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Abstract. In this paper we determine the maximum genus of a graph by using the
matching number of the intersection graph of a basis of its cycle space. Our result is a
common generalization of a theorem of Glukhov [5] and a theorem of Nebeský [15].
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1. Introduction

The maximum genus γ
M
(G) of a connected graph G is the largest integer k such

that G has a cellular embedding in the orientable surface of genus k. Formally the
maximum genus was introduced by Nordhaus, Stewart and White [16] in 1971, but

already in 1970 Khomenko and Yavorsky [11, Section 5] derived a criterion for a
graph to have a 2-cell embedding with a single face and by using it calculated the

maximum genus of the complete bipartite graphs Kn,n and the n-cubes Qn.

One of the most remarkable facts about the maximum genus is that this topo-
logical invariant can be characterized in a purely combinatorial manner. The first

combinatorial characterization of the maximum genus is due to Khomenko, Ostro-
verkhy and Kuzmenko [10]. Basically the same result was later independently proved

by Xuong [21], and an essential part of it by Jungerman [8]. It is convenient to state
these results in terms of an equivalent quantity called the Betti deficiency of G. It is

∗ Supported in part by the National Science Council of the Republic of China (NSC83-
0208-M009-031).

329



defined by the equation ξ(G) = β(G)− 2γ
M
(G), where β(G) = |E(G)| − |V (G)| + 1

is the Betti number, i.e., the cycle rank of G.

For a graph H , let c(H), d(H) and b(H) denote the number of components, the
number of components with odd number of edges, and the number of components

with odd Betti number, respectively.

Theorem 1. (Xuong [21]) Let G be a connected graph. Then

ξ(G) = min {d(G− E(T )) ; T a spanning tree of G}.

A characterization which is in a sense complementary was subsequently found by

Khomenko and Glukhov [9] and independently by Nebeský [13] in a slightly different
form. In contrast to Theorem 1, these results express the Betti deficiency as the

maximum of a certain combinatorial function.

Let A be a subset of E(G). Set ν(G, A) = c(G−A) + b(G−A)− |A| − 1.

Theorem 2. (Nebeský [13]) Let G be a connected graph. Then

ξ(G) = max {ν(G, A) ; A ⊆ E(G)}.

Extensions, generalizations and variations on these two theorems were established
by various authors, see e.g. [2, 14, 15, 18]. In this paper we pursue the connection

between the maximum genus and matchings and prove a characterization of the
maximum genus of a graph similar to Theorem 2 by employing the classical theorems

due to Hall [7], Tutte [20] and its generalization due to Berge [1].

The relationship between maximum genus and matchings is implicit in the proofs

of Theorem 1. By Theorem 1, a connected graph G has zero Betti deficiency (equiva-
lently, it admits a single-face 2-cell embedding in some orientable surface) if and only

if it has a spanning tree whose cotree consists of components with even number of
edges. Such a component can be decomposed into pairs of adjacent edges, and each

of the pairs contributes to the maximum genus by one. The adjacent pairs form what
is sometimes called an adjacency matching (see, e.g., [6]) and in turn corresponds to

a usual matching in a suitably defined graph. In general, the Betti deficiency of a
graph equals the minimum number of edges not covered by an adjacency matching.

As regards Theorem 2 and similar characterizations, the role of matchings is less
obvious. The first step in revealing this connection was taken by Glukhov [5]. To

state this result, let B be a basis of the cycle space C (G) of a graph G. Define the
graph J(G, B) to have B as its vertex set, with two elements C1 �= C2 in B adjacent
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if they have a vertex in common. We call J(G, B) the intersection graph of the basis

B. Note that J(G, B) is connected whenever G is 2-edge-connected.

Theorem 3. (Glukhov [5, Theorem 1]) A connected graph G has a single-face

orientable 2-cell embedding (i.e., ξ(G) = 0) if and only if for each basis B of the

cycle space of G the intersection graph J(G, B) of B has a perfect matching.

As a further step in this direction, Nebeský [15] proved the following. For a tree
T of a graph G let G#T be the graph with V (G#T ) = E(G)− E(T ) and with the

property that ef , where e, f ∈ E(G)−E(T ), forms an edge if T + e+ f has only one
non-trivial leaf. (Recall that a leaf of G is a 2-edge-connected subgraph maximal

with respect to inclusion.) Let ω(H) denote the number of unsaturated vertices of a
maximum matching in a graph H .

