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COMPLETE GENERATORS AND MAXIMAL COMPLETIONS

OF MV -ALGEBRAS

Ján Jakubík, Košice

(Received February 29, 1996)

MV -algebras are also called algebras of the infinite valued �Lukasiewicz logic [2].
If A is an MV -algebra, then the notion of a set of generators of A has the usual

meaning.

By considering complete MV -algebras (cf., e.g., [2], [8]) we can define the notion

of the complete homomorphism and of the set of the complete generators. (For
definitions, cf. Section 1 below.)

Analogous definitions have been applied for complete Boolean algebras, complete

lattice ordered groups and complete vector lattices.

In [5] it was proved that if α is an infinite cardinal, then there exists no free

complete Boolean algebra with α free complete generators. A similar result was
proved in [10] for complete lattice ordered groups and in [11] for complete vector

lattices.

In the present paper we show that an analogous result is true also in the case of

complete MV -algebras.

It is well-known that each MV -algebra A can be constructed by means of an
appropriately chosen abelian lattice ordered group G with a strong unit u (cf. [12]).

There exist exactly three nonisomorphic types of lattice ordered groupsG with one
generator. In each of these cases G is complete. If X is a set of nonzero orthogonal

elements of G, then cardX � 2. Analogous results hold for Boolean algebras with
one generator.

In view of the above mentioned relation between MV -algebras and abelian lattice

ordered groups we can ask whether analogous results are valid for MV -algebras with
one generator. The answer is “No”.

An MV -algebra with one generator need not be complete; moreover, it need not be
archimedean. There exist infinitely many nonisomorphic completeMV -algebras with
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one complete generator. If A is an MV -algebra with one generator (or a complete

MV -algebra with one complete generator) and if X is an orthogonal subset of A,
then the set X can be infinite.

Further we investigate maximal completions of MV -algebras. The analogous no-

tion for abelian lattice ordered groups was studied in [3] and [6]. It will be shown
that each MV -algebra possesses a unique maximal completion.

1. Preliminaries

We apply the terminology and notation from [7]. Thus an MV -algebra is a system

A = (A;⊕, ∗,¬, 0, 1), where A is a nonempty set, ⊕, ∗ are binary operations, ¬ is a
unary operation and 0, 1 are nulary operations on A such that the identities (m1)–

(m9) from [7] are satisfied.
We quote the following results which will be needed in the sequel.

1.1. Theorem. (Cf. [4].) Let A be an MV -algebra. For each x, y ∈ A put

x∨ y = (x ∗¬y)⊕ y and x∧ y = ¬(¬x∨¬y). Then L(A) = (A;∨,∧) is a distributive

lattice with the least element 0 and the greatest element 1.

1.2. Theorem. (Cf. [12].) Let G be an abelian lattice ordered group with a
strong unit u. Let A be the interval [0, u] of G. For each a and b in A we put

a⊕ b = (a+ b) ∧ u, ¬a = u− a, 1 = u, a ∗ b = ¬(¬a⊕ ¬b).

Then A = (A;⊕, ∗,¬, 0, 1) is an MV -algebra.

The MV -algebra A from 1.2 will be denoted by A0(G, u).

1.3. Theorem. (Cf. [12].) Let A be an MV -algebra. Then there exists an

abelian lattice ordered group G with a strong unit u such that A = A0(G, u).

Let us remark that if A and G are as in 1.2, then the partial order on A inherited
from G is the same as the partial order on A defined by means of 1.1.

An MV -algebra A is called complete if the lattice L(A) is complete.
For a ∈ A we put 1·a = a and for n > 1 we define by induction n·a = a⊕(n−1)·a.

The MV -algebra A is called archimedean, if there exists no a ∈ A such that n · a <
(n + 1) · a < u for each positive integer n. (A formally different but equivalent

definition was introduced in [9].)
Let A1 be a nonempty subset of A which is closed with respect to the operations ⊕,

∗, ¬, 0, 1. Then A1 = (A1,⊕, ∗,¬, 0, 1) is a subalgebra of A. If no misunderstanding
can occur, then we do not distinguish between A1 and A1.
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Suppose that B is a subalgebra of A. If L(B) is a closed sublattice of L(A), then

B is said to be a closed subalgebra of A.
The notion of homomorphism of MV -algebras has the usual meaning. A homo-

morphism ϕ of an MV -algebra A into an MV -algebra B is said to be complete if it

satisfies the following condition (c) and the condition (c’) dual to (c).

(c) Whenever {ai}i∈I ⊆ A, a ∈ A and a =
∨
i∈I

ai is valid in L(A), then ϕ(a) =
∨
i∈I

ϕ(ai) is valid in L(B).

