be a family of archimedean [-groups. Then the /-
free product G =7 || G exists with the coprojections «, and we have several
AEA
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descriptions for G. Let H = @&,cpG be the abelian group free product of G. By
the proof of Theorem 2.4 of [11] there exists a group isomorphism a: H — «a(H) C

“| | G such that the restriction of o onto each individual Gy is ay. GA(\ € A) can
AEA
be naturally embedded into the cardinal sum )\EHA G\ as [-groups with the embedding
€

or: Gy — )\EISA G\. Hence there exists a group homomorphism §: H — )\EISA G which
extends 0x(A € A), and there exists an [-homomorphism v: G — )\EIEHA G such that
yay = dx(A € A). We declare two o/r-surjections §;: G — F;j(i = 1,2) to be
equivalent if there exists an l-isomorphism ~v: F} — F5 such that y0; = (2. Let

D={y: G- Fliel}

be the set of representatives of equivalence classes of Ar-surjections out of G. Thus,
~v € D and D is not empty. Foreach A € A and eachi € I, ;) is an [-homomorphism

of G, into F;. The direct product [] F; is an archimedean I-group. For each A € A,
iel
let 7wy be the natural I-homomorphism of G onto the l-subgroup G of [] F;. That is,
iel

mA(g9x) = (-, vian(gn); - --)

for gn € Gi. Let H be the subgroup of [[ F; generated by |J G4. Let 7 be the
iel AEA
group homomorphism of H onto H' which extends each 7y (A € A).

H G " “ || G
AEA AEA

Vi

That is,

m(h) = (...,via(h),...)

for h € H. Because v € D and each d5(A € A) is an [-isomorphism, 7 is a group

isomorphism of H onto H' and 7 is an Il-isomorphism for A\ € A. Let F be the
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sublattice of [ F; generated by H'. For each h € H, let b’ = w(h). Since [] F; is
i€l i€l
a distributive lattice,

F{ \/ A M| hjr € H, Jand K ﬁnite}.
jeJ keK

Thus we have the following result.

Proposition 2.2. Suppose that {G | A € A} is a family of archimedean [-groups.

Then the </r-free product /" | | G is the sublattice F of the direct product [] F;
AEA i€l
generated by the group isomorphic image H' of the abelian group free product H of

G\, where D = {%: G—F;lie I} is the set of representatives of the equivalence

classes of all </ r-surjections out of ¥ | | G.
AEA

Proof. Suppose that L € &/r and that {8\: Gx — L | A € A} is a family
of [-homomorphisms. We shall show that there exists a unique l-homomorphism
G*: F — L such that §*my = () for each A € A. By the universal property of the
group free product, there exists a group homomorphism §: H — L which extends
each Bx(A € A). For any b/ = n(h) € H', put

Then ' is a group homomorphism of H into L. By the universal property of the .o7-
free product, there exists a unique [-homomorphism f: G — L such that ) = fay
for each A € A. Then fa = f'm = 8. By Lemma 11.3.1 of [4] we need only to show

that for each finite subset {h;x | j € J, k€ K} CH, \/ A f'm(hji) # 0 implies
jeJ keK

V A 7w(hji) #0. Infact, \/ A falhj) #0.Because f € D, \V A via(hj) #
jeJ keK jeJ keK jeJ keK
0 for some i € I. So

VA i) =\ N\ (vl )= (... ) N\ veHjp),...) #0.

jeJ keEK jeJ keEK jeJkeEK

Therefore 3 can be uniquely extended to an I-homomorphism 3*: F — L. O

Below we will give another description for «/r-free products. Given G € &/r, an
l-ideal K of G will be called an archimedean kernel if G/K € &/r. Let AK(G) be the
set of all archimedean kernels of G. For any 0 # g € G, there exists an archimedean
kernel K, of G such that g€K,. K, is called an AK excluding g. For example, 0 is
always an AK excluding g # 0, because G € &/r.
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Let {Gx | A € A} be family of [-groups in &/r. Let

I'= | J AK(G))
A€EA

and consider the set A of all choice functions §: A — I'. For each § € A and each
A€ 2, let K(;()\) S AK(G)\). Then )\BEE‘A (G)\/Kg()\)) € dr. )\BEHA (G)\/K(;()\)) can be
also naturally viewed as a po-group. By Lemma 2.1 there exists an &/ r-free [-group

Fs = Z4,.( H K ted by th - H K fi h

5 Ty (AGA(G)\/ 5(,\))) generated by the po-group N (G)\/ 50\)) or eac

6 € A. Then [] Fs is an archimedean [-group. We denote by g5 the projection of
il

I] Fs onto Fs for each § € A. For each A € A, let w) be the [-homomorphism of

i€l

G onto the l-subgroup G’ of [] Fi satisfying osmx(gx) = gx + Kj(n) for gx € Gi.

i€l

7) is an [-isomorphism for each A € A. In fact, for 0 # gy we take Ks() = Ky,

an AK excluding gx. Then g + Ky, # K,,, and so gsma(gx) # 0. Let H' be the

subgroup of [] F5 generated by |J G and let w be the group homomorphism of
i€l AEA

H = ®xeaGy onto H' which extends each 7y (A € A). It is easy to see that 7 is

a group isomorphism. Then we have the following description of o/ r-free products.