Theorem 4. (Nebeský [15, Theorem 1]) Let G be a connected graph different

from a tree. Then

ξ(G) = max{ω(G#T ) ; T a spanning tree of G}.

Moreover, there is a spanning tree Y of G such that

d(G− E(Y )) = ξ(G) = ω(G#Y ).

Note, however, that every spanning tree T of a graph G determines the standard

basis BT of C (G) where each element of BT uses only one cotree edge. Moreover,
one easily derives from the definitions that G#T coincides with J(G, BT ). These

observations suggest that there should be a common generalization of Glukhov’s
Theorem 3 and Nebeský’s Theorem 4. The aim of this paper is to prove such a

theorem.

Theorem 5. Let G be a connected graph. Then

ξ(G) = max{ω(J(G, B)) ; B a basis of C (G)}.

Moreover, there is a spanning tree Y of G such that

d(G− E(Y )) = ξ(G) = ω(J(G, BY )).

It is easy to find a basis for C (G) that is not of the form BT for some spanning

tree T of G. It follows that the maximum in Theorem 5 is taken over a larger set
than in Theorem 4, and so our main result indeed improves Nebeský’s Theorem 4.
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2. Definitions and auxiliary results

All graphs considered in this paper are finite and may have loops or multiple edges.

A circuit in a graph G is a connected regular subgraph of valency 2, whereas a
cycle is a subgraph of G in which every vertex has even valency greater than or

equal to 2. The cycle space C (G) of a graph G is the vector space over the 2-element
field spanned by the cycles of G; the sum of two vectors is obtained by taking the

symmetric difference of the corresponding sets of edges and omitting all resulting
isolated vertices. It follows that the non-zero elements of C (G) are cycles. The

dimension of C (G) is β(G) = |E(G)| − |V (G)| + k, where k denotes the number of
components of G. It is called the Betti number of G.

Let G be a connected graph and let T be a spanning tree of G. For a cotree
edge e ∈ E(G) − E(T ) let T (e) denote the unique cycle in T + e. Then {T (e) ; e ∈
E(G)−E(T )} is a basis for the cycle space of G. As noted above, not every basis of
the cycle space can be obtained in this way.
Our results rely on the use of matchings in graphs. We therefore recall some

pertinent definitions and theorems.
Let H be a connected loopless graph. A subset M ⊆ E(H) will be called a

matching if no two edges inM have a vertex in common. A matching with maximum
cardinality is called a maximum matching of H and a matching which covers every

vertex of H is said to be perfect. The size of a maximum matching in the graph H is
its matching number and is denoted by µ(H). The number of vertices that are not

covered by a maximum matching in H is denoted by ω(H). If n is the order of H ,
then ω(H) = n− 2µ(H).
For a graph H let o(H) denote the number of components of H with odd order.

The following generalization of Tutte’s celebrated 1-factor theorem [20] is due to

Berge [1].

Theorem 2.1. (Berge) Let H be a simple graph of order n. Then

ω(H) = max{o(H −X)− |X | ; X ⊆ V (H)}.

Another result which we need is the König-Hall theorem [7, 12] about matchings

in bipartite graphs. For a vertex x of a graph H let NH(x) denote the neighbourhood
of x, the set of vertices adjacent to x. If X ⊆ V (H), let NH(X) =

⋃
x∈X

NH(x).

Theorem 2.2. (König-Hall) Let H be a bipartite graph with bipartition (U, W ).

Then H contains a matching that covers all vertices in U if and only if NH(X) � |X |
for every subset X ⊆ U .
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The following lemma is a bridge between the theorems of Berge and Xuong. Recall

that the line graph L(H) of a graph H is the graph whose vertices correspond to
the edges of H , and where two vertices are joined by an edge if and only if the
corresponding edges have an end-vertex in common.

Lemma 2.3. Let G be a connected graph and let T be a spanning tree of G.

Then d(G− E(T )) = ω(L(G− E(T ))).

�����. Consider a componentK of the cotreeG−E(T ) and letK havem edges.