We apply the following standard definitions:

Let X be a subset of A. If each subalgebra B1 of A with X ⊆ B1 coincides
with A, then X is called a system of generators of A. If, moreover, for each MV -

algebra C, each mapping ψ of X into the underlying set C of C can be extended to
a homomorphism ϕ of A into C, then X is a set of free generators of A.

For the case of complete MV -algebras we modify the above definition as follows.
Let A be a complete MV -algebra and let X ⊆ A. If for each closed subalgebra

B1 of A with X ⊆ B, the relation B1 = A is valid, then X is said to be a system of
complete generators of A.

If, moreover, for each complete MV -algebra C, each mapping ψ : X → C can
be extended to a complete homomorphism of A into C, then X is a system of free
complete generators of A. In such a case we also say that A is a free complete

MV -algebra with α free complete generators, where α = cardX .
We will use analogous notions for complete lattice ordered groups and for complete

Boolean algebras.

2. Generators and complete generators

We need the following result (cf. [3]).

2.1. Proposition. Let α be an infinite cardinal. There exists a complete

Boolean algebra Bα which satisfies the following conditions:

(i) cardBα � α.

(ii) There exists a denumerable system X of complete generators of Bα.

In fact, this is also a consequence of Theorem K in [13], p. 157. (It suffices to

consider the Dedekind completion of the Boolean algebra from Theorem K; in [13] it
is remarked that the method of constructing this Boolean algebra is due to Hales [5].)

2.2. Proposition. Let α be an infinite cardinal. There exists a complete

MV -algebra A such that
(i) cardA � α,
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(ii) there exists a denumerable system X of complete generators of A.

�����. Let B = Bα be as in 2.1. We consider the vector lattice E of all

elementary Carathéodory functions on B and then we construct the lattice ordered
group G as in the concluding part of [7]. Put A = A0(G;u). Hence the lattice L(A)

coincides with the Boolean algebra B. Thus cardA � α. Let X be as in 2.1. Then
X is a system of complete generators of A. �

2.3. Theorem. Let β be an infinite cardinal. There exists no free complete

MV -algebra with β free complete generators.

�����. By way of contradiction, assume that Aβ is a free complete MV -algebra

with a system Xβ of free complete generators such that cardXβ = β. Let Aβ be the
underlying set of Aβ . There exists a cardinal α with α > cardAβ . Let A be as in

2.2.

There exists a denumerable subsetX1 ofXβ. Hence there is an injective mapping ψ

of X1 onto X . For each xβ ∈ Xβ\X1 we put ψ1(xβ) = 0; for xβ ∈ X1 we set ψ1(xβ) =
ψ(xβ). According to the assumption there exists a complete homomorphism ϕ of

Aβ into A such that ϕ is an extension of ψ1. Thus ϕ(X1) = X and hence from
2.2 (ii) we obtain that ϕ(Aβ) = A. Therefore cardAβ � cardA � α, which is a

contradiction. �

The additive group of all integers with the natural linear order will be denoted by

�. The free lattice ordered group with one free generator is isomorphic to �× �.
(Cf. [1], Chap. XIII, §4.) As a free generator we can take either the element (1,−1)

or the element (−1, 1). From this we immediately obtain:

2.4. Lemma. Let G1 be a lattice ordered group with one generator. Then G1
is isomorphic to some of the following lattice ordered groups: {0}, �, �×�. In each
of these three cases G1 is complete.

2.5. Example. Consider the lattice ordered group � and a positive integer n.

Put u = n and let us construct the MV -algebra A = An as in Theorem 1.2. Then
An is a complete MV -algebra; the element 1 of An is a generator of An. If n(1)

and n(2) are distinct positive integers, then An(1) fails to be isomorphic to An(2).
Hence the situation concerning MV -algebras with one generator essentially differs

from that concerning lattice ordered groups with one generator.

2.6. Example. Let G = �◦� (where ◦ denotes the operation of lexicographic

product). Put u = (1, 0). Then u is a strong unit of G and hence we can construct
the MV -algebra A according to 1.2. It is obvious that A is not complete; moreover,
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it is not archimedean. The underlying set A of A consists of all elements (m,n) ∈ G
such that either (i) m = 0, or (ii) m = 1 and n � 0.

Put x = (0, 1). If A1 is a subalgebra of A with the underlying set A1 and if x ∈ A1,
then clearly (0, n) ∈ A1 for each n � 0; hence (1,−n) = u − (0, n) also belongs to
A1. Thus A1 = A and hence x is a generator of A.