Theorem 2.3. Suppose that {Gy | A € A} is a family of archimedean [-groups.

Then the o/r-free product " | | G\ is the sublattice F' of the direct product [[ Fj
AEA seA
generated by the group isomorphic image H' of the group free product H of G .

Proof. We show the universal property. Suppose that L € </r and that
{Br: Gx — L | A € A} is a family of [-homomorphisms. We shall show that there
exists a unique /[-homomorphism *: F — L such that g*m\ = (). Clearly, there
exists a group homomorphism 3: H — L which extends each

! L
t&
G B’ -
/ - 6
™ H/ g F(ﬁ HF(S

SEA

Fs,

«
H

Ba(A C A). For any b’ = w(h) € H'(h € H), put
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By Lemma 11.3.1 of [4] we need only to show that for each finite subset {h;; | j €

J ke K}y CH, \| N Bn(hjr) # 0implies \/ A m(h;i) # 0. For each X € A,
jEJ kEK jEJ keK

put Ko = By (0) and Fj, = fdr()\EIEHA(GA/K(;O(A))). Let ¢, be the natural I-

homomorphism of Gy onto G'x/Kj,(x), let nx be the l-isomorphism of G / K5, (x) into
L such that nxpx = G, let ¥y be the embedding of G'x/Kj,(») into )\EHA(GA/K(;O(A)),
€

let v be the group homomorphism of )\EHA(GA/K(;O()\)) into L such that y¥, = n)
€

(v is also a po-group homomorphism), and let £x be the po-group isomorphism of
)\E€EA(G A/ Ks4(x)) into Fs,. Then there exists an [-homomorphism f of F, into L such

that ff)\ =7. Let Q) = 5)\\1/)\@)\. Then
Bxr = mpx = 7P = fOTA0A = fan
and g5, = av) for each A € A. Let a be the unique group homomorphism

B
H

h

G =2 G /K5y 2 B (G Kson) <2 1y
\ o )

of H into Fj, which extends each ay(A € A). It follows that

0

f'r == faand g5, = a.

Thus, \/ A fa(hjr) #0. Thatis, f( \/ A a(hji)) #0. Hence \/ A a(hje) #

jeJ keK jeJ keK jeJ keK
0. So
\/ /\ W(hjk) = \/ /\ (~-~7Q607T(hjk)>~-~> = (, \/ /\ Q6O7T(hjk)>~-~>
jeJkeK jedJ keK jeJ keK
= ( VA a(hjk),...) # 0.
jeJ keK
Therefore 3 can be uniquely extended to an I-homomorphism 3*: F — L. O
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3. THE RELATION BETWEEN .&-FREE PRODUCTS AND &/r-FREE PRODUCTS

Let {Gx | A € A} be a family of archimedean [-groups. By universal proper-

ties there exists an I-homomorphism ¢ of “ || Gy onto “"| | Gx. If ¥ || G, is
AEA AEA AEA

archimedean, then | | Gy = “"| | G. Now we consider the .o/r-free product of
AEA AEA
two archimedean 0-groups R; and Ry. By Corollary 1.9.1 [7] and the above formula

(1) we have

Rl‘d L Ry & fd(Rl & RQ),
R1“" URy > Z . (R1 B Ry),

where % (R1 B Ry) and %, (R, B R») are respectively the «7-free I-group and the
o/ r-free [-group generated by R; HH R5. So the problem is reduced to the following
under what condition the «7-free I-group .% ., ([G, P]) generated by a po-group [G, P]
is archimedean. In [2] S.J. Bernau established a necessary and sufficient condition
under which the «7-free [-group generated by a po-group is archimedean. However,
his proof contains an error. Namely, [G, P] is a po-group and need not be a partially
ordered vector space (see [14] for derails). The correct result is given in the following
theorem. First we introduce some concepts.

Let [G, P] be a po-group and S a nonempty subset of G. S is said to be posi-
tively independent if for any finite subset {1, ..., 2z} of S and non-negative integers

{1, A ), Z Aix; € —Ponlyif \; =0 (¢ =1,...,k). A po-group [G, P] is said
to be strongly unlformly archimedean if, given u € G and a positively independent
subset {v1,.. vk} of GG, there exists n € N such that if A1,..., A\ are non-negative

integers and Z Ai =2 mn with m € N, then Z Aiv; € mu. It is well known that if

=1 =

a po-group [G, P] is semi-closed, then the &7/- free l-group % g{([G P]) generated by
[G, P] exists (cf. [16]).

Theorem 3.1. The «/-free l-group .7, ﬁ([G, P]) generated by a semi-closed po-
group |G, P] is archimedean if and only if |G, P] is strongly uniformly archimedean.