For each subset X ⊆ E(K) we obviously have d(K − X) � |X | if m is even, and
d(K−X) � |X |+1 ifm is odd. Since ω(L(K)) = max {d(K−X)−|X | ; X ⊆ E(K)}
by Theorem 2.1, we have ω(L(K)) = 0 if m is even, and ω(L(K)) = 1 if m is odd.
(In other words, a connected line graph has either a perfect matching or a matching

that misses only one vertex, cf. [3, 19].) Hence,

ω(L(G− E(T ))) =
∑

{ω(L(K)) ; K a component of G− E(T )} = d(G− E(T )).

�

We conclude this section with developing a useful technical machinery to handle

maximum-genus problems. It is based on the concept of a frame decomposition which
was extensively used by Širáň and Škoviera in [18] within the context of signed graphs.

Here, however, we only use the unsigned restriction of this concept.
A pair (F, A) is called a frame decomposition of a connected graph G if F , a frame,

is a connected spanning subgraph of G and A = E(G)−E(F ). Denote by ol(F ) the
number of leaves of F with odd Betti number.

Lemma 2.4. [9, 18] Let (F, A) be a frame decomposition of a connected graph
G. Then ξ(G) � ol(F )− |A|.

A frame decomposition (F, A) is said to be strong if it satisfies the following

properties:

(1) every non-trivial leaf R of F is critical, i.e., ξ(R) = 1 and ξ(R − e) = 0 for

every edge e of R;
(2) (F, A) admits a pairing, i.e., there is an injective mapping which to every

edge e ∈ A assigns a non-trivial leaf Re of F such that Re is incident with e.

Lemma 2.5. [18] If (F, A) is a strong frame decomposition of a connected graph
G, then ξ(G) = ol(F )− |A|.

The following theorem is one of the main results of [18].
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Theorem 2.6. [18] Every connected graph admits a strong frame decomposition.

We note in passing that Theorem 2.6 easily implies Theorem 2. Indeed, if (F, A)
is a strong frame decomposition of G and A′ = A∪ I where I is the set of all bridges

of F , then ν(G, A′) = ξ(G).

3. Proof of Theorem 5

First we show that ξ(G) � ω(J(G, B)) for every basis B of the cycle space of G.
Fix a basis B of C (G) and choose an optimal spanning tree T in G, i.e., one with

d(G−E(T )) = ξ(G). Define a bipartite graph H = H(B, T ) with bipartition (U, W )
by setting U = B, W = E(G) − E(T ) and by joining C ∈ U to e ∈ W if the edge e

belongs to the cycle C. Clearly, |U | = |W |. We claim that H has a perfect matching.
Suppose not. Theorem 2.2 then implies that there exists a subset B′ ⊆ B such that

(1) |NH(B
′)| < |B′|.

On the other hand, the set D = {T (e) ; e ∈ E(G) − E(T )} is also a basis for C (G).

By elementary linear algebra, D contains a subset D′ with |D′| � |B′| such that
every cycle C ∈ B′ is a linear combination of elements of D′. Take D′ to have the

minimum number of elements. Then any cycle C ∈ B′ can be written in the form
C =

∑
T (e), where all cycles T (e) appearing in this expression belong to D′ and

e ∈ E(C)− E(T ). By the minimality of D′,

(2) |D′| =
∣∣∣∣

⋃

C∈B′

(E(C)− E(T ))

∣∣∣∣.

At the same time, the definition of H(B, T ) implies that

(3)
⋃

C∈B′

(E(C) − E(T )) =
⋃

C∈B′

NH(C) = NH(B′).

However, from (1)–(3) we infer that

|B′| � |D′| =
∣∣∣∣

⋃

C∈B′

(E(C) − E(T ))

∣∣∣∣ = |NH(B′)| < |B′|,

which is absurd. Thus H(B, T ) has a perfect matching. We may therefore denote
by Ce the cycle from B matched with the cotree edge e. Obviously, if the cotree

edges e and f are adjacent, then Ce and Cf intersect. It follows that the bijection
e �→ Ce provides an isomorphism ϕ of the line graph L(G − E(T )) with a spanning
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subgraph of J(G, B). By Lemma 2.3, L(G − E(T )) contains a matching N with

ξ(G) unsaturated vertices. Hence ϕ(N) is a matching in J(G, B) and has ξ(G)
unsaturated vertices, too.