2.7. Example. For each positive integer n let Gn = � and G =
∞∏

n=1
Gn. If

x ∈ G, then we denote by xn the component of x in Gn. Let u ∈ G be such that

un = n for each positive integer n. The convex �-subgroup of G which is generated
by u will be denoted by G′. Hence u is a strong unit of G′. We can construct

the MV -algebra A = A0(G′, u) with the underlying set A. It is obvious that G′ is
complete, hence in view of [8], 1.1, A is complete as well. There exists x ∈ A such

that xn = 1 for each n ∈ �.

Let A1 be a closed subalgebra of A. Suppose that A1 is the underlying set of A1
and x ∈ A1. Hence u− x ∈ A1. Put (u− x)⊕ (u− x) = y. Then in view of 1.2,

y = ((u− x) + (u − x)) ∧ u = (2u− 2x) ∧ u,

whence

yn = (2n− 2) ∧ n

for each n ∈ �. Therefore

yn =

{
0 if n = 1,

n if n > 1.

Put x1 = u − y. We have y ∈ A1, hence x1 ∈ A1. Clearly x11 = 1 and x1n = 0 for

n > 1.

Further we have

(u− x)1 = 0 = (x − x1)1,

and

(u− x)n = un−1, (x − x1)n = xn−1

for n > 1. Thus if the elements u and x in the above calculation are replaced by

u − x and x − x1, respectively, then we obtain that there exists x2 ∈ A1 such that
x22 = 1 and x2n = 0 for each n ∈ � \ {2}.

By applying the obvious induction we conclude that for each m ∈ � there is xm

in A1 such that xm
m = 1 and xm

n = 0 whenever n 	= m.

Let m ∈ �. We put zm1 = xm. If 1 < k ∈ �, k � m, then we define by induction

zm,k = zm,k−1 ⊕ zm1.
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Thus zm,k ∈ A1 for k = 1, 2, . . . ,m. In view of 1.2 we easily verify that zm,k
n = 0 if

n 	= m, and zm,k
m = k.

Let t ∈ A. Hence tm � m for each m ∈ �. Then

(1) t =
∨

m∈�
zm,tm

is valid in A. Since A1 is a closed subalgebra of A, we obtain that t belongs to A1.

Thus A = A1.
Therefore A is a complete MV -algebra having one complete generator x. The sub-

set {xn}n∈� of A is orthogonal and infinite. Let us also remark that the cardinality
of A equals the power of the continuum.

2.8. Example. Let us apply the same notation as in 2.7. Further let A0 be

the subalgebra of A generated by the element x and let A0 be the underlying set of
A. Thus cardA0 � ℵ0. Moreover, all elements zm,k (m ∈ �, 1 � k � m) belong to

A0. The MV -algebra A0 fails to be complete.

This can be verified as follows. By way of contradiction, suppose that A0 is
complete. Since cardA0 < cardA, there exists t ∈ A \ A0. Consider the system

{zm,tm}m∈� = S. Thus there exists t′ ∈ A0 such that t′ = supS is valid in A0.
Then t′m � zm,tm

m = tm for each m ∈ �, hence t′ � t. Since t /∈ A0, we conclude that

t′ > t. Therefore there exists m ∈ � with t′m � tm + 1.
Further there exists t′′ in A0 such that

t′′ ⊕ xm = t′.

Then t′′ < t′ and t′′ is an upper bound of the system S, which is a contradiction.

3. Maximal completions

For a subset X of a lattice L we denote by Xu and X�, respectively, the set of all
upper bounds and the set of all lower bounds of X in L. Let d(L) be the system of

all sets (Xu)�, where X runs over the system of all nonempty upper bounded subsets
of L. The system d(L) is partially ordered by the set-theoretical inclusion. Then

d(L) is a conditionally complete lattice.
The mapping ϕ : L→ d(L) defined by

ϕ(x) = ({x}u)� for each x ∈ L

is an isomorphism of L into d(L). When no misunderstanding can occur we will
identify x with ϕ(x) for each x ∈ L. Then L turns out to be a sublattice of d(L).
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Moreover, if X1 is a subset of L and if x1 is the supremum of X1 in L, then x1 is

also the supremum of X1 in d(L). The corresponding dual assertion is valid as well.
If X is a nonempty upper bounded subset of L, then the relation

(1) (Xu)� =
∨
xi (xi ∈ X)

holds in d(L).

Let a, b ∈ L, a < b, and let L1 be the interval [a, b] in L. For ∅ 	= X ⊆ L1 we

denote

Xu(1) = Xu ∩ L1, X�(1) = X� ∩ L1.