The proof of this theorem is similar to that of Theorem 4.3 of [2].

Now let Ry and Rs be two archimedean 0-groups. We call two nonzero elements
(a,b) and (¢, d) in Ry x Ry separated if (a,b) + v(c,d) = 0 for a positive real number
v. It is clear that Ry B Ry is semi-closed. So Theorem 2.6 of [8] and Theorem 3.1
yield.

Theorem 3.2. The following are equivalent:
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1. Ri“ UR, is archimedean,
2. Ry B Ry is strongly uniformly archimedean,

3. R1 B Ry has no separated, positively independent pairs,
4. Ri“ URy = R1“" U Rs.

4. THE WEAK SUBALGEBRA PROPERTY

Let % be a class of I-groups closed under [-subgroups and direct products. % -free
products are said to have the subalgebra property if for any family {G) | A € A}

in % with l-subgroups Hyx C Gi, # || H, is simply the I-subgroup of % || G
AEA AEA
generated by |J Hy. It is well known that <7-free products satisfy the subalgebra
A€EA
property [11]. % -free products are said to have the weak subalgebra property if,

whenever {G | A € A} is a family of l-groups in % with l-subgroups Hy C G and
any family of [-homomorphisms o): Hy — L € % can be extended to a family of
l-homomorphisms ¢ : Gy — L' € % and there exists a % -injection 6: L — L’ such

that 0')\|H = 0oy, then % | | H, is the l-subgroup of % | | G generated by |J Hj.
AEA AEA AEA

Theorem 4.1. /r-free products satisfy the weak subalgebra property.

Proof. Suppose that {Gy | A € A} is a family of l-groups in &/r with I-
subgroups H) C G), any family of [-homomorphisms oy: Hy — L € &/r can be
extended to a family of [-homomorphisms o4 : Gy — L’ € &/r and there exists an

&/r-injection 0: L — L’ such that U)\’H = doy. We see that H =7 | | H) is the
AEA

l-subgroup of G =7 | | G generated by |J Hy.
AEA AEA
(1) First we show that any I-homomorphism v: H — L € &/r can be extended to

an [-homomorphism 7': G — L’ € &/r and there exists an &/r-injection 6: L — L'
such that 7’|H = §7. In fact, any [-homomorphism o): Hy — L € &/r induces
a family of [-homomorphisms oy: Hy — L € o/r such that ya = o) for each A € A
where o, is the inclusion map. Then o) can

\ /

L

/ \
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be extended to a family of [-homomorphisms ¢ : Gy — L’ € &/r and there exists
an @/r-injection §: L — L’ such that cr3\|HA = do). By the universal property there
exists an [-homomorphism ': G — L’ such that 7'/, = o for each A € A where
oy is the inclusion map. Hence

dox =04y, = (Vo) g, =7 n,

for each A\ € A. By virtue of the uniqueness, 7/’HA = 0.

(2) Now we show that 7| | Hy is the [-subgroup of “"| | G generated by
AEA AEA
U Hx. Let Go = ®xeaGa, Hy = ®xeaHyx. Then Gy and Hy are subgroups of
AEA
G and H, respectively, and Hy is a subgroup of Gy, H is an [-subgroup

HEi( HFz

iel iel
\) /
Agr |_| H)\ drl_l G)\
AEA AEA
\) /
Hy Go
o et
Hy — Gy

HC G

of G. Let

D={~:G—F|i—1I}

be the set of representatives of equivalence classes of o/r-surjections out of G. For

each i € I, 7[|,, is an @/r-surjection out of H. Conversely, for an arbitrary o7r-

i
surjection v: H — F there exists by paragraph (1) an ¢ € I and an «/r-injection

d: E — F; such that oy =] Hence the set

[

contains at least one element of each equivalence class of &/ r-surjections out of H.
But many different v, may give rise to the same v. If C contains more than one
representative of some of the classes then the result of the construction is still the
&/ r-coproduct. So redundancy in C' does not harm the result. By Proposition 2.2 we

see that the .o7r-free product “” | | G, is the sublattice of the direct product [] F;
AEA i€l
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generated by the group isomorphic image G of Gy with the group isomorphism

7', and the o7 r-free product “" | | H) is the sublattice of the direct product [] E;
AEA iel
generated by the group isomorphic image H{ of Hy with the group isomorphism

. ’ a and 71" , are all I-isomorphisms for each A € A. Hence /" | | G is the

AEA
l-subgroup of [] F; generated by |J G\ where G} = 7'(G)) = Gy and “" | | Hy
i€l AEA AEA
is the l-subgroup of [] E; generated by |J Hj where H, = w(H)) = H,. From
iel AEA
the above we see that [] E; is an I-subgroup of [] F; and 7’| n, = 7 Therefore
iel i€l
“T| | Hy is the l-subgroup of [] F; generated by |J H}, and so " | | H, is also
AEA iel AEA AEA
the [-subgroup of /" | | G generated by |J H}. O
AEA AEA
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