Summing up, for every basis B of C (G) we have obtained

ξ(G) � ω(J(G, B)),

and so

ξ(G) � max
B

ω(J(G, B)),

as well.

To prove the reverse inequality it is sufficient to exhibit a basis B of C (G) for
which ω(J(G, B)) � ξ(G). By Theorem 2.6, there is a strong frame decomposition

(F, A) of G. We claim that ω(J(G, BT )) � ξ(G) for any spanning tree T of the frame
F . (Note that T is at the same time a spanning tree of G.)

Fix a spanning tree T of F and set Z = {T (e) ; e ∈ A}. We estimate ω(J(G, BT )).

Theorem 2.1 implies that

ω(J(G, BT )) = max{o(J(G, BT )−X)− |X | ; X ⊆ BT }
� o(J(G, BT )− Z)− |Z|.

However, J(G, BT ) − Z = J(G − A, BT ) is just the disjoint union
⋃
R

J(R, BT∩R)

which is taken over all leaves R of F . Recall that ol(F ) is the number of leaves of F

with odd Betti number. It follows that

o(J(G, BT )− Z) = ol(F ).

Since |Z| = |A|, Lemma 2.5 yields

ω(J(G, BT )) � ol(F )− |A| = ξ(G),

as claimed. This establishes the first part of our theorem.

In the second part, we again utilize a strong frame decomposition (F, A) of
G. So far we have proved that for any spanning tree T of the frame F we have

ω(J(G, BT )) = ξ(G). Thus to complete the proof it is sufficient to show that among
the spanning trees of F there is one, denoted by Y , that is optimal for G.

By the definition of a strong frame decomposition, (F, A) admits a pairing which

to every edge e ∈ A assigns a non-trivial leaf Re such that e is incident with Re.
Besides paired leaves Re, e ∈ A, F may contain some unpaired leaves as well. For
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each e ∈ A choose in Re an edge e′ adjacent to e and form the set A′ = {e′ ; e ∈ A}.
Now, take Y to be any optimal spanning tree of F −A′.
To show that Y is optimal also for G, we construct a matching in L(G − E(Y ))

that has at most ol(F ) − |A| unsaturated vertices. Obviously, the tree YR = Y ∩R

is an optimal spanning tree for any leaf R of F − A′. Every leaf of F −A′ is either
a leaf S of F that does not contain an edge of A′ or a leaf of Re − e′ for some

paired leaf Re of F . In the former case, S is critical; hence d(S − E(YS)) = 1 and
by Lemma 2.3 there is a matching PS of L(S − E(YS)) with a single unsaturated

vertex. In the latter case we have d(Re − e′ − E(Y ∩ Re)) = 0 by the criticality of
Re. The same lemma then implies that the line graph of the corresponding cotree

has a perfect matching Qe. Taking the union of all the perfect matchings Qe (e ∈ A)
with the matchings PS (S an unpaired leaf of F ) and with the additional matching

{ee′ ; e ∈ A} we obtain a matching M of L(G−E(Y )). It is easy to see that M has
(at most) one unsaturated vertex per each unpaired leaf S of F and that there are

no other unsaturated vertices. Consequently, ω(L(G − E(Y ))) does not exceed the
number of unpaired leaves of F , i.e., ol(F )− |A|. Using Lemma 2.5 and Lemma 2.3
again we finally get

ξ(G) � d(G − E(Y )) � ω(L(G− E(Y ))) � ol(F )− |A| = ξ(G)

implying that d(G − E(Y )) = ξ(G). Thus Y is an optimal spanning tree of G. The

first part of this proof now yields ω(J(G, BY )) = ξ(G) = d(G − E(Y )), and the
theorem follows.

4. Corollaries

Nebeský’s Theorem 3 and Glukhov’s Theorem 4 stated in Introduction are obvious

corollaries of our Theorem 5. Here we give some more corollaries of this result. We
first restate Theorem 5 in a different form.

Theorem 4.1. Let G be a connected graph. Then the maximum genus of G is

γ
M
(G) = min

B
µ(J(G, B)),

where the minimum is taken over all bases B of the cycle space of G. Moreover,

there is a spanning tree T such that γ
M
(G) = µ(J(G, BT )).