Hence d(L1) is the system of all sets (Xu(1))�(1), where X runs over the system of
all nonempty subsets of L1.

Let L∗1 be the interval with the endpoints a and b in d(L). For Z ∈ L∗1 and
T ∈ d(L1) we put

ϕ1(Z) = Z ∩ [a, b], ϕ2(T ) = (T u)�.

By applying (1) we obtain

3.1. Lemma. ϕ1 is an isomorphism of L∗1 onto d(L1) and ϕ2 = ϕ−11 . Moreover,

ϕ1(x) = x for each x ∈ L1.

Now let A be an MV -algebra and let G be a lattice ordered group with a strong

unit u such that A = A0(G, u).

Denote d(L(A)) = d(A). Let A∗ be the interval with the endpoints 0 and u in
d(G). For each P ∈ A∗ we put ϕ1(P ) = P ∩A. From 3.1 we obtain

3.2. Corollary. ϕ1 is an isomorphism of A∗ onto d(A). Moreover, ϕ1(x) = x

for each x ∈ A.

For Y1, Y2 ∈ d(G) we put

Y1 + Y2 = ({y1 + y2 : y1 ∈ Y1 and y2 ∈ Y2}u)�.

In view of (1) we have

(2) Y1 + Y2 = sup{y1 + y2} (y1 ∈ Y1, y2 ∈ Y2),

where the supremum is taken with respect to d(G).

The following results 3.3 and 3.4 have been proved in [3]; cf. also [6], 1.1 and 1.2.
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3.3. Proposition. The set d(G) with the operation + is a semigroup. The

element 0 is a neutral element of (d(G); +). If a, b, c ∈ d(G), a � b, then a+c � b+c.

Next, G is a subsemigroup of d(G).

3.4. Theorem. Let M(G) be the set of all elements of d(G) which have an
inverse in the semigroup (d(G),+). Then

(a) (M(G); +,�) is a lattice ordered group;

(b) (M(G); �) is a sublattice of d(G).

In what follows we will write M(G) instead of (M(G); +,�). In [3], M(G) is called
the Dedekind completion of G; in [6], M(G) was called the maximal completion of

G.

We define a binary operation ⊕ on d(A) as follows. For T1, T2 ∈ d(A) we put

T1 ⊕ T2 = ({t1 ⊕ t2 : t1 ∈ T1 and t2 ∈ T2}u(1))�(1)

where u(1) and �(1) have analogous meanings as in the case of L1 above.

Then according to (1) we have

(3) T1 ⊕ T2 = sup{t1 ⊕ t2} (t1 ∈ T1 and t2 ∈ T2)

where the supremum is taken with respect to d(A).

It is easy to verify that the just defined operation ⊕ on d(A) is an extension of
the original operation ⊕ on A.

From the fact that the operation ⊕ on A is commutative and associative we infer
(by applying (3))

3.5. Lemma. The set d(A) with the operation ⊕ is an abelian semigroup.

3.6. Definition. Let A be as above and let B be an MV -algebra such that the

following conditions are satisfied:

(a) A is a subalgebra of B.
(b) L(B) is a sublattice of d(A).
(c) (B;⊕) is a subsemigroup of the semigroup (d(A);⊕).

Then B is called a c-extension of A.

3.7. Definition. Let B1 be a c-extension of A. If for each c-extension B of A
the MV -algebra B is a subalgebra of B1, then B1 is called a maximal completion
of A.
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The above definition yields that if a maximal completion of A does exist, then it

is uniquely determined.
For structures dealt with in the present section we can apply the following diagram:

A

��

�� G

�� �����������

d(A) A∗��
ϕ1

d(G)�� M(G)��

Here the mapping ϕ1 is as in 3.2; all the remaining mappings are embeddings.

We define a binary operation ⊕ on A∗ as follows. For Z1, Z2 ∈ A∗ we put

(4) Z1 ⊕ Z2 = sup{(z1 + z2) ∧ u : z1 ∈ Z1 and z2 ∈ Z2},

where the supremum is taken with respect to the complete lattice A∗.

3.8. Lemma. ϕ1 is an isomorphism of (A∗,⊕) onto (d(A),⊕).

�����. Let Z1, Z2 ∈ A∗. Put ϕ1(Zi) = Ti (i = 1, 2). In view of (3),

T1 ⊕ T2 = sup{(t1 + t2) ∧ u : t1 ∈ T1 and t2 ∈ T2} =

= sup{(ϕ(z1) + ϕ(z2)) ∧ ϕ(u) : z1 ∈ Z1 and z2 ∈ Z2} =

= sup{ϕ((z1 + z2) ∧ u) : z1 ∈ Z1 and z2 ∈ Z2},

where sup is taken with respect to d(A). Hence in view of (4) and 1.2, T1 ⊕ T2 =

ϕ(Z1 ⊕ Z2). �

From the construction of M(G) we infer that u is a strong unit of M(G). Let M0
be the interval of M(G) with the endpoints 0 and u. Hence we can construct (by
means of 1.2) the MV -algebra A0(M(G), u); we will denote this MV -algebra by the

symbol M0 of its underlying set.