Here are some corollaries to Theorem 4.1.

Corollary 4.2. [17] Let G be a connected graph. Then γ
M
(G) = 0 if and only

if no two circuits of G have a vertex in common.
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Before the next corollary, we need two definitions. A necklace is a graph with

vertex set V = {v1, v2, . . . , v2r}, such that the vertex v2s−1 is connected by a single
edge to the vertex v2s, s = 1, . . . , r, and the vertex v2s−2 is connected by a pair
of parallel edges to the vertex v2s−1 (where v0 = v2r), and some loops are added

at distinct interior points of those non-multiple edges. Next, a graph G is called a
cluster of three cycles if it contains a pair of intersecting circuits C1 and C2 such that

V (C1) ∩ V (C2) induces a path (possibly a single vertex) and G − (E(C1) ∪ E(C2))
is a path that joins a vertex of C1 to a vertex of C2 and is internally disjoint from

C1 ∪ C2.

Corollary 4.3. [4] Let G be a 2-edge-connected graph. Then γM (G) = 1 if and
only if it is homeomorphic to a necklace or a cluster of three cycles.

�����. Using Theorem 4.1 it is easy to check that any graph which is home-
omorphic to a necklace or to a cluster of three cycles has maximum genus 1. Con-

versely, if γ
M
(G) = 1 and G is neither homeomorphic to a necklace nor to a clus-

ter of three cycles, then there are two pairs of intersecting circuits, say {C1, C2}
and {C3, C4}, such that C1, C2, C3 and C4 are linearly independent. Let ei ∈
E(Ci)−

⋃
j �=i

E(Cj), where the pairs e1, e2 and e3, e4 are adjacent. Then for any basis

B of the cycle space of G we can find four members of B, say D1, D2, D3 and D4
such that ei ∈ E(Di) for each i = 1, . . . , 4. It follows that {D1, D2} and {D3, D4}
are intersecting pairs of cycles in B, whence µ(J(G, B)) � 2. This contradicts The-
orem 4.1. �

One can go on and ask for a description of graphs having maximum genus 2.

However, with Theorem 4.1 and Corollary 4.3 this is easier done than said. Roughly
speaking, graphs of maximum genus two are certain combinations of two graphs of

the kind described in Corollary 4.3, including a cluster of four or five cycles.

5. Concluding remarks

1. The proof of Theorem 5 given above does not depend on Theorem 3 and

Theorem 4 which Theorem 5 generalizes. Nonetheless, the inequality ξ(G) �
max ω(J(G, B)) and the existence of a spanning tree Y with d(G−E(Y )) = ξ(G) =

ω(J(G, BY )) can be derived from Theorem 4 since J(G, BY ) = G#Y .

2. It seems that the results of this paper might be extended to the maximum Euler
genus of a signed graph [18]. A signed graph is a graph whose edges are labelled

with signs + and −. An embedding of a signed graph (G, σ) in a closed surface,
orientable or non-orientable, is an embedding of its underlying graph G where cycles
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of G that preserve or reverse orientation of the surface are specified in advance by

the signature σ. This is done as follows. A cycle (or a circuit) of (G, σ) is said to
be balanced if the product of signs on its edges is +. In an embedding of (G, σ), a
circuit of G must be embedded in the surface so as to preserve orientation precisely

when it is balanced. This kind of embeddings was studied, e.g., in [18] and [22].

It turns out that signed graph embeddings provide a very natural generalization

of embeddings in orientable surfaces where the orientable case is obtained simply
by only allowing all-positive signatures. In [18], Širáň and Škoviera introduced the

maximum Euler genus of a signed graph and proved characterization theorems simi-
lar to Theorem 1 (Xuong [21]) and Theorem 2 (Nebeský [13]). Since Theorem 1 and

Theorem 2 (or, more precisely, Theorem 2.6 which implies Theorem 2) are crucial
to our proofs, there is hope that our present results may be extended to the signed

case. However, such an extension is far from immediate. It must include an appro-
priate definition of the intersection graph J(G, B) to reflect the balance in the signed

graph G and may involve extensions of the König-Hall theorem and the Tutte-Berge
theorem.
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