3.9. Lemma. The MV -algebra A is a subalgebra of M0.

�����. Since G is an �-subgroup of M(G), from the relations

A = A0(G, u), M0 = Ao(M(G), u)

we obtain that A is a subalgebra of M0. �

3.10. Lemma. ϕ1(M0) is a sublattice of d(A).

�����. In view of 3.4 (b), (M(G); �) is a sublattice of d(G). This yields that
M0 is a sublattice of A∗. Hence according to 3.2, ϕ1(M0) is a sublattice of d(A). �
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The following result is well-known.

(∗) Let a, b, c ∈ G+, c � a+b. Then there are a1, b1 ∈ G such that a1 ∈ [0, a], b1 ∈
[0, b] and c = a1 + b1.

3.11. Lemma. Let a, b ∈ A. Then there are a1 ∈ [0, a] and b1 ∈ [0, b] such that

a⊕ b = a1 + b1.

�����. We have a ⊕ b = (a + b) ∧ u. Put c = a ⊕ b. Now it suffices to apply
(∗). �

3.12. Corollary. Let T1, T2 ∈ d(A). Then

T1 ⊕ T2 = sup{t1 + t2 : t1 ∈ T1, t2 ∈ T2 and t1 + t2 � u},

where the supremum is taken with respect to d(A).

3.13. Lemma. (ϕ1(M0);⊕) is a subsemigroup of the semigroup (d(A),⊕).

�����. This is a consequence of 3.10 and 3.12. �

3.14. Lemma. ϕ1(M0) is a c-extension of A.

�����. This follows from 3.10, 3.9 and 3.13. �

3.15. Lemma. Let B be a c-extension of A. Let Z ∈ B, Z 	= u. Then there are

a ∈ A and Z1 ∈ d(A) such that a < u and Z ⊕ Z1 = a.

�����. There exists a lattice ordered group G′ such that u is a strong unit in

G′ and B = A0(G′, u). Since Z 	= u, the set Z must be upper bounded in A \ {u}.
Hence there is a ∈ A such that Z � a < u. This implies that there is b ∈ B such

that Z + b = a holds in G′. Then 0 � b < u and therefore a = Z ⊕ b is valid in B.
Now it suffices to put Z1 = b. �

3.16. Lemma. Let Z be as in 3.15. Then ϕ−11 (Z) ∈M0.

�����. We have Z ⊕ Z1 = a. Hence in view of 3.8 the relation

ϕ−11 (Z)⊕ ϕ−11 (Z1) = a

is valid in A∗. Since a < u, we get

a = ϕ−11 (Z) + ϕ−11 (Z1).
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From the relation a ∈M(G) we infer that there is −a ∈M(G); hence

0 = ϕ−11 (Z) + (ϕ−11 (Z1)− a).

Now according to 3.4, ϕ−11 (Z) belongs to M(G). Next, ϕ−11 (Z) ∈ A∗ and thus

ϕ−11 (Z) ∈M0. �

3.17. Corollary. Let B be a c-extension of A. Then B ⊆ ϕ1(M0).

Therefore we obtain

3.18. Theorem. Let A be an MV -algebra. Let ϕ1 and M0 be as above. Then

ϕ1(M0) is the maximal completion of A.

3.19. Proposition. Let A be an MV -algebra. Then the maximal completion

of A is the set of all T ∈ d(A) which satisfy the following condition:

(c) either T = u, or there are a ∈ A and T1 ∈ d(A) such that a < u and

T ⊕ T1 = a.

�����. a) Let T belong to the maximal completion ofA. Then clearly T ∈ d(A).

According to 3.15, the condition (c) is satisfied.
b) Let T ∈ d(A) and suppose that the condition (c) is valid. If T = u, then in

view of 3.18, u belongs to the maximal completion ϕ1(M0) of A. Let T < u. In view
of 3.16, T ∈ ϕ1(M0). �

An MV -algebra will be called m-complete if it coincides with its maximal com-
pletion. We conclude by remarking without proof that the class of all m-complete

MV -algebras is closed with respect to direct products, but it fails to be closed with
respect to homomorphic images.